СОГЛАСОВАНО

Первый заместитель генерального директора — заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов 2022 г.

Государственная система обеспечения единства измерений

Тахеометры электронные GeoMax Zoom

МЕТОДИКА ПОВЕРКИ

651-21-057 MΠ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Настоящая методика распространяется на тахеометры электронные GeoMax Zoom (далее – тахеометры), изготавливаемые GeoMax AG, Швейцария, и устанавливает методы и средства их первичной и периодической поверок.

Прослеживаемость к Государственному первичному специальному эталону единицы длины ГЭТ 199-2018 по государственной поверочной схеме для координатно-временных измерений, утвержденной приказом Росстандарта № 2831 от 29 декабря 2018 г., Государственному первичному эталону плоского угла ГЭТ 22-2014 по государственной поверочной схеме средств измерений единицы плоского угла, утвержденной приказом Росстандарта № 2482 от 26 ноября 2018 г., обеспечена.

Методика поверки реализуется посредством методов прямых измерений.

- 1.2 Объем первичной и периодической поверок приведен в таблице 1.
- 1.3 Интервал между поверками один год.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 При проведении поверки выполнить операции, указанные в таблице 1.

Таблица 1 – Операции проведения поверки

	Номер разде-	Проведение операций при:	
Наименование операции поверки	ла методики	первичной	периодичес-
	поверки	поверке	кой поверке
1 Внешний осмотр средства измерений	7	да	да
 Подготовка к поверке и опробование сред- ства измерений 	8	да	да
3 Проверка программного обеспечения (далее – ПО) средства измерений	9	да	да
4 Определение метрологических характеристик средств измерений	10		
4.1 Определение доверительных границ абсолютной погрешности измерений углов (при доверительной вероятности 0, 997)	10.1	да	да
4.2 Определение максимальной абсолютной погрешности измерений расстояний	10.2	да	да

- 2.2 Не допускается проведение поверки отдельных измерительных каналов или отдельных автономных блоков или меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.
- 2.3 При получении отрицательных результатов при выполнении любой из операций, приведенных в таблице 1, поверка прекращается и тахеометр признается непригодным к применению.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 Поверка должна проводиться в климатических условиях, соответствующих рабочим условиям применения эталонов и поверяемого тахеометра:
 - температура окружающего воздуха от 15 до 25 °С в лабораторных условиях;
 - температура окружающего воздуха от минус 20 до плюс 50 °C в полевых условиях;
 - атмосферное давление от 90 до 100 кПа;
 - относительная влажность воздуха до 80 %.
 - 3.2 Перед проведением поверки выполнить следующие подготовительные работы:
- проверить комплектность тахеометра, в соответствии с эксплуатационной документацией (далее – ЭД);
 - проверить наличие действующих свидетельств о поверке средств измерений;
- тахеометр и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К проведению поверки допускаются лица с высшим или средним техническим образованием, аттестованные в качестве поверителей в области геодезических средств измерений и изучившие настоящую методику, документацию на тахеометры и эксплуатационную документацию на используемые средства поверки.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПО-ВЕРКИ

5.1 Для поверки применять средства поверки, приведенные в таблице 2.

Таблица 2 - Средства поверки

гаолица 2	 Средства поверки 			
Номер	Наименование рабочих эталонов или вспомогательных средств поверки; номер до-			
пунктов	кумента, регламентирующего технические требования к рабочим эталонам или			
методики	вспомогательным средствам; разряд по государственной поверочной схеме и (или)			
поверки	метрологические и основные технические характеристики средства поверки			
	Рабочий эталон единицы плоского угла 1 разряда в диапазонах от 0° до 360°, гра-			
10.1	ницы абсолютной погрешности измерений горизонтального и вертикального уг-			
	лов (при доверительной вероятности $0,99) \pm 0,15"$ в соответствии с Государствен-			
	ной поверочной схемой для средств измерений плоского угла, утвержденной при-			
	казом Росстандарта от 26 ноября 2018 г. № 2482			
	Рабочий эталон 2-го разряда в соответствии с Государственной поверочной схемой			
	для координатно-временных измерений, утвержденной приказом Росстандарта от			
	29.12.2018 № 2831, содержащий эталонный базисный комплекс, предел абсолют-			
	ной погрешности в диапазонах длин до 5000 м предел допускаемой абсолютной			
	погрешности $(0,6+1\cdot10^{-6}\cdot L)$ мм, где L – расстояние между пунктами в мм; в диапа-			
	зоне длин от 1 до 4000 км предел допускаемой абсолютной погрешности не более			
	(2-200) MM			
	Вспомогательные средства			
10.1, 10.2	Термогигрометры ИВА-6Н-КП-Д, пределы допускаемой абсолютной погрешности			
	измерений температуры ±0,3 °C; регистрационный номер № 46434-11 в Федераль-			
	ном информационном фонде			

