СОГЛАСОВАНО

Заместитель директора по инновациям ФГУП «ВНИИОФИ»

И.С. Филимонов « 04 » октября 2021 г.

Государственная система обеспечения единства измерений

комплекс фотометрический

Методика поверки МП 031.М4-21

Главный метролог ФГУИ «ВНИИОФИ» С.Н. Негода /« 04 » октября 2021 г.

Главный научный сотрудник

ФГУП «ВНИИОФИ» В.Н. Крутиков « 04 » октября 2021 г.

г. Москва 2021 г.

1 Общие положения

Настоящая методика распространяется на Комплекс фотометрический (далее по тексту – комплекс), предназначенный для измерений фотометрических и спектральных характеристик светильников, источников света и другого светотехнического оборудования, и устанавливает операции при проведении его первичной и периодической поверок. Комплекс изготовлен «GL Optic Lichtmesstechnik GmbH», Германия; зав. номер 013320118.

По итогам проведения поверки должна обеспечиваться прослеживаемость к ГЭТ 5-2012 «Государственный первичный эталон единиц силы света и светового потока непрерывного излучения», ГЭТ 86-2017 «Государственный первичный эталон единиц радиометрических и спектрорадиометрических величин в диапазоне длин волн от 0,2 до 25,0 мкм» и ГЭТ 81-2009 «Государственный первичный эталон единиц координат цвета и координат цветности».

Поверка комплекса выполняется методом прямых измерений.

Интервал между поверками – 1 год.

Метрологические характеристики комплекса указаны в таблице 1.

Таблица 1 - Метрологические характеристики

Наименование характеристики	Значение
Система гоннофотометринеская GL GONIO 2015	50
Лиапазон измерения силы света, кл	от 1 до 150000
Диапазон измерения освещенности, лк	от 1 до 100000
Лиапазон измерения светового потока, лм	от 10 до 150000
Пределы допускаемой относительной погрешности измерений	
освещенности, силы света и светового потока, %	±5
Диапазон измерений спектральной плотности энергетической	
освещенности (СПЭО) в диапазоне длин волн от 340 до 780 нм,	
Bt/m ³	от 10 ⁵ до 10 ⁸
Пределы допускаемой относительной погрешности измерений	
СПЭО в диапазоне длин волн от 380 до 780 нм, %	±4
Диапазон измерений координат цветности:	
X	от 0,0039 до 0,7347
-y	от 0,0048 до 0,8338
Пределы допускаемой абсолютной погрешности измерений	
координат цветности:	
координат цветности: - для источников излучения на основе ламп накаливания	±0,0020
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения	±0,0020 ±0,0050
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К	±0,0020 ±0,0050 от 2000 до 8000
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений	±0,0020 ±0,0050 от 2000 до 8000
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К	±0,0020 ±0,0050 от 2000 до 8000 ±75
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE Диапазон измерений светового потока, лм	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000 от 10 до 50000
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE Диапазон измерений светового потока, лм Пределы допускаемой относительной погрешности измерений	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000 от 10 до 50000
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE Диапазон измерений светового потока, лм Пределы допускаемой относительной погрешности измерений светового потока, %	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000 от 10 до 50000 ±5
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE Диапазон измерений светового потока, лм Пределы допускаемой относительной погрешности измерений светового потока, % Диапазон измерений координат цветности:	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000 от 10 до 50000 ±5
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE Диапазон измерений светового потока, лм Пределы допускаемой относительной погрешности измерений светового потока, % Диапазон измерений координат цветности: -х	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000 от 10 до 50000 ±5 от 0,0039 до 0,7347
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE Диапазон измерений светового потока, лм Пределы допускаемой относительной погрешности измерений светового потока, % Диапазон измерений координат цветности: -х -у	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000 от 10 до 50000 ±5 от 0,0039 до 0,7347 от 0,0048 до 0,8338
координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения Диапазон измерений коррелированной цветовой температуры, К Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К Диапазон измерений индекса цветопередачи Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи Система фотометрическая сфера GL OPTI SPHERE Диапазон измерений светового потока, лм Пределы допускаемой относительной погрешности измерений светового потока, % Диапазон измерений координат цветности: -х -у Пределы допускаемой абсолютной погрешности измерений	±0,0020 ±0,0050 от 2000 до 8000 ±75 от 50 до 100 ±1 2000 от 10 до 50000 ±5 от 0,0039 до 0,7347 от 0,0048 до 0,8338

- для источников излучения на основе ламп накаливания	±0,0020
- для остальных источников излучения	$\pm 0,0050$
Диапазон измерений коррелированной цветовой температуры, К	от 2000 до 8000
Пределы допускаемой абсолютной погрешности измерений	
коррелированной цветовой температуры, К	±75
Диапазон измерений индекса цветопередачи	от 50 до 100
Пределы допускаемой абсолютной погрешности измерений	
индекса цветопередачи	±1

2 Перечень операций поверки средства измерений

2.1 Поверку комплекса осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

2.2 При проведении первичной и периодической поверок должны быть выполнены операции, перечисленные в таблице 2.

Таблица 2 – Операции поверки

№ п/п.	Наименование операции	Номер пункта методики поверки	Обязательнос операл первичной поверке	ть выполнения ции при периодической поверке
1	Внешний осмотр средства измерений	7	Дa	Да
2	Подготовка к поверке и опробование средства измерений	8	Да	Да
3	Проверка программного обеспечения	9	Дa	Да
4	Определение метрологических характеристик средства измерений	10		
5	Определение диапазона измерений и относительной погрешности измерений светового потока	10.1	Да	Да
6	Определение диапазона измерений и относительной погрешности измерений силы света и освещенности	10.2	Да	Да
7	Определение диапазона измерений и относительной погрешности измерений спектральной плотности энергетической освещенности (СПЭО) в диапазоне длин волн от 340 до 780 нм	10.3	Да	Да
8	Определение диапазона измерений и абсолютной погрешности измерений координат цветности, коррелированной цветовой температуры и индекса цветопередачи	10.4	Да	Да

Допускается проведение поверки отдельно измерительных каналов и (или) отдельных автономных блоков из состава средства измерений:

- Система гониофотометрическая GL GONIO 20.150;

- Система фотометрическая сфера GL OPTI SPHERE 2000.

