Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

СОГЛАСОВАНО

Заместитель директора по производственной метрологии ФГБУ «ВНИИМС»

А.Е. Коломин

М.н. «24 » диам 2021 г.

Государственная система обеспечения единства измерений Аппаратура контроля за работой гидроамортизаторов КУНИ.421453.095

Методика поверки

MΠ 201-073-2021

СОДЕРЖАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ	3
2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ	4
3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ	5
4 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ	
ПОВЕРКИ	5
5 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ	
ПОВЕРКИ	
6 ВНЕШНИЙ ОСМОТР	6
7 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ	6
8 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	7
9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК	7
10 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ	10
11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	11

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика устанавливает объем, средства и методы первичной и периодической поверок аппаратуры контроля за работой гидроамортизаторов КУНИ.421453.095 (далее АКГА).
- 1.2 АКГА предназначена для измерений значений линейных перемещений поршней гидроамортизаторов и вязкоупругих демпферов, температуры в зонах смешения теплоносителей, для измерительных аналого-цифровых преобразований сигналов силы постоянного электрического тока.
 - 1.3 Производство единичное, заводской номер: 42145303500001.
 - 1.4 Измерительные каналы (ИК) АКГА состоят из:
- первичных измерительных преобразователей (ПИП), осуществляющих преобразование измеряемых величин в электрические сигналы;
- вторичной части ИК (ВИК), включающей в себя измерительные и вычислительные компоненты, средства обработки, хранения и отображения измерительной информации.

ПИП и ВИК соединяются проводными линиями связи.

- 1.5 В состав ИК АКГА входят следующие ПИП:
- термопреобразователи сопротивления (ТС) СП-02 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений ФИФ ОЕИ (рег. №) 20261-00) в составе сборок СБ210 ТС с головками клеммными;
- преобразователи измерительные линейных перемещений индуктивные (ПЛП) серии SM100, SM200, RM100 или RM200.
- 1.6 В состав ВИК АКГА входят следующие измерительные и вычислительные компоненты, средства обработки, хранения и отображения измерительной информации:
- модули аналогового ввода TK-AIN2-2-100mm, TK-AIN2-2-200mm, TK-AIN-4-20mA;
 - модули аналогового ввода SN-AI-4-Pt500;
 - панельные компьютеры (ПК);
- дополнительные устройства: модули микропроцессорные, модули дискретного ввода и дискретного вывода, система бесперебойного питания 24 В, модули источника питания, распределители питания, шлюзы, коммутаторы Ethernet, клеммные колодки.
 - 1.7 ИК температуры подлежат покомпонентной (поэлементной) поверке:
 - 1) каждый ИК условно подразделяют на ПИП и ВИК;
- 2) проводят проверку наличия действующих сведений о положительных результатах поверки ПИП в ФИФ ОЕИ;
 - 3) проводят экспериментальную проверку метрологических характеристик ВИК;
 - 4) принимают решение о годности каждого отдельного ИК.

Результаты поверки каждого ИК температуры считаются положительными, если имеются действующие сведения о положительных результатах поверки ПИП в ФИФ ОЕИ, и ВИК прошла экспериментальную проверку метрологических характеристик с положительным результатом.

- 1.8 ИК линейных перемещений и каналы преобразования сигналов силы постоянного электрического тока подлежат комплектной поверке.
- 1.9 Выполнение всех требований настоящей методики обеспечивает прослеживаемость АКГА к следующим государственным первичным эталонам:
 - ГЭТ 2-2021 ГПЭ единицы длины метра;
 - ГЭТ 14-2014 ГПЭ единицы электрического сопротивления;
 - ГЭТ 4-91 ГПЭ единицы силы постоянного электрического тока.

- 1.10 Допускается совмещение операций первичной поверки и операций, выполняемых при испытаниях в целях утверждения типа.
- 1.11 Допускается проведение поверки отдельных ИК АКГА в соответствии с письменным заявлением владельца средства измерений с обязательным занесением информации об объёме проведённой поверки в сведения о результатах поверки в ФИФ ОЕИ.
- 1.12 ИК АКГА, прошедшие поверку с отрицательным результатом, выводятся из эксплуатации и информация о таких ИК не вносится в ФИФ ОЕИ.
 - 1.13 Периодическую поверку АКГА выполняют в процессе ее эксплуатации.
- 1.14 После ремонта АКГА, аварий, если эти события могли повлиять на метрологические характеристики ИК, проводят первичную поверку. Допускается проводить поверку только тех ИК, которые подверглись указанным выше воздействиям.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 При проведении первичной и периодической поверки АКГА должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Перечень операций поверки

