СОГЛАСОВАНО

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Система измерений количества и параметров свободного нефтяного газа на ГКС (СИКГ-1) УПН Юрубчено-Тохомского месторождения

Методика поверки НА.ГНМЦ.0447-20 МП РАЗРАБОТАНА Обособленным подразделением Головной научный

метрологический центр АО «Нефтеавтоматика» в

г.Казань

(ОП ГНМЦ АО «Нефтеавтоматика»)

исполнители:

Березовский Е.В., к.т.н,

Хусаинов Р.Р.

1 Общие положения

Настоящая инструкция распространяется на систему измерений количества и параметров свободного нефтяного газа (далее - СИКГ), приведенного к стандартным условиям, подаваемого на ГКС, и устанавливает методику ее периодической поверки.

Поверка СИКГ в соответствии с настоящей методикой поверки обеспечивает передачу единиц объемного расхода газа от рабочего эталона 1-ого разряда в соответствии с Государственной поверочной схемой для средств измерений объемного и массового расходов газа, утвержденной приказом Росстандарта от 29.12.2018 г. № 2825 «Об утверждении Государственной поверочной схемы для средств измерений объемного и массового расходов газа», что обеспечивает прослеживаемость к ГЭТ 118-2017 «Государственный первичный эталон единиц объемного и массового расходов газа». Поверка СИКГ осуществляется косвенным методом.

Отсутствует возможность проведение поверки на меньшем числе измеряемых величин и поддиапазонов измерений.

Интервал между поверками СИКГ: четыре года.

2 Перечень операций поверки

2.1 При проведении поверки выполняют следующие операции, указанные в таблице 1:

Таблица 1 – операции поверки

Наименование операции пун мето	Номер	Проведение операции при	
	пункта методики поверки	первичной поверке	периодической поверке
1. Внешний осмотр	6.1	Да	Да
2. Подтверждение соответствия программного обеспечения (далее – ПО) СИКГ	6.2	Да	Да
3. Опробование	6.3	Да	Да
4. Определение метрологических характеристик (MX) СИ	6.4	Да	Да
5. Подтверждение соответствия СИКГ метрологическим требованиям	6.5	Да	Да

2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается.

3 Условия поверки

При проведении поверки соблюдают условия в соответствии с требованиями НД на поверку СИ, входящих в состав СИКГ.

4 Метрологические и технические требования к средствам поверки

4.1 Многофункциональный калибратор ASC300-R, диапазон измерения/воспроизведения токового сигнала от 0 до 24 мА, пределы допускаемой погрешности в режиме измерения/воспроизведения токового сигнала ±0,015 % от показания ±2 мкА.

- 4.2 Угломер, диапазон измерений от 0 до 180°, пределы допускаемой абсолютной погрешности ±0,1°.
- 4.3 Поверочная расходомерная установка с пределом основной относительной погрешности ±0,3 %.
- 4.4 Другие эталонные и вспомогательные СИ в соответствии с нормативными документами (НД) на поверку СИ, входящих в состав СИКГ.
- 4.5 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

5 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки соблюдают требования, определяемые в области охраны труда и промышленной безопасности:

- «Правила безопасности в нефтяной и газовой промышленности» утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 15 декабря 2020 г. №534;
 - Трудовой кодекс Российской Федерации;
 - в области пожарной безопасности:
 - СНиП 21-01-97 «Пожарная безопасность зданий и сооружений»;
- Постановление Правительства Российской Федерации «Об утверждении правил противопожарного режима в Российской Федерации» от 16.09.2020г. №1479:
- СП 12.13130.2009 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности»;
- СП 5.13130.2009 «Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования»;
- в области соблюдения правильной и безопасной эксплуатации электроустановок:
 - ПУЭ «Правила устройства электроустановок»;
 - в области охраны окружающей среды:
- Федерального закона от 10.01.2002 г. № 7-Ф3 «Об охране окружающей среды» и других законодательных актов по охране окружающей среды, действующих на территории РФ.

6 Внешний осмотр СИКГ

- 6.1 При внешнем осмотре должно быть установлено соответствие СИКГ следующим требованиям:
 - комплектность СИКГ должна соответствовать технической документации;
- на компонентах СИКГ не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
 - надписи и обозначения на компонентах СИКГ должны быть четкими.
- 6.2 Для исключения возможности несанкционированного вмешательства, которое может влиять на показания СИ, входящих в состав СИКГ, должна быть обеспечена возможность пломбирования в соответствии с описаниями типа СИ.