2.3 При получении отрицательных результатов при проведении хотя бы одной операции поверка прекращается.

3 Метрологические и технические требования к средствам поверки

3.1 При проведении первичной и периодических поверок должны применяться средства поверки, указанные в таблице 3.

Таблица	3 - C	релства	поверки	комплекса
- eroveninger		perter per	nobepitti	

		Метрологические и	Decomentivemble Turili
Операция	Средство поверки	технические	спецств поверки
поверки		требования к	средств поверки
		средствам поверки	
Определение	Рабочие эталоны	Номинальные	Государственный
метрологических	светового потока	значения светового	вторичный эталон
характеристик	непрерывного	потока 10, 50, 150,	единицы светового
средства	излучения по	500, 1500 и 3500 лм.	потока непрерывного
измерений	государственной	Пределы допускаемых	излучения в диапазоне
п. 10.1	поверочной схеме,	относительных	от 8 до 2300 лм;
методики поверки	утвержденной	погрешностей	рег. номер:
	приказом	составляют	2.1.ZZA.0021.2015
	Федерального	от 1 до 3 %	по государственной
	агентства по		поверочной схеме,
	техническому		утвержденной
	регулированию и		приказом
	метрологии от		Федерального
	30.12.2019 г. № 3460		агентства по
			техническому
			регулированию и
			метрологии от
	÷.		30.12.2019 г. № 3460
			(далее – ВЭТ СП)
п. 10.2	Рабочие эталоны силы	Номинальные	Государственный
методики поверки	света и освещенности	значения силы света	вторичный эталон
	непрерывного	35, 100, 500, 1000 и	единиц силы света
	излучения по	1500 кд;	непрерывного
	государственной	диапазон измерений	излучения в диапазоне
	поверочной схеме,	освещенности	от 1 до 500 кд и
	утвержденной	от 1 до 1.10' лк	освещенности
	приказом	Пределы допускаемых	непрерывного
	Федерального	относительных	излучения в диапазоне
	агентства по	погрешностей	от 1 до 10° лк.
	техническому	составляют	рег. номер:
	регулированию и	от 0,4 до 2,5 %	2.1.ZZA.0012.2015
	метрологии от		по государственной
	30.12.2019 F. № 3400		поверочной схеме,
			утвержденной
			приказом
			Федерального
			агентства по
			петицированию и
			регулированию и
			30 12 2010 p Mo 2460
			(112100 - R) T C T O
			(Janee - B J I C U U)

n 10.3	Dropuulu la aragoui l	Пионорон начи роли	Газитаратранич
	опоричные эталоны	диапазон длин волн	т осударственный
методики поверки	сдиниц спектральной	01 0,2 до 23,0 MKM	вторичный эталон
	плотности	$C\Pi \Box O$ от $1 \cdot 10^3$ то	единиц спектральной
	энергетической	1.10^{10} Pm/s^3	плотности
	яркости, спектральной	Chammer	энергетической
	плотности силы	Средние	яркости, спектральной
	излучения и	квадратические	плотности силы
	спектральной	отклонения	излучения и
	плотности	результатов сличении	спектральной
	энергетической	вторичных эталонов	плотности
	сосударственной	СПЭО с перрици м	освещенности
	поверонной схеме	оталоном составляют	непрерывного
	иоверочной слеме,	ot 0.5 110 3.0 %	оптического
	приказом	01 0,5 до 5,0 70	
	Приказом Фелерального		ллин волн от 0.2 ло
	агентства по		10.0 MKM: DEF HOMED
	техническому		2 1 ZZA 0009 2015
	регулированию и		по государственной
-	метрологии от		поверочной схеме.
	29.12.2018 г. № 2815		vтвержденной
			приказом
			Федерального
			агентства по
			техническому
			регулированию и
			метрологии от
	20		29.12.2018 г. № 2815
÷			(далее – ВЭТ СПЭО)
п. 10.4	Рабочие эталоны	Диапазоны измерений:	Государственный
методики поверки	координат цветности	- координат цветности	вторичный эталон
	самосветящихся	х от 0,004 до 0,734;	единиц координат
	объектов по	у от 0,005 до 0,834.	цвета в диапазонах от
	государственной	- коррелированной	2,5 до 109,0 для X, от
	поверочной схеме,	цветовой температуры	1,4 до 98,0 для У, от
	утвержденной	Т _{КЦТ} от 2000 до	1,7 до 107,0 для Z и
	Приказом	10000 K;	координат цветности
	Федерального	- индекса	в диапазонах от
	агентства по	цветопередачи R _a	0,0039 до 0,7347 для х
	техническому	от 1,0 до 100,0	и от 0,0048 до 0,8338
	регулированию и	Пределы допускаемых	для у; рег.номер
	метрологии от	абсолютных	2.1.ZZA.0014.2015 по
	27.11. 2018 г. № 2516	погрешностей	государственной
		составляют:	поверочной схеме,
		$\Delta_{\rm x} = \Delta_{\rm y} = 0,002 - 0,005$	утвержденной
		∆ _{Ткцт} =25-100 К	приказом
		$\Delta_{\text{Ra}}=0,7$	Федерального
			агентства по
			техническому
			регулированию и
			метрологии от
			27.11.2018 F. № 2316
			(далее – ВЭТКЦ)

Вспомогательное об	борудование		
Определение	Средство измерений	Измерение	Измеритель
условий	температуры	температуры	параметров
проведения		окружающего воздуха в	микроклимата
поверки		диапазоне	«Метеоскоп»,
		от - 10 до + 50 °С;	рег. № 32014-06
		$\Delta = \pm 0.2 \ ^{\circ}C$	
	Средство измерений	Измерение влажности	
	влажности	окружающего воздуха в	
		диапазоне от 30 до	
		97 %;	
		$\Delta = \pm 3 \%$	
	Средство измерений	Измерение	
	атмосферного	абсолютного	
	давления	атмосферного в	
		диапазоне	
		от 80 до 110 кПа;	
		$\Delta = \pm 0,13$ кПа	

3.2 Допускается также применение других средств, не приведенных в таблице 3, но обеспечивающих определение метрологических характеристик поверяемого комплекса с требуемой точностью. Средства поверки, указанные в таблице 3, должны быть аттестованы (поверены) в установленном порядке.