Таолица 1 – Перечень операции поверки			
	Раздел	Обязательность проведения	
Наименование операции	настоящей		
	методики	первичной	периодической
Внешний осмотр	6	Да	Да
Подготовка к поверке и опробование	7	Да	Да
Проверка программного обеспечения	8	Да	Да
Определение метрологических характеристик	9	Да	Да
Экспериментальное определение метрологических характеристик ИК линейных перемещений	9.1	Да	Да
Экспериментальное определение метрологических характеристик ИК температуры	9.2	Да	Да
Экспериментальное определение метрологических характеристик каналов аналого-цифрового преобразования сигналов силы постоянного электрического тока	9.3	Да	Да
Подтверждение соответствия метрологическим требованиям	10	Да	Да
Подтверждение соответствия ИК линейных перемещений	10.1	Да	Да
Подтверждение соответствия ИК температуры	10.2	Да	Да
Подтверждение соответствия каналов аналого- цифрового преобразования сигналов силы постоянного электрического тока	100	Да	Да
Оформление результатов поверки	11	Да	Да

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 Экспериментальные работы по определению метрологических характеристик АКГА выполняют в следующих условиях:
 - температура окружающего воздуха, °С

or +10 до +40,

- относительная влажность, %

до 80.

- атмосферное давление, кПа

от 84,0 до 106,7.

- 3.2 Определение сложившихся климатических условий проводят по местам расположения промышленных шкафов с компонентами ВИК непосредственно перед проведением экспериментальных работ и контролируют изменения условий в процессе выполнения работ.
- 3.3 Измеренные значения климатических условий заносят в протокол поверки и проверяют их соответствие условиям, указанным в п. 3.1. При обнаружении несоответствий дальнейшие работы приостанавливают до устранения причин, вызвавших несоответствия.

4 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

4.1 В таблице 2 приведены рекомендуемые для поверки АКГА средства поверки.

Таблица 2 – Рекомендуемые средства поверки

таолица 2 т ст	tomenaj embre	ередеть	nobepan	
Наименование средства поверки	Тип	Per. №	Основные характеристики	
1 Эталон силы постоянного электрического тока (=I) и электрического	ИКСУ-2000	20580-06	Пределы допускаемой основной погрешности воспроизведения силы постоянного электрического тока $\Delta = \pm (10^{-4} \cdot I + 1 \text{ мкA})$ в диапазоне от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения электрического сопротивления $\Delta = \pm 0,015$ Ом в поддиапазоне от 0 до 180 Ом, $\Delta = \pm 0,025$ Ом в поддиапазоне св. 180 до 320 Ом	
 Эталон длины (L): Штангенрейсмас с цифровым отсчетом 		29761-05	Пределы допускаемой абсолютной погрешности воспроизведения длины $\Delta = \pm 30$ мкм в диапазоне от 0 до 300 мм, шаг дискретности 0,01 мм	
3 Плита	-	-	1-1-250х250 по ГОСТ 10905-86	
4 Термогигрометр	ИВА-6 мод. ИВА-6Н-Д	46434-11	Пределы допускаемой абсолютной погрешности измерений температуры ±0,3 °C в диапазоне от 0 до +60 °C, пределы допускаемой абсолютной погрешности измерений относительной влажности ±2 % в диапазоне от 0 до 90 %, пределы допускаемой абсолютной погрешности измерений атмосферного давления ±2,5 гПа в диапазоне от 3000 до 1100 гПа	
Примечание - Средство поверки 4 используются для контроля условий поверки				

- 4.2 Допускается использовать иные средства поверки, не приведенные в таблице 2, при соблюдении следующих условий:
- погрешность средств поверки, используемых для экспериментальных проверок метрологических характеристик взамен средств поверки 1, 2, указанных в таблице 2, не должна быть более 1/3 пределов контролируемых значений погрешности в условиях поверки;

- основные характеристики поверочной плиты должны соответствовать основным характеристикам средства поверки 3, указанного в таблице 2;
- погрешность средств поверки, используемых для контроля условий поверки, не должна превышать погрешность средства поверки 4, указанного в таблице 2.
- 4.3 Средства измерений, применяемые при поверке, должны быть поверены и иметь действующие сведения о результатах поверки в ФИФ ОЕИ. Средства измерений, применяемые в качестве эталонов единиц величин, должны быть поверены в качестве эталонов единиц величин, иметь действующие сведения о результатах поверки в ФИФ ОЕИ и удовлетворять требованиям точности государственных поверочных схем.