- 5.2 Вместо указанных в таблице 2 средств поверки допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик поверяемого тахеометра с требуемой точностью.
- 5.3 Применяемые при поверке средства измерений должны быть исправны, поверены и иметь действующие свидетельства о поверке или оттиск поверительного клейма на приборе или в технической документации.

6 ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 При проведении поверки необходимо соблюдать:
- требования по технике безопасности, указанные в ЭД на используемые средства поверки;
 - правила по технике безопасности, действующие на месте поверки;
 - ГОСТ 12.1.040-83 «ССТБ. Лазерная безопасность. Общие положения»;
- ГОСТ 12.2.007.0-75 «ССТБ. Изделия электротехнические. Общие требования безопасности».

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 При внешнем осмотре тахеометра установить:
- комплектность тахеометра и наличие маркировки (заводской номер, тип) путём сличения с ЭД на тахеометр, наличие поясняющих надписей;
- исправность переключателей, работу подсветок, исправность разъемов и внешних соединительных кабелей;

- качество гальванических и лакокрасочных покрытий;
- наличие и исправность съёмных накопителей измерительной информации или управляющего ПЭВМ (в соответствии с ЭД);
- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики.

Если перечисленные требования не выполняются, тахеометр признают негодным к применению, дальнейшие операции поверки не производят.

7.2 Результаты поверки считать положительными, если результаты внешнего осмотра удовлетворяют п. 7.1. В противном случае тахеометр бракуется, дальнейшие операции поверки не производят.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 Подготовка к поверке
- 8.1.1 Перед проведением поверки выполнить следующие подготовительные работы:
- проверить комплектность тахеометра, в соответствии с ЭД;
- проверить наличие действующих свидетельств о поверке средств измерений;
- тахеометр и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.
 - 8.2 Опробование
 - 8.2.1 При опробовании установить соответствие тахеометра следующим требованиям:
 - отсутствие качки и смещений неподвижно соединенных деталей и элементов;
 - плавность и равномерность движения подвижных частей;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность тахеометра с использованием всех функциональных режимов;
- дискретность отсчетов измерений должна соответствовать значениям, указанным в ЭД. Если перечисленные требования не выполняются, тахеометр признают негодным к применению, дальнейшие операции поверки не производят.
- 8.2.2 Результаты поверки считать положительными, если результаты опробования и проверки работоспособности удовлетворяют п. 8.2.1.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

9.1 Идентификационное наименование и идентификационный номер ПО получить при подключении тахеометра к персональному компьютеру средствами ОС «Windows», основное меню/свойства файла.

Результаты поверки считать положительными, если идентификационные данные (признаки) метрологически значимой части ПО соответствуют приведенным в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	X-PAD Ultimate Survey	X-Pad Field	X-PAD Fusion
Номер версии (идентификационный номер) ПО, не ниже	4.1.100	3.6.500	5.4.50
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	-		-
Алгоритм вычисления цифрового идентификатора ПО	-	-	-

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВ ИЗМЕРЕНИЙ

- 10.1 Определение доверительных границ абсолютной погрешности измерений углов (при доверительной вероятности 0, 997)
- 10.1.1 Для определения доверительных границ абсолютной погрешности измерений горизонтальных и вертикальных углов с помощью рабочего эталона единицы плоского угла 1 разряда (далее установка 1 разряда) в диапазоне значений от 0° до 360° необходимо выполнить следующие операции:

- определить доверительные границы абсолютной погрешности измерений горизонтальных углов испытуемого тахеометра с помощью установки 1 разряда;
- определить доверительные границы абсолютной погрешности измерений вертикальных углов тахеометра с помощью установки 1 разряда.
- 10.1.2 Определение доверительные границы абсолютной погрешности измерений горизонтальных углов тахеометра с помощью установки 1 разряда.