4 Требования к специалистам, осуществляющим поверку

К проведению поверки допускаются лица:

изучившие настоящую методику и руководства по эксплуатации комплекса и средств поверки;

- имеющие квалификационную группу не ниже III в соответствии с правилами по охране труда при эксплуатации электроустановок, указанными в приложении к приказу Министерства труда и социальной защиты РФ № 903н от 15.12.20;

прошедшие полный инструктаж по технике безопасности;

- прошедшие обучение на право проведения поверки по требуемым видам измерений.

5 Требования (условия) по обеспечению безопасности проведения поверки

5.1 При проведении поверки следует соблюдать требования, установленные правилами по охране труда при эксплуатации электроустановок, указанными в приложении к приказу Министерства труда и социальной защиты РФ от 15.12.20 № 903н. Оборудование, применяемое при поверке, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при температуре помещения, соответствующей условиям испытаний для легких физических работ.

5.2 При выполнении поверки должны соблюдаться требования руководства по эксплуатации комплекса.

5.3 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

6 Требования к условиям проведения поверки

6.1 При проведении поверки должны соблюдаться следующие условия:

температура окружающей среды, °С от +19 до +23
 относительная влажность воздуха, % от 50 до 80;
 атмосферное давление, кПа от 96 до 104.

1 1

7 Внешний осмотр средства измерений

7.1 Проверку проводят визуально. Проверяют соответствие комплекса следующим требованиям:

- соответствие состава комплекса требованиям раздела 1 его руководства по эксплуатации;

- соответствие расположения надписей и обозначений требованиям технической документации;

 отсутствие механических повреждений на наружных поверхностях составных частей комплекса, влияющих на его работоспособность; чистоту клемм и разъемов, состояние соединительных кабелей.

7.2 Комплекс считается прошедшим операцию поверки с положительным результатом, если:

 - состав комплекса соответствует требованиям раздела 1 его руководства по эксплуатации;

- расположение надписей и обозначений соответствует требованиям технической документации;

- наружные поверхности составных частей комплекса и соединительные кабели не повреждены, отсутствуют загрязнения клемм и разъемов.

8 Подготовка к поверке и опробование средства измерений

8.1 Перед началом работы с комплексом необходимо внимательно изучить Руководство по эксплуатации, а также ознакомиться с правилами подключения комплекса.

8.2 Проверить наличие средств поверки по таблице 3, укомплектованность их документацией и необходимыми элементами соединений.

8.3 Опробование комплекса.

8.3.1 Опробование системы фотометрической сфера GL OPTI SPHERE 2000.

8.3.1.1 Включить спектрометр SPECTIS 5.0 Touch из состава сферы нажатием на боковой панели кнопки «Вкл/Выкл/Измерение».

8.3.1.2 Для активации программного обеспечения «GL SPECTROSOFT PRO» необходимо вставить в порт USB-ключ HASP, ограничивающий несанкционированный доступ пользователя к ПО. Запустить на компьютере программу «GL SPECTROSOFT PRO».

При запуске ПО открывается главное окно (см. рисунок 1).

8.3.1.3 Установить контрольную лампу из состава комплекса в патрон сферы. Подключить контрольную лампу к источнику питания постоянного тока № 1. Включить источник питания постоянного тока № 1 в соответствии с его руководством по эксплуатации.

8.3.1.4 Для выполнения измерения нажать кнопку "Измерение" в главном окне ПО и дождаться появления результатов измерения на экране (см. рисунок 2).

Рисунок 1 – Главное окно ПО «GL SPECTROSOFT PRO»

и Редактировать Де-	йствие Окно	Инстру	Mental Flos	ecius -	1200		Sec. 19				6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second period	
	(2		О программи Информеция		X		sanple -	eres1	. 0	20.	70°C 69 %	
lareste pezynstatur	STATISTICS.	- Section		S Sce [1]	2000-4	06-19730-58-34 E	3 State	780 10-06-19701-00		ABTOHETH 2000-06-1970 1-2	3-22 E1 (Crarys	TA.
Imag	Securit	a coupie	and the second second					10.00 10 10 10 10 10 10 10 10 10 10 10 10 1	A led . 1	1000-00-12101-1	ALL 218 199	Hanganar	Renama
Результаты				millinm								· Cratyc	
V2	2008 40	Im		1233						-		ambient	faise
COT	2000,45			-							141015	smbient level	22.0649350649350
LLI	2998 K			1000				- ×			121-12	ambiert range	min 200.0
				8 . L							12.	calibration date	2021-06-09 14:00
Radiometric	29.2115	w									1900	coefficient_y	3.415
				50				1				coefficient_y_ur	st1 mW/mms
				10.000								conection chas	K 101
x2	0,43/1			Do F							11.1	dark current me	uan 3476.526
y2	0,4043			12.35								dark temperatu	re 21.40
				40							12-11	dettaTRace	2000-06-19100.58
				1 24			/ 20				101	device sensor te	20.7
-				HES T							1000	device serial nu	m GEX10t 1104N032
Ra	99,9			1							13.19	device type	GL SPECTIS 3.0 to
R1	100,0			10.5		1					12.01	integration time	y 0.0 152000
R2	100.0			1200							ERI	internalSignalLe	Nel 69.2306659947328
D2	100.0			12.51							1.00	lut_coefficient	0.0
N	100,0			29								maximum mea	RA. 42591.0
R4	99,9			1633							COLUMN ST	maximum wave	de_ \$10.544
R5	99,9			A market							2.1.1	measuring head	1 101
R6	100.0					A BERGE					1. Color	minimum mezs	na 3294.000
D7	00.0			10		100000					14.51	minimum wave	se 191.130
R/	99,9			1.2.1	1.1						1200	repeat count	4
RS	99,9			1 million							1.04	sensor number	1104N032
R9	99,8			B. Barris	1000						1270	sgnalLevel	69.231
	100				400	500	600	200 0		0 1000	-	temperature	n 101.12052021.spn 30.7
in the second		and the local	-	-							found	- Calanna Bra	
	esiterate r	and the second	THE REAL PROPERTY.	Conception of the	102	NUMBER OF	-	ALC: NO.	CONTRACTOR OF	Contraction in		Cranyc ORI An	arpane CE
n Name	.2	12	72	133	Ra	Color Peak	Color De	ominant	Brightness	Rinning	-		
2000-06-10100	45.22 0.4171	1000	2003 45	(A)	00.0	[nm]	101		No. of Concession, Name	a second	- 8	State State	
2000-06-1070L	00.47 0.4279	0.000	3907.40	NO	00.0	871.6	Call #	PERSONAL PROPERTY AND	A STATISTICS	in the second		Martin Darasia	
		Carder,	5007,00	2009	35.3	101,0	362,6			05	50	17 - C - C - C - C - C - C - C - C - C -	
2000-06-19701.	23,27 0,3614	0,3657	62,7	4495	78,8	450,77	576,3	12		4		State State	
2000-06-19701	24-48 0,3613	0,3658	62,6	4496	78,9	450,77	576,2	R		63			
2000-06-19701.	28.34 0,3613	0,3658	62,75	4497	78,8	450,77	576,2	12		5/		and the second	
2000-06-19701	43-27 0,1488	0,0336	12,39	0	-60,7	452,27	459						
	1.1	111.11	Provide and	1201	-	-	61 - Hora	No. of Concession, Name	1211221	CIPATRA A	17.000	the standardes	and the second