7 Подготовка к поверке и опробование

- 7.1 При подготовке к поверке СИКГ проверяют наличие актуальных сведений о поверке в Федеральном информационном фонде по обеспечению единства измерений СИ, входящих в состав СИКГ.
 - 7.2 Опробование

Проверяют отсутствие сообщений об ошибках и соответствие текущих измеренных СИКГ значений температуры, давления, объемного расхода данным, отраженным в описании типа СИКГ.

Результаты опробования считают положительными, если текущие измеренные СИКГ значения температуры, давления, объемного расхода соответствуют данным, отраженным в описании типа СИКГ, а также отсутствуют сообщения об ошибках.

8 Проверка программного обеспечения СИКГ

8.1 Подтверждение соответствия ПО СИКГ.

Проверяют версию программного обеспечения вычислителя УВП-280.

Чтобы определить номер версии ПО вычислителя УВП-280 необходимо выполнить нижеперечисленные процедуры.

Необходимо нажать на кнопку «F2», находящуюся на лицевой стороне вычислителя УВП-280, выбрать функцию «сервис», далее выбрать строку «Информация», для вывода информации на дисплей вычислителя УВП-280 нажать на кнопку «F1».

Проверку цифрового идентификатора ПО вычислителя УВП-280 не проводят, поскольку вывод идентификационных данных ПО вычислителей УВП-280, выпущенных до 22.01.2019 на показывающее устройство или посредством подключения внешних устройств не предусмотрен.

Занести информацию в соответствующие разделы протокола.

8.2. Если идентификационные данные, указанные в описании типа СИКГ и полученные в ходе выполнения п.8.1, идентичны, то делают вывод о подтверждении соответствия ПО СИКГ программному обеспечению, зафиксированному во время проведения испытаний в целях утверждения типа, в противном случае результаты поверки признают отрицательными.

9 Определение метрологических характеристик СИКГ

9.1 Определение МХ СИ

Проверяют наличие действующих свидетельств о поверке СИ и (или) знаков поверки на СИ, и (или) записей и знаков поверки в паспортах (формулярах) СИ, и (или) сведений в Федеральном информационном фонде по обеспечению единства измерений о поверке СИ, входящих в состав СИКГ.

Допускается применение методик поверки приведенных в описании типа СИ, входящих в состав СИКГ, и утвержденных при их испытаниях

9.2 Определение относительной погрешности измерений объема СНГ, приведенного к стандартным условиям.

Относительную погрешность измерений объема СНГ, приведенного к стандартным условиям, δ_{V_c} , %, вычисляют по формуле

$$\delta_{V_c} = \sqrt{\delta_{Q_p}^2 + \vartheta_p^2 \cdot \delta_p^2 + \vartheta_T^2 \cdot \delta_T^2 + \delta_{BbIq}^2 + \delta_K^2 + \delta_\tau^2}, \tag{1}$$

где

- $\delta_{Q_{\rm p}}$ пределы допускаемой относительной погрешности измерений объемного расхода СНГ в рабочих условиях, принимаемые равными пределам допускаемой относительной погрешности расходомера, %;
- ϑ_p коэффициент влияния абсолютного давления на объем СНГ, приведенный к стандартным условиям;
- δ_p пределы допускаемой относительной погрешности измерений абсолютного давления СНГ, %;
- ϑ_T коэффициент влияния абсолютной температуры на объем СНГ, приведенный к стандартным условиям;

 δ_T – пределы допускаемой относительной погрешности измерений абсолютной температуры СНГ, %;

 $\delta_{\text{выч}}$ – пределы допускаемой относительной погрешности вычислений объемного расхода, приведенного к стандартным условиям, %;

 $\delta_{\it K}$ — пределы относительной погрешности вычислений коэффициента сжимаемости СНГ, %;

 $\delta_{ au}$ — пределы допускаемой относительной погрешности измерений текущего времени.