Доверительные границы абсолютной погрешности измерений горизонтальных углов тахеометра определить путем сравнения значений измеренных с его помощью горизонтальных углов с действительными значениями этих углов, заданных установкой 1 разряда в диапазоне от 0° до 360° с шагом 60°.

Для этого тахеометр установить на поворотный стол электромеханической системы. В соответствии с руководством по эксплуатации тахеометр привести в горизонтальное положение в двух плоскостях с использованием его штатных уровней.

Далее запустить рабочую программу на ПЭВМ из состава установки 1 разряда.

В основном окне программы необходимо активировать вкладку «Вертикальная ось». Задать на установке 1 разряда угол равный 90°, при этом «коромысло» с автоколлиматором займет положение параллельное поворотному столу установки.

Установить зеркало на объектив тахеометра.

Совместить оптическую ось тахеометра с оптической осью автоколлиматора. При этом критерием совмещения осей является появление автоколлимационного изображения марки в окне «Камера» рабочей программы. Точное совмещение производится при помощи кнопок перемещения изображения. Необходимо добиться полного совпадения изображения марки с осью ОУ матрицы.

После настройки взаимного положения визирной оси тахеометра и поворотного «коромысла» эталона установить лимб или отсчётную шкалу тахеометра на значение 0°00'00", а затем кликнуть на кнопку программы «Установить ноль», при этом процессы измерения угла поворота, выполняемые угловыми сенсорами и автоколлиматором, синхронизируются, то есть будут иметь одну точку отсчета. Соответственно численное значение текущего относительного углового положения поворотного стола устанавливается равным нулю.

Активировать в основном окне программы вкладку «Горизонтальная ось». Задать угол перемещения поворотного столика. После отработки установкой 1 разряда заданного угла необходимо довести зрительную трубу тахеометра к неподвижно закрепленному автоколлиматору и вновь совместить автоколлимационное изображение (зафиксировать значение горизонтального угла с экрана или лимба тахеометра $\alpha_{\rm измі}$, где і — номер измеренного контрольного направления, а также зафиксировать действительное значение горизонтального угла контрольного направления в соответствующем окне программы установки 1 разряда $\alpha_{\rm действі}$, где і — номер контрольного направления). Исследование угломерных характеристик тахеометра произвести в диапазоне от 0 до 360° с шагом 60°. После этого необходимо перевести зрительную трубу через зенит и вновь совместить оптическую ось тахеометра с оптической осью автоколлиматора установки, после чего повторить операции при правом круге. Каждое контрольное направление тахеометра измерить не менее, чем шестью приёмами измерений. Результаты измерений записать во внутреннюю память тахеометра и в журнал произвольной формы.

10.1.3 Систематическую составляющую погрешности измерений горизонтальных углов вычислить по формуле (1):

$$D_{\alpha_i} = \frac{\sum_{i=1}^{n} (\alpha_i - \alpha_{\text{Действ}i})}{n}, \qquad (1)$$

где і - номер приёма измерений,

 α_i – значение горизонтального угла, полученное на поверяемом тахеометре,

 $\alpha_{\text{действі}}$ — значение горизонтального угла, полученное на установке 1 разряда.

Среднее квадратическое отклонение случайной составляющей погрешности измерений горизонтальных углов вычислить по формуле (2):

$$S_{\alpha_{\hat{i}}} = \sqrt{\frac{\sum_{i=1}^{n} (\alpha_{i} - \overline{\alpha}_{i})^{2}}{n-1}}, \qquad (2)$$

где $\overline{\alpha}_i = \frac{\sum_{i=1}^n \alpha_i}{n}$ — среднее арифметическое значение результатов измерений углов.

Доверительные границы абсолютной погрешности измерений горизонтальных углов (при доверительной вероятности 0,997) вычислить по формуле (3):

$$\Delta_{\alpha_i} = \pm (|D_{\alpha_i}| + 3S_{\alpha_i}) \quad , \quad (3)$$

10.1.4 Определение доверительных границ абсолютной погрешности измерений вертикальных углов тахеометра с помощью установки 1 разряда.