Рисунок 2 - Результаты измерений ПО «GL SPECTROSOFT PRO»

8.3.2 Опробование системы гониофотометрической GL GONIO 20.150

8.3.2.1 Включить электропитание контроллера гониометра и управляющий компьютер. Включить спектрометр SPECTIS 1.0 нажатием на боковой панели кнопки «Вкл/Выкл/Измерение». Включить электропитание фотометра нажатиемкнопки «POWER» на передней панели модуля управления фотометра.

8.3.2.2 Для активации программного обеспечения «GL SPECTROSOFT PRO» необходимо вставить в порт USB-ключ HASP, ограничивающий несанкционированный доступ пользователя к ПО. Запустить на рабочем столе компьютера программы «GL SPECTROSOFT PRO» и «GPM_full-v71». При запуске ПО открывается главное окно (см. рисунок 1 и рисунок 3)

Рисунок 3 – Главное окно ПО «GPM full-v71»

8.4 Комплекс считается прошедшим операцию поверки с положительным результатом, если включение всех компонентов прошло успешно и все органы управления работают исправно, при измерении контрольной лампы в системе фотометрической сфера GL OPTI SPHERE 2000 на экран выводится результат, а при запуске ПО «GPM_full-v71» и «GL SPECTROSOFT PRO» системы гониофотометрической GL GONIO 20.150 на экране ПК отображается главное окно.

9 Проверка программного обеспечения средства измерений

9.1 Проверить соответствие заявленных идентификационных данных программного обеспечения сведениям, приведенным в описании типа на комплекс.

Версия программного обеспечения отображается на экране монитора персонального компьютера при нажатии кнопок «Помощь» \rightarrow «О программе» (для спектрометра SPECTIS 5.0 Touch) или «Help» \rightarrow «About» (для спектрометра SPECTIS 1.0) в главном окне программ GL SPECTROSOFT PRO. На экране монитора отобразятся номера версий программного обеспечения (см. рисунок 5, а). Версия ПО GPM_full-v71 отображается в верхней строке окна программы (см. рисунок 5, б).

GL SpectroSoft - Prof ×	GL_SpectroSoft - Prof	😓 GLG_full-v71.vi
Версия: 3.1.48 Prof	Version: 3.1.43 Prof	File Measurements Tools Settings Help
ОК	ОК	
2)	ნ)

б)

a) - версии ПО GL SPECTROSOFT PRO; б) - версия ПО GPM full-v71

Рисунок 5 - Версии программного обеспечения

9.2 Комплекс считается прошедшим операцию поверки с положительным результатом, если идентификационные данные программного обеспечения соответствуют значениям, приведенным в таблице 4.

Таблица 4 – Идентификационные данные программного обеспечения

Илонтификонновии		Значение	
данные (признаки)	Система фотометрическая сфера GL OPTI SPHERE 2000	Система гониофотометрич GL GONIO 20.	еская 150
Идентификационное наименование ПО	GL SPECTROSOFT PRO	GL SPECTROSOFT PRO	GPM_full-v71
Номер версии (идентификационный номер) ПО	не ниже 3.1.48	не ниже 3.1.43	не ниже V71
Цифровой идентификатор ПО		-	-

10 Определение метрологических характеристик средства измерений

10.1 Определение диапазона измерений и относительной погрешности измерений светового потока

10.1.1 Измерения с помошью системы фотометрической сфера GL OPTI SPHERE 2000.

10.1.1.1 Запустить на компьютере программу «GL SPECTROSOFT PRO» в соответствии с п. 8.3.1.2. Включить спектрометр SPECTIS 5.0 Touch, нажав на боковой панели кнопки «Вкл/Выкл/Измерение».

10.1.1.2 Провести калибровку темнового тока. Для этого выбрать в главном окне «Быстрая конфигурация», а затем «Калибровка темнового тока» (см. рисунок 1). Компенсация темнового тока будет автоматически применяться ко всем последующим измерениям.

10.1.1.3 Провести коррекцию сферы на самопоглощение. Для этого перевести держатель образца в крайнее нижнее положение. Закрыть сферу и выбрать в главном окне «Быстрая конфигурация», а затем «Коррекция шара». После цикла включения вспомогательной лампы появится окно с просьбой установить измеряемый источник света в сферу (см. рисунок 4). Установить измеряемый источник света (излучатель из набора полупроводниковых излучателей или лампу типа СИП 107-1500) и завершить цикл коррекции.