Пределы допускаемой относительной погрешности измерений абсолютного давления вычисляют по формуле

$$\delta_{p} = \sqrt{\left(\gamma_{p_{0}} \cdot \frac{p_{\text{впи}}}{p}\right)^{2} + \left(\gamma_{p_{A}} \cdot \frac{\Delta t_{\text{наиб}}}{\Delta t} \cdot \frac{p_{\text{впи}}}{p}\right)^{2} + \left(\gamma_{\text{ток}} \cdot \frac{p_{\text{впи}}}{p}\right)^{2} + \left(\gamma_{pc} \cdot \frac{p_{\text{впи}}}{p}\right)^{2}},$$
 (2)

где

 γ_{p_0} — пределы допускаемой основной приведенной погрешности датчика давления, %;

 $\gamma_{p_{\pi}}$ — пределы допускаемой дополнительной приведенной погрешности датчика давления, вызванной отклонением температуры окружающего воздуха от нормального значения (20 °C), %;

 $\Delta t_{\rm наиб}$ – наибольшее отклонение температуры окружающего воздуха от нормального значения, °C;

 Δt — отклонение температуры окружающего воздуха от нормального значения, для которого нормированы пределы допускаемой дополнительной приведенной погрешности, °C;

 $p_{\text{впи}}$ — верхний предел измерений датчика давления, МПа;

 уток – пределы допускаемой приведенной погрешности вычислителя при преобразовании входных токовых сигналов в цифровое значение измеряемых параметров, %;

 γ_{pc} — пределы допускаемой приведенной погрешности блока размножения сигналов, %;

р – абсолютное давление СНГ, МПа.

Пределы допускаемой относительной погрешности измерений абсолютной температуры вычисляют по формуле

$$\delta_{T} = \left[\left(\frac{\Delta_{t}}{273,15+t} \cdot 100 \right)^{2} + \left(\gamma_{t_{A}} \cdot \frac{\Delta t_{\text{наи6}}}{\Delta t} \cdot \frac{t_{\text{впи}} - t_{\text{нпи}}}{273,15+t} \right)^{2} + \left(\frac{\Delta_{\text{ток}}}{I_{\text{впи}} - I_{\text{нпи}}} \cdot \frac{t_{\text{впи}} - t_{\text{нпи}}}{273,15+t} \cdot 100 \right)^{2} + \left(\gamma_{pc} \cdot \frac{t_{\text{впи}} - t_{\text{нпи}}}{273,15+t} \right)^{2} \right]^{0,5},$$
(3)

где

 Δ_t — пределы допускаемой основной абсолютной погрешности термопреобразователя, °C;

 $\gamma_{t_{\rm A}}$ — пределы допускаемой дополнительной приведенной погрешности термопреобразователя, вызванной отклонением температуры окружающего воздуха от нормального значения (20 °C);

t – температура СНГ, °С;

 $t_{\text{впи}}$ — верхний предел измерений термопреобразователя, °C;

 $t_{\mbox{\tiny HIII}}$ — нижний предел измерений термопреобразователя, °C.

Пределы относительной погрешности вычислений коэффициента сжимаемости СНГ, δ_{K} , %, вычисляют по формуле

$$\delta_K = \sqrt{\left(\delta_{M_F}\right)^2 + \sum_{i=1}^n \vartheta_{x_i}^2 \cdot \delta_{x_i}^2}, \tag{4}$$

где

п – количество компонентов смеси СНГ;

 δ_{M_F} — пределы методической составляющей погрешности расчета коэффициента сжимаемости ГСССД MP 113-03 «Методика ГСССД. Определение плотности, фактора сжимаемости, показателя адиабаты и коэффициента динамической вязкости влажного нефтяного газа в диапазоне температур 263...500 К при давления до 15 МПа», %;

 ϑ_{x_i} – коэффициент влияния молярной доли *i*-го компонента СНГ на коэффициент сжимаемости;

 δ_{x_i} — пределы погрешности определения молярной доли i-го компонента СНГ. %.

Пределы относительной погрешности определения молярной доли i-го компонента СНГ вычисляют по формуле

$$\delta_{x_i} = \sqrt{\left(\delta_{x_{i_{y\Pi}}}\right)^2 + \left(\frac{\Delta_{x_{i_{M3M}}}}{x_i} \cdot 100\right)^2},\tag{5}$$

где

 $\delta_{x_{i_{y_{1}}}}$ — пределы составляющей относительной погрешности определения молярной доли *i*-го компонента СНГ от принятия молярной доли *i*-го компонента СНГ за условно-постоянный параметр, %;

 $\Delta_{x_{i_{\mathrm{H3M}}}}$ – пределы допускаемой абсолютной погрешности измерений молярной доли *i*-го компонента СНГ по ГОСТ 31371.7-2008 «Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 7. Методика выполнения измерений молярной доли компонентов» или ГОСТ Р 53367-2009 «Газ горючий природный. Определение серосодержащих компонентов хроматографическим методом», %.