5 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

5.1 При проведении поверки АКГА соблюдают требования безопасности, предусмотренные нормативными документами, принятыми к использованию на объекте размещения АКГА, и требования безопасности, указанные в технической документации на АКГА, компоненты ИК, применяемые средства поверки и вспомогательное оборудование.

6 ВНЕШНИЙ ОСМОТР

- 6.1 Внешний осмотр
- 6.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений компонентов ИК АКГА.
- 6.1.2 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий связи.
- 6.2 При обнаружении несоответствий по п. 6.1 дальнейшие операции по поверке ИК прекращают до устранения выявленных несоответствий.

7 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ

- 7.1 Перед проведением поверки проверяют наличие и ознакамливаются со следующими документами:
 - руководства по эксплуатации на АКГА и ее компоненты;
 - описание типа АКГА.
 - 7.2 На месте эксплуатации АКГА выполняют следующие подготовительные работы:
- подготавливают к работе средства поверки в соответствии с эксплуатационной документацией на них;
- измеряют и заносят в протокол поверки результаты измерений температуры и влажности окружающего воздуха, атмосферного давления.
 - 7.3 Опробование
- 7.3.1 Проводят проверки функционирования визуализации измеряемых параметров на дисплее ПК.
- 7.3.2 Проверяют наличие индикации об отсутствии сигнала при отключении линий связи ПИП от ВИК.
- 7.3.3 Проводят проверки работоспособности измерительных функций АКГА, которые совмещают с проведением экспериментальных проверок по п. 9 настоящей методики.

8 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

8.1 Сравнивают идентификационные данные программного обеспечения (ПО) верхнего уровня АКГА, с данными, приведёнными в таблице 3.

Таблица 1 - Идентификационные данные ПО верхнего уровня

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	КУНИ.505200.114		
Номер версии (идентификационный номер) ПО	01		
Номер редакции ПО (не ниже)	01		
Цифровой идентификатор ПО	-		

На графических дисплеях ПК идентификационные данные ПО верхнего уровня выводятся в виде закодированного обозначения, представляющего собой строку с наименованием, номером версии и номером редакции ПО, разделенными символами дефиса и точки (общий вид обозначения КУНИ.505200.114-01.01). Номер версии ПО характеризует поколение ПО и относится к метрологически значимой части, которая остается неизменной на протяжении всего срока эксплуатации АКГА. Редакция ПО характеризует изменение ПО при незначительном изменении его функциональности и программной документации на него и относится к метрологически незначимой части, которая может быть изменена в связи с производственной необходимостью.

8.2 АКГА признают прошедшей идентификацию ПО, если полученные при проверке идентификационные данные соответствуют данным, приведённым в таблице 3.

9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

- 9.1 Экспериментальное определение метрологических характеристик ИК линейных перемещений.
- 9.1.1 Собирают установку для проведения экспериментальных работ в соответствии с рисунком 1 в следующем порядке:
 - на поверочной плите устанавливают штангенрейсмас;
- опускают измерительную ножку штангенрейсмаса на поверхность поверочной плиты;
 - обнуляют результат измерений штангенрейсмаса (ZERO);
- поднимают измерительную ножку штангенрейсмаса до тех пор, пока цифровое отсчетное устройство не покажет результат измерений ($L_{\rm A.B} + L_0$) мм,
- где $L_{\text{Д.В}}$ верхняя граница диапазона измерений проверяемого ИК, указанная в описании типа,
- L_0 расстояние от нижней части корпуса ПЛП до нижней части штока ПЛП, установленного в точке, соответствующей началу измерительного диапазона (нулевому значению): $L_0 = 20$ мм;
- рядом с штангенрейсмасом устанавливают кронштейн с вертикально располагаемым в нем ПЛП (шток ПЛП свободен и направлен вниз) таким образом, чтобы нижняя часть корпуса ПЛП опиралась на измерительную ножку штангенрейсмаса; положение корпуса ПЛП фиксируют в кронштейне;
- опускают измерительную ножку штангенрейсмаса до тех пор, пока цифровое отсчетное устройство не покажет результат измерений $L_{\text{Д},\text{В}}$ мм, и опирают на нее шток ПЛП;
 - обнуляют результат измерений штангенрейсмаса (ZERO)..