Ø	B	a.	22	國	X		angle-erret1		р т 1	s. 🛍
Chipro Se Managaran Managaran Managaran	international Annual International International	rawa natana nang	8×	ing Contractions and the Contraction		e tradices			franzet -	na Berneett () 1920(n) sampel amper)
			1000						1	
			(10) (10) 7940	Каррнын сара Коровка самоабо наа тастаар алтын	ортция: на 3914					
					install mea and	isured elemen altud zerad b	c in the sphere n Next			Escopes songerypages
										Di
						Задержка :	25 5			
Padowna an Dathtac Pa	Net a	na Hampatina 12 y2								
			L	Reaction Address of	NUMBER OF STREET			20.00	Draws	
										1

Рисунок 4 - Окно калибровки самопоглощения сферы

10.1.1.4 Установить источник излучения (излучатель из набора полупроводниковых излучателей или лампу типа СИП 107-1500) из состава ВЭТ СП (далее – излучатель) внутрь сферы таким образом, чтобы прямое излучение от излучателя не попадало на приемную площадку фотометрической головки спектрометра SPECTIS 5.0 Touch. Подсоединить излучатель к источнику питания постоянного тока. Закрыть сферу.

10.1.1.5 Включить источник питания излучателя в соответствии с его руководством по эксплуатации. Включить излучатель, установив рабочий режим питания, указанный в сертификате калибровки или в свидетельстве о поверке.

10.1.1.6 Для проведения измерения в главном окне нажать кнопку «Измерение». Измерения светового потока провести 5 раз.

10.1.1.7 Повторить пункты с 10.1.1.4 по 10.1.1.6 для каждого излучателя из состава ВЭТ СП.

10.1.2 Измерения с помощью системы гониофотометрической GL GONIO 20.150.

10.1.2.1 Включить электропитание контроллера гониометра и управляющий компьютер. Включить спектрометр SPECTIS 1.0 нажатием на боковой панели кнопки «Вкл/Выкл/Измерение». Включить электропитание фотометра нажатием кнопки «POWER» на передней панели модуля управления фотометра.

10.1.2.2 Запустить на рабочем столе компьютера программы «GL SPECTROSOFT PRO» и «GPM full-v71».

10.1.2.3 Закрепить излучатель из состава ВЭТ СП на монтажной панели гониометра с помощью болтов и скользящих блоков. Подключить излучатель к источнику питания через розетку на гониометре.

10.1.2.4 Произвести юстировку излучателя. Для этого отрегулировать вручную скользящую ось Z так, чтобы фотометрический центр лежал на оси вращения γ , затем установить гониометр так, чтобы излучатель был направлен прямо в направлении юстировочного лазера. Управляя из окна панели «Alignment» (см. рисунок 5), повернуть излучатель по оси С на полный рабочий диапазон и проверить симметричность установки излучателя.

Рисунок 5 - Панель установки гониометра в ПО «GPM full-v71»

10.1.2.5 В меню «Settings» главного окна выбрать пункт «Rotary stages» (см. рисунок 6). В появившемся окне (см. рисунок 7) задать значения скорости поворота (по оси С 5 град/сек, по оси γ 8 град/сек), а также предельный угол поворота 90° по оси γ . Установить шаг измерений 10° по оси С и 1° по оси γ .

Settings - Rotary stages		
Construction for Construction for Construction Construc	ten 2016 vy Lever Ord Stand R O to Conce Bolar Roo Respective Conce Bolar Roo Respective Conce Bolar Roo Respective Resp	
I a constant and a co	Bit man 66 1 m 41 90 W 1.5 m/W 100 0 % 100 0 % 100 0 % More and	
Here Area		

Рисунок 6 - Выбор меню «Rotary stages»

Communication Port		γ-max (deg)
baud rate		
9600	γ Speed (deg/s)	γ step (deg)
Motion status nr (no rotation)	8	
Gear box of C axis	C Speed (deg/s)	C step (deg)
1:180	5	

Рисунок 7 - Окно меню «Rotary stages»

10.1.2.6 На панели управления источника питания установить рабочий режим питания излучателя, указанный в сертификате калибровки или в свидетельстве о поверке. Включить излучатель.

10.1.2.7 Для проведения измерения в главном окне ПО «GPM_full-v71» нажать кнопку «Measure» («Измерение»). Измерения светового потока провести 5 раз.

10.1.2.8 Повторить пункты с 10.1.2.3 по 10.1.2.7 для каждого излучателя из состава ВЭТ СП.

10.1.3 Обработку результатов измерений светового потока провести в соответствии с п. 11.1 настоящей методики поверки.

10.2 Определение диапазона измерений и относительной погрешности измерений силы света и освещенности

Измерения силы света и освещенности проводят с помощью системы гониофотометрической GL GONIO 20.150 из состава комплекса.

10.2.1 Установить фотометр на оптической оси гониометра. Включить электропитание контроллера гониометра и управляющий компьютер. Включить электропитание фотометра нажатием кнопки «POWER» на передней панели модуля управления фотометра.

10.2.2 Запустить на рабочем столе компьютера программы «GL SPECTROSOFT PRO» и «GPM full-v71».

10.2.3 Закрепить источник излучения из состава ВЭТ СС и О (далее – излучатель) на монтажной панели гониометра с помощью болтов и скользящих блоков. Подключить излучатель к источнику питания № 2 через розетку на гониометре.

10.2.4 Произвести юстировку излучателя. Для этого отрегулировать вручную скользящую ось Z так, чтобы фотометрический центр лежал на оси вращения γ , затем установить гониометр так, чтобы излучатель был направлен прямо в направлении юстировочного лазера. Управляя из окна панели «Alignment» (см. рисунок 5), повернуть излучатель по оси C на полный рабочий диапазон и проверить симметричность установки излучателя.

10.2.5 Измерить расстояние *l*, м, от фотометрического центра излучателя до плоскости входного окна фотометра с помощью лазерного дальномера из состава ВЭТ СС и О.

10.2.6 На панели управления источника питания установить рабочий режим питания излучателя, указанный в сертификате калибровки или в свидетельстве о поверке. Включить излучатель.

10.2.7 Для проведения измерения в главном окне ПО «GPM_full-v71» нажать кнопку «Measure» («Измерение»). Измерения освещенности провести 5 раз.

10.2.8 Повторить пункты с 10.2.3 по 10.2.7 для каждого эталонного излучателя из состава ВЭТ СС и О.

10.2.9 Рассчитать значение силы света, кд, для каждого излучателя по формуле (1):

$$I_{k,i} = E_{k,i} \cdot l^2, \tag{1}$$

где $E_{k,i}$ - освещенность, измеренная комплексом, лк;

l - расстояние, измеренное в п. 10.2.5, м;

i – номер измерения;

k – номер излучателя.