Пределы составляющей относительной погрешности определения молярной доли *i*-го компонента СНГ от принятия молярной доли *i*-го компонента СНГ за условно-постоянный параметр вычисляют по формуле

$$\delta_{x_{i_{y_{\Pi}}}} = \frac{\left(x_{i_{\text{наи}6}} - x_{i_{\text{наим}}}\right)}{\left(x_{i_{\text{наи}6}} + x_{i_{\text{наим}}}\right)} \cdot 100,\tag{6}$$

где

 $x_{i_{\text{наиб}}},\ x_{i_{\text{наим}}}$ — наибольшее и наименьшее значения молярной доли і-го компонента СНГ, %.

Коэффициенты влияния молярной доли *i*-го компонента СНГ на коэффициент сжимаемости, ϑ_{x_i} , вычисляют по формуле

$$\vartheta_{x_i} = \frac{x_i}{K} \cdot \frac{\Delta K_{x_i}}{\Delta x_i},\tag{7}$$

где

 К – коэффициент сжимаемости СНГ. Коэффициент сжимаемости вычисляют по измеренным параметрам СНГ согласно ГСССД МР 113;

 ΔK_{x_i} – изменение значения коэффициента сжимаемости при изменении молярной доли і-го компонента СНГ на Δx_i .

Коэффициент влияния температуры СНГ на коэффициент сжимаемости, ϑ_T , вычисляют по формуле

$$\vartheta_T = 1 + \frac{t + 273,15}{K} \cdot \frac{\Delta K_T}{\Delta T},\tag{8}$$

где

 ΔK_T – изменение значения коэффициента сжимаемости при изменении температуры СНГ на ΔT .

Коэффициент влияния давления СНГ на коэффициент сжимаемости, ϑ_p , вычисляют по формуле

$$\vartheta_p = 1 - \frac{p}{K} \cdot \frac{\Delta K_p}{\Delta p},\tag{9}$$

где

 ΔK_p — изменение значения коэффициента сжимаемости при изменении абсолютного давления СНГ на Δp .

Значения относительной погрешности измерений объема свободного нефтяного газа, приведенного к стандартным условиям, не должны превышать ±2,5 %.

10 Подтверждение соответствия СИКГ метрологическим требованиям

При получении положительных результатов по п. 9 СИКГ считают соответствующей метрологическим требованиям, установленным при утверждении типа, а результат поверки положительным.

11 Оформление результатов поверки

- 11.1 Результаты идентификации программного обеспечения оформляют протоколом по форме, приведенной в приложении А.
- 11.2 Результат расчета относительной погрешности объема СНГ, приведенного к стандартным условиям, оформляют протоколом в свободной форме.
- 11.3 Сведения о результатах поверки средств измерений в целях подтверждения поверки передаются в Федеральный информационный фонд по обеспечению единства измерений.

При положительных результатах поверки, в случае оформления свидетельства о поверке СИКГ руководствуются требованиями документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденного приказом Минпромторга России № 2510 от 31.07.2020 г. На оборотной стороне свидетельства о поверке системы указывают:

- наименование измеряемой среды;
- значения относительной погрешности измерений объема СНГ, приведенного к стандартным условиям, и соответствующий им диапазон измерений объема СНГ при стандартных условиях;
 - идентификационные признаки программного обеспечения СИКГ.

Знак поверки наносится на свидетельство о поверке СИКГ.

11.4 При отрицательных результатах поверки, в случае недопуска СИКГ к эксплуатации, руководствуются требованиями документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным приказом Минпромторга России № 2510 от 31.07.2020 г.

Форма протокола подтверждения соответствия программного обеспечения СИКГ Протокол №1 подтверждения соответствия программного обеспечения СИКГ

Место провеления поверки:

месте преведении неверки.				
Наименование СИ:				
Заводской номер СИ: №				
Таблица 1 - Идентификационные данные ПО				
Идентификационные данные (признаки)	Значение, указанное в описании типа СИКГ	Значение, полученное во время проведения поверки СИКГ		
Идентификационное наименование ПО				
Номер версии (идентификационный номер) ПО				
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)				
Заключение: ПО СИКГ соответствует / не соответствует ПО, зафиксированному во время испытаний в целях утверждения типа СИКГ.				
Должность лица проводившего поверку: ————————————————————————————————————	сь) (инициалы, фамилия)			
Дата поверки: «»20г.				