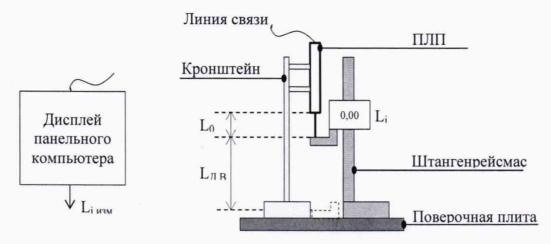


Рисунок 1 - Схема измерений при определении метрологических характеристик ИК линейных перемещений

- 9.1.2 Выбирают 5 контрольных точек L_i , равномерно распределенных по диапазону измерений линейных перемещений (например, 0-5 %, 25 %, 50 %, 75 % и 95-100 % от диапазона измерений) и заносят их в протокол поверки.
- 9.1.3 Плавно опускают измерительную ножку штангенрейсмаса с установленным на ней штоком ПЛП вниз, последовательно устанавливая ее в выбранных точках диапазона L_i и считывая с дисплея панельного компьютера измеренные значения линейных перемещений $L_{i,\text{изм}}$ в миллиметрах.

Примечание - при нестабильности показаний $L_{\text{і.изм}}$ проводят несколько отсчетов показаний (не менее 4) и выбирают из них результат, наиболее отклоняющийся от заданного значения.

- 9.1.4 Заносят в протокол поверки значения L_{і,изм}.
- 9.2 Экспериментальное определение метрологических характеристик ИК температуры.
- 9.2.1 Проверяют в ФИФ ОЕИ наличие действующих сведений о положительных результатах поверки ПИП температуры, входящего в состав поверяемого ИК температуры.
- 9.2.2 Выбирают 5 проверяемых точек T_i , i = 1, 2, 3, 4, 5 равномерно распределенных по диапазону измеряемой температуры (например, 0 5 %, 25 %, 50 %, 75 % и 95 100 % от диапазона измерений) и заносят их в протокол поверки.
- 9.2.3 Отсоединяют от клемм термопреобразователя сопротивления в проверяемом ВИК линию связи, подключают к ЛС эталон электрического сопротивления (R) в соответствии с рисунком 2;

Рисунок 2 - Схема подключений при определении метрологических характеристик ВИК сигналов от термопреобразователей сопротивления

 $9.2.4\ \Pio$ таблицам ГОСТ 6651-2009 для номинальной статистической характеристики термопреобразователя сопротивления находят значения электрического сопротивления R_i в омах на входе ВИК, соответствующие выбранным значениям температуры T_i ;

9.2.5 Последовательно устанавливают от эталона значения входного сигнала R_i и считывают на выходе ВИК на дисплее панельного компьютера измеренные значения $T_{i.изм}$ в градусах Цельсия.

Примечание - при нестабильности показаний $T_{i,изм}$ проводят несколько отсчетов показаний (не менее 4) и выбирают из них результат, наиболее отклоняющийся от заданного значения.

- 9.2.6 Заносят в протокол поверки значения R_i и T_{i,u_3m} .
- 9.3 Экспериментальное определение метрологических характеристик каналов аналого-цифрового преобразования сигналов силы постоянного электрического тока.
- 9.3.1 Выбирают 5 проверяемых точек I_i , i=1,2,3,4,5, равномерно распределенных по диапазону преобразований силы постоянного электрического тока (например, 0-5%, 25%, 50%, 75% и 95-100% от диапазона преобразований) и заносят их в протокол поверки.
- 9.3.2 Собирают схему измерений согласно рисунку 3, подключая эталон силы постоянного электрического тока (=I) к входу проверяемого канала.

Рисунок 3 - Схема подключений при определении метрологических характеристик каналов аналого-цифрового преобразования сигналов силы постоянного электрического тока

9.3.3 Последовательно для каждой проверяемой точки устанавливают от эталона значения силы постоянного электрического тока I_i в миллиамперах и считывают на выходе ВИК на дисплее панельного компьютера измеренные значения $I_{i,u_{3M}}$ в миллиамперах.