10.2.9 Обработку результатов измерений силы света и освещенности провести в соответствии с п. 11.2 настоящей методики поверки.

10.3 Определение диапазона измерений и относительной погрешности измерений спектральной плотности энергетической освещенности (СПЭО) в диапазоне длин волн от 340 до 780 нм

Измерения спектральной плотности энергетической освещенности (СПЭО) в диапазоне длин волн от 340 до 780 нм проводят с помощью спектрометра SPECTIS 1.0 из состава системы гониофотометрической GL GONIO 20.150 из состава комплекса.

10.3.1 Для измерения СПЭО установить излучатель (лампу КГМ 24-150) из состава вторичного эталона 2.1.ZZA.0009.2015 (далее по тексту – лампа) и спектрометр SPECTIS 1.0 на фотометрической скамье на расстоянии 500 мм от приемной поверхности спектрометра до лампы, определяя расстояние при помощи нутромера из состава ВЭТ СПЭО.

10.3.2 Провести юстировку лампы и приемника излучения спектрометра. Для этого установить на место лампы юстировочное устройство из состава ВЭТ СПЭО. Приёмная поверхность спектрометра и поверхность стекла юстировочного устройства должны располагаться в плоскостях, перпендикулярных оптической оси. При этом оптическая ось должна проходить через центр приемной поверхности спектрометра и перекрестие на стекле юстировочного устройства. Проверить, что расстояние от эталонной лампы до приемной поверхности спектрометра из состава ВЭТ СПЭО. Снять юстировочное устройство и установить на его место лампу.

10.3.3 Запустить на компьютере программу «GL SPECTROSOFT PRO» в соответствии с п. 8.3.1.2. Включить спектрометр SPECTIS 1.0, нажав на боковой панели кнопки «Вкл/Выкл/Измерение».

Device	
Mini B14W0060	•
Measuring head	
010.cfg	-
Calibration	
Select calibration.	
Select calibration. Dark Current	

Рисунок 8 – Окно «Быстрая конфигурация» SPECTIS 1.0

10.3.4 Провести калибровку темнового тока. Для этого выбрать в главном окне «Быстрая конфигурация» (см. рисунок 1), а затем «Dark Current» (см. рисунок 8). Включится окно «Dark current copensation» (см. рисунок 9), следуйте всплывающим инструкциям. По окончании процедуры, компенсация темнового тока будет автоматически применяться ко всем последующим измерениям..

		?	×
 Dark Current calibration 			
Dark Current calibration			
Prepare device for calibration			
Please cover me and press but	easuring head tton "Next"	1	
	Next	Car	ncel

Рисунок 9 - Окно «Dark current copensation»

10.3.5 Включить источник питания лампы. Выполнить настройку источника питания согласно его эксплуатационной документации.

10.3.6 Включить лампу, установив рабочий режим питания, указанный в сертификате калибровки, и прогреть в течение интервала времени от 15 до 20 мин.

10.3.7 Для проведения измерения на экране меню спектрометра SPECTIS 1.0 нажать «Measure». Провести 5 измерений СПЭО в диапазоне длин волн от 340 до 780 нм.

10.3.8 Обработку результатов измерений СПЭО провести в соответствии с п. 11.3 настоящей методики поверки.

10.4 Определение диапазона измерений и абсолютной погрешности измерений координат цветности, коррелированной цветовой температуры и индекса цветопередачи

10.4.1 Измерения с помощью системы фотометрической сфера GL OPTI SPHERE 2000

10.4.1.1 Запустить на компьютере программу «GL SPECTROSOFT PRO» в соответствии с п. 8.3.1.2. Включить спектрометр SPECTIS 5.0 Touch, нажав на боковой панели кнопки «Вкл/Выкл/Измерение».

10.4.1.2 Провести калибровку темнового тока. Для этого выбрать в главном окне «Быстрая конфигурация», а затем «Калибровка темнового тока» (см. рисунок 1). Компенсация темнового тока будет автоматически применяться ко всем последующим измерениям.

10.4.1.3 Провести коррекцию сферы на самопоглощение. Для этого перевести держатель образца в крайнее нижнее положение. Закрыть сферу и выбрать в главном окне «Быстрая конфигурация», а затем «Коррекция шара». После цикла включения вспомогательной лампы появится окно с просьбой установить измеряемый источник света в сферу (см. рисунок 4). Установить измеряемый источник света и завершить цикл коррекции.

10.4.1.4 Установить источник излучения (излучатель из набора полупроводниковых излучателей из состава ВЭТ КЦ или лампу типа СИП 107-1500) (далее – излучатель) внутрь сферы таким образом, чтобы прямое излучение от излучателя не попадало на приемную площадку фотометрической головки спектрометра SPECTIS 5.0 Touch. Подсоединить излучатель к источнику питания постоянного тока №1. Закрыть сферу.

10.4.1.5 Включить источник питания излучателя в соответствии с его руководством по эксплуатации. Включить излучатель, установив рабочий режим питания, указанный в сертификате калибровки или в свидетельстве о поверке.

10.4.1.6 Для проведения измерения в главном окне программы «GL SPECTROSOFT PRO» нажать кнопку «Измерение». Измерения координат цветности, коррелированной цветовой температуры и индекса цветопередачи провести 5 раз.

10.4.1.7 Повторить пункты с 10.4.1.4 по 10.4.1.6 для каждого излучателя из состава ВЭТ КЦ.

10.4.2 Измерения с помощью системы гониофотометрической GL GONIO 20.150.

10.4.2.1 Установить спектрометр SPECTIS 1.0 на оптическую ось гониометра. Включить электропитание контроллера гониометра и управляющий компьютер. Включить спектрометр SPECTIS 1.0 нажатием на боковой панели кнопки «Вкл/Выкл/Измерение».

10.4.2.2 Запустить на рабочем столе компьютера программу «GL SPECTROSOFT PRO».

10.4.2.3 Закрепить источник излучения (излучатель из набора полупроводниковых излучателей из состава ВЭТ КЦ или лампу типа СИП 107-1500) (далее – излучатель) на монтажной панели гониометра с помощью болтов и скользящих блоков. Подключить излучатель к источнику питания через розетку на гониометре.

10.4.2.4 Произвести юстировку излучателя. Для этого отрегулировать вручную скользящую ось Z так, чтобы фотометрический центр лежал на оси вращения γ, затем установить гониометр так, чтобы излучатель был направлен прямо в направлении юстировочного лазера. Управляя из окна панели «Alignment» (см. рисунок 5), повернуть излучатель по оси C на полный рабочий диапазон и проверить симметричность установки излучателя.

10.4.2.5 На панели управления источника питания установить рабочий режим питания излучателя, указанный в сертификате калибровки или в свидетельстве о поверке.

10.4.2.6 Для проведения измерения в главном окне ПО «GL SPECTROSOFT PRO» нажать кнопку «Measure» («Измерение»). Провести 5 измерений координат цветности, коррелированной цветовой температуры и индекса цветопередачи.

10.4.3 Обработку результатов измерений координат цветности, коррелированной цветовой температуры и индекса цветопередачи провести в соответствии с п. 11.4 настоящей методики поверки.

11 Подтверждение соответствия средства измерений метрологическим требованиям

11.1 Обработка результатов измерений светового потока

11.1.1 Рассчитать среднее арифметическое измерений для каждого эталонного излучателя, лм, по формуле (2):

$$\overline{\Phi}_{k} = \frac{1}{n} \sum_{i=1}^{n} \Phi_{k,i} \quad , \tag{2}$$

где Φ_k – значения светового потока, лм, *k*-го эталонного излучателя, измеренные комплексом;

і – номер измерения;

n – число измерений;

k- номер излучателя.

11.1.2 Относительная погрешность измерений светового потока для каждого эталонного излучателя, %, определяется по формуле (3):

$$\delta_{\Phi,k} = \frac{\Phi_k - \Phi_{\lambda,k}}{\Phi_{\lambda,k}} \cdot 100 \%,$$
(3)

где $\Phi_{3,k}$ – значения светового потока, лм, создаваемого каждым эталонным излучателем, взятые из сертификата калибровкиили из свидетельства о поверке.

11.1.3 Комплекс признается прошедшим операцию поверки по п. 10.1 с положительным результатом, если диапазон измерений светового потока составляет от 10 до 150000 лм; а пределы допускаемой относительной погрешности измерений светового потока не превышают ± 5 %.

11.2 Обработка результатов измерений силы света и освещенности

11.2.1 Рассчитать среднее арифметическое значение измерений силы света I_k , кд, и освещенности E_k , лк, для каждого излучателя по формулам (4) и (5) соответственно:

$$\bar{I}_{k} = \frac{1}{n} \sum_{i=1}^{n} I_{k,i} , \qquad (4)$$

$$\overline{E}_k = \frac{1}{n} \sum_{i=1}^n E_{k,i} , \qquad (5)$$

где I_{k,i} – значения силы света, кд, k-го эталонного излучателя, измеренные комплексом;

*Е*_{*k,i*} – значения освещенности, лк, *k*-го эталонного излучателя, измеренные комплексом.

11.2.2 Относительная погрешность измерений силы света и освещенности для каждого эталонного излучателя, %, определяется по формулам (6) и (7) соответственно:

$$\delta_{I_k} = \frac{I_k - I_{2,k}}{I_{2,k}} \cdot 100 \ \%, \tag{6}$$

$$\delta_{E_k} = \frac{\overline{E}_k - E_{\mathfrak{s},k}}{E_{\mathfrak{s},k}} \cdot 100 \ \%, \tag{7}$$

где $I_{2,k}$ и $E_{2,k}$ – значения силы света, кд, и освещенности, лк, каждого эталонного излучателя, указанные в сертификате калибровки или в свидетельстве о поверке.

11.2.3 Комплекс признается прошедшим операцию поверки по п. 10.2 с положительным результатом, если диапазон измерений силы света составляет от 1 до 150000 кд, диапазон измерений освещенности составляет от 1 до 100000 лк, а пределы допускаемой относительной погрешности измерений силы света и освещенности не превышают ± 5 %.

11.3 Обработка результатов измерений СПЭО в диапазоне длин волн от 340 до 780

HM

11.3.1 Рассчитать среднее арифметическое значение измерений СПЭО, Вт/м³, по формуле (8):

$$\overline{E}_{\lambda}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} E_{\lambda,i}(\lambda)$$
(8)

где $E_{\lambda_{1}}(\lambda)$ – значения СПЭО, измеренные комплексом, Вт/м³;

i – номер измерения;

n-количество измерений.

11.3.2 Относительная погрешность измерений СПЭО, %, рассчитывается по формуле (9):

$$\delta_{\rm CHOO}(\lambda) = \frac{\overline{E}_{\lambda}(\lambda) - E_{\lambda,\rm yr}(\lambda)}{E_{\lambda,\rm yr}(\lambda)} \cdot 100 \%$$
(9)

где $E_{\lambda,3\tau}(\lambda)$ – значения СПЭО, Вт/м³, эталонного излучателя на длине волны λ , указанные в сертификате калибровки или в свидетельстве о поверке.

11.3.3 Комплекс признается прошедшим операцию поверки по п. 10.3 с положительным результатом, если диапазон измерений СПЭО составляет от 10^5 до 10^8 Вт/м³; а пределы допускаемой относительной погрешности измерений СПЭО в диапазоне длин волн от 340 до 780 нм не превышают ± 4 %.