Примечание - при нестабильности показаний $I_{i,изм}$ проводят несколько отсчетов показаний (не менее 4) и выбирают из них результат, наиболее отклоняющийся от заданного значения.

9.3.4 Заносят в протокол поверки значения $I_{i.изм}$.

10 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

- 10.1 Подтверждение соответствия ИК линейных перемещений.
- 10.1.1 По результатам, полученным в п. 9.1, для каждой точки L_i вычисляют абсолютную погрешность Δ_i проверяемого ИК в миллиметрах по формуле:

$$\Delta_{i} = L_{i,H3M} - L_{i} \tag{1}$$

- 10.1.2 Результаты экспериментального определения метрологических характеристик ИК линейных перемещений считают положительными, если в каждой из проверенных точек L_i выполняется неравенство $|\Delta_i| < |\Delta|$, где Δ пределы допускаемой абсолютной погрешности ИК, указанные в описании типа.
- 10.1.3 Результаты поверки ИК линейных перемещений считают положительными, если получены положительные результаты экспериментального определения метрологических характеристик по п. 10.1.2.
 - 10.2 Подтверждение соответствия ИК температуры.
- $10.2.1~\Pi$ о результатам, полученным в п. 9.2, для каждой точки T_i вычисляют абсолютную погрешность Δ_i проверяемого ВИК в градусах Цельсия по формуле:

$$\Delta_{i} = T_{i.H3M} - T_{i} \tag{2}$$

- 10.2.2 Результаты экспериментального определения метрологических характеристик ВИК температуры считают положительными, если в каждой из проверенных точек T_i выполняется неравенство $|\Delta_i|<|\Delta|$, где Δ пределы допускаемой абсолютной погрешности ВИК, указанные в описании типа.
 - 10.2.3 Результаты поверки ИК температуры считают положительными, если:
- ПИП имеет действующие сведения о положительных результатах поверки в ФИФ ОЕИ;
- получены положительные результаты экспериментального определения метрологических характеристик ВИК температуры по п. 10.2.2.
- 10.2.4 Если при поверке ИК температуры обнаруживают ПИП, не имеющий действующих сведений о положительных результатах поверки в ФИФ ОЕИ, то ИК, в состав которого входит такой ПИП, признают прошедшим поверку с отрицательным результатом до устранения выявленного несоответствия.
- 10.3 Подтверждение соответствия каналов аналого-цифрового преобразования сигналов силы постоянного электрического тока.
- $10.3.1~{\rm Пo}~{\rm peзультатам},~{\rm полученным}~{\rm в}~{\rm п.}~9.3,~{\rm для}~{\rm каждой}~{\rm точки}~{\rm I}_{\rm i}~{\rm вычисляют}$ абсолютную погрешность $\Delta_{\rm i}$ проверяемого канала в миллиамперах по формуле:

$$\Delta_i = I_{i,\text{WBM}} - I_i \tag{3}$$

- 10.3.2 Результаты экспериментального определения метрологических характеристик каналов аналого-цифрового преобразования сигналов силы постоянного электрического тока считают положительными, если в каждой из проверенных точек I_i выполняется неравенство $|\Delta_i| < |\Delta|$, где Δ пределы допускаемой абсолютной погрешности канала аналого-цифрового преобразования сигналов силы постоянного электрического тока, равные ± 0.032 мА.
- 10.3.3 Результаты поверки каналов аналого-цифрового преобразования сигналов силы постоянного электрического тока считают положительными, если получены положительные результаты экспериментального определения метрологических характеристик по п. 10.3.2.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 Результаты поверки оформляют в соответствии с приказом Минпромторга России № 2510 от 31.07.2020 г. «Об утверждении порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».
 - 11.2 Нанесение знака поверки на АКГА не предусмотрено.
 - 11.3 Протоколы поверки оформляются в произвольной форме.

Зам. начальника отдела 201 «Отдел метрологического обеспечения измерительных систем» ФГБУ «ВНИИМС»

__ Ю.А. Шатохина

Разработал:

Инженер отдела 201 «Отдел метрологического обеспечения измерительных систем» ФГБУ «ВНИИМС»

А.А. Коновалов

Согласовано:

Ведущий инженер отдела 203 «Отдел метрологического обеспечения измерений геометрических параметров» ФГБУ «ВНИИМС»

Н.И. Кравченко