11.4 Обработка результатов измерений координат цветности, коррелированной цветовой температуры и индекса цветопередачи

11.4.1 Рассчитать среднее арифметическое значение измерений координат цветности, коррелированной цветовой температуры и индекса цветопередачипо формулам (10), (11), (12) и (13) соответственно:

$$\bar{x}_{k} = \frac{1}{n} \sum_{i=1}^{n} x_{k,i} ; \qquad (10)$$

$$\overline{y}_{k} = \frac{1}{n} \sum_{i=1}^{n} y_{k,i} ; \qquad (11)$$

$$T_{k} = \frac{1}{n} \sum_{i=1}^{n} T_{k,i} ; \qquad (12)$$

$$\overline{R}_{k} = \frac{1}{n} \sum_{i=1}^{n} R_{k,i} \qquad , \tag{13}$$

где х, у – координаты цветности, измеренные комплексом;

Т – коррелированная цветовая температура, измеренная комплексом, К;

R – индекс цветопередачи, измеренный комплексом;

i – номер измерения;

n – число измерений

11.4.2 Абсолютная погрешность измерений координат цветности, коррелированной цветовой температуры и индекса цветопередачи для каждого эталонного излучателя определяется по формулам(14), (15), (16) и (17) соответственно:

$$\Delta_{x,k} = \overline{x} - x_{\mathfrak{z},k} \,; \tag{14}$$

$$\Delta_{y,k} = \overline{y} - y_{y,k}; \tag{15}$$

$$\Delta_{T,k} = \overline{T} - T_{j,k} \tag{16}$$

$$\Delta_{R,k} = \overline{R}_k - R_{2,k} \tag{17}$$

где $x_{3,k}$ и $y_{3,k}$ – значения координат цветности каждого эталонного излучателя, взятые из сертификата калибровки;

 T_{3k} – значения коррелированной цветовой температуры каждого эталонного излучателя, К, взятые из сертификата калибровки;

R_{э,k} – значения индекса цветопередачи каждого эталонного излучателя, взятые из сертификата калибровки.

11.4.3 Комплекс признается прошедшим операцию поверки по п. 10.4 с положительным результатом, если диапазон измерений координат цветности составляет для x: от 0,0039 до 0,7347, для y: от 0,0048 до 0,8338, диапазон измерений коррелированной цветовой температуры составляет от 2000 до 8000 К, диапазон измерений индекса цветопередачи составляет от 50 до 100; абсолютная погрешность измерений координат цветности не превышает ± 0,0020 для источников излучения на основе ламп накаливания и ±0,0050 для остальных источников излучения; абсолютная погрешность измерений коррелированной цветовой температуры не превышает ± 75 К; абсолютная погрешность измерений индекса цветопередачи не превышает ± 1.

11.5 Комплекс считается прошедшим поверку с положительным результатом и допускается к применению, если все операции поверки пройдены с положительным результатом. В ином случае комплекс считается прошедшим поверку с отрицательным результатом и не допускается к применению.

12 Оформление результатов поверки

12.1 Результаты измерений поверки заносятся в протокол (форма протокола приведена в приложении А настоящей методики поверки).

12.2 При положительных результатах поверки по запросу заказчика может быть оформлено свидетельство о поверке в установленной форме.

12.3 При отрицательных результатах поверки по запросу заказчика может быть оформлено извещение о непригодности в установленной форме с указанием причин непригодности.

12.4 Сведения о результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений.

Начальник отделения М-4 ФГУП «ВНИИОФИ»

Тест В.Р. Гаврилов *Ши* Н.Е. Бурдакина *Целе* М.В. Солодилов

Инженер 1 категории ФГУП «ВНИИОФИ»

Ведущий инженер ФГУП «ВНИИОФИ»

Ведущий инженер ФГУП «ВНИИОФИ»

СШир С.С. Широков

ПРИЛОЖЕНИЕ А

(Рекомендуемое) К Методике поверки МП 031.М4-21 Комплекс фотометрический

протокол

первичной (периодической) поверки

от «»20_г.
Средство измерений: Комплекс фотометрический
наименование средства измерений, тип
Ваводской номер 013320118
заводской номер средства измерений
Тринадлежащее
наименование юридического лица, ИНН
Поверено в соответствии с методикой поверки <u>МП 031.М4-21 «ГСИ. Комплекс</u>
ротометрический. Методика поверки», согласованной ФГУП «ВНИИОФИ» 04 октября 2021 г.
наименование документа на поверку, кем утвержден (согласован), дата
С применением эталонов
наименование, заводской номер, разряд, класс точности или погрешность
Три следующих значениях влияющих факторов:
приводят перечень и значения влияющих факторов
- температура окружающей среды, °С
- относительная влажность воздуха, 70
- атмосферное давление, кПа
e
Внешний осмотр:

Проверка идентификации программного обеспечения:

Таблица А.1 - Идентификационные данные программного обеспечения

	Значение		
Идентификационные	Система	Система	
данные (признаки)	фотометрическая сфера	гониофотометрическая	
	GL OPTI SPHERE 2000	GL GONIO 20.150	
Идентификационное наименование ПО	GL SPECTROSOFT PRO	GL SPECTROSOFT PRO	GPM_full-v71
Номер версии (идентификационный номер) ПО	не ниже 3.1.48	не ниже 3.1.43	не ниже V71
Цифровой идентификатор ПО	_	_	-

Опробование:____

Получены результаты поверки метрологических характеристик:

Таблица А.2 - Метрологические характеристики

Характеристика	Результат	Требования методики поверки
Диапазон измерений светового потока, лм: - Система гониофотометрическая GL GONIO 20.150; - Система фотометрическая сфера GL OPTI SPHERE 2000		от 10 до 150000 от 10 до 50000
Диапазон измерений силы света, кд		от 1 до 150000
Диапазон измерений освещенности, лк		от 1 до 100000
Пределы допускаемой относительной погрешности измерений освещенности, силы света и светового потока, %		± 5
Диапазон измерений спектральной плотности энергетической освещенности (СПЭО) в диапазоне длин волн от 340 до 780 нм, Вт/м ³		от 10 ⁵ до 10 ⁸
Пределы допускаемой относительной погрешности измерений СПЭО в диапазоне длин волн от 380 до 780 нм, %		± 4
Диапазон измерений координат цветности: –х –у	-	от 0,0039 до 0,7347 от 0,0048 до 0,8338
Пределы допускаемой абсолютной погрешности измерений координат цветности: - для источников излучения на основе ламп накаливания - для остальных источников излучения		$\pm 0,0020 \\ \pm 0,0050$
Диапазон измерений коррелированной цветовой температуры, К		от 2000 до 8000
Пределы допускаемой абсолютной погрешности измерений коррелированной цветовой температуры, К		± 75
Диапазон измерений индекса цветопередачи		от 50 до 100
Пределы допускаемой абсолютной погрешности измерений индекса цветопередачи		± 1

Рекомендации _

средство измерений признать пригодным (или непригодным) к применению

Исполнители:

должность

подпись

фамилия, инициалы