Доверительные границы абсолютной погрешности измерений вертикальных углов тахеометра определить путем сравнения значений измеренных с его помощью вертикальных углов с действительными значениями, задаваемыми установкой 1 разряда в диапазоне от минус 45° до плюс 90° в следующих значениях: минус 45° минус 30°, далее с шагом 30°.

Перед проведением поверки тахеометр установить на поворотный стол установки, отгоризонтировать в двух плоскостях в соответствии с ЭД изготовителя.

Далее установить зеркало на объектив тахеометра.

Запустить рабочую программу установки на ПЭВМ из её состава.

В основном окне программы необходимо активировать вкладку «Вертикальная ось». Задать на установке 1 разряда угол равный 90°, при этом «коромысло» с автоколлиматором займет положение, соответствующее нижней крайней точке рабочего диапазона.

Совместить оптическую ось тахеометра с оптической осью автоколлиматора. При этом критерием совмещения осей является появление автоколлимационного изображения марки в окне «Камера» рабочей программы. Точное совмещение произвести при помощи кнопок перемещения изображения. Необходимо добиться полного совпадения изображения марки с осью ОХ матрицы.

Активировать в основном окне программы вкладку «Вертикальная ось», нажать на экране рабочей программы «Установить ноль». Задать угол перемещения поворотного коромысла. После отработки установкой 1 разряда заданного угла необходимо довести зрительную трубу тахеометра к трубе автоколлиматора и вновь совместить автоколлимационное изображение (зафиксировать значение вертикального угла с экрана или лимба тахеометра $\beta_{измі}$, где і - номер измеренного контрольного направления, а также зафиксировать действительное значение вертикального угла контрольного направления в соответствующем окне программы установки 1 разряда $\beta_{\text{действі}}$, где і – номер контрольного направления). Исследование угломерных характеристик тахеометра произвести в диапазоне от минус 45° до плюс 90° в следующих значениях: минус 45° минус 30°, далее с шагом 30°. После этого необходимо перевести зрительную трубу через зенит, вновь навести сетку нитей зрительной трубы на марку автоколлиматора и повторить процедуры при правом круге.

Каждое контрольное направление тахеометра измерить не менее, чем шестью приёмами измерений. Результаты измерений записать во внутреннюю память тахеометра и в журнал произвольной формы.

10.1.5 Систематическую составляющую погрешности измерений вертикальных углов вычислить по формуле (4):

$$D_{\beta_i} = \frac{\sum_{i=1}^{n} (\beta_i - \beta_{\text{Действ}i})}{n}, \qquad (4)$$

где і – номер приёма измерений,

 β_i — значение вертикального угла, полученное на поверяемом тахеометре, $\beta_{\text{действi}}$ — значение вертикального угла, полученное на установке 1 разряда.

Среднее квадратическое отклонение случайной составляющей погрешности измерений вертикальных углов вычислить по формуле (5):

$$S_{\beta_i} = \sqrt{\frac{\sum_{i=1}^{n} (\beta_i - \overline{\beta}_i)^2}{n-1}},$$
 (5)

где $\overline{\beta}_i = \frac{\sum_{i=1}^n \beta_i}{n}$ — среднее арифметическое значение результатов измерений углов.

Доверительные границы абсолютной погрешности измерений вертикальных углов (при доверительной вероятности 0, 997) вычислить по формуле (6):

$$\Delta_{\beta_i} = \pm (\left| D_{\beta_i} \right| + 3S_{\beta_i}), \qquad (6)$$

- 10.1.6 Результаты поверки считать положительными, если доверительные границы абсолютной погрешности измерений горизонтальных и вертикальных углов (при доверительной вероятности 0, 997) составляет:
- $\pm 5''$ для тахеометров исполнений Zoom 75 A10 5", Zoom 95 A10 5", Zoom 75 A5 5", Zoom 95 A5 5";
- $\pm 2"$ для тахеометров исполнений Zoom 75 A10 2", Zoom 95 A10 2", Zoom 75 A5 2", Zoom 95 A5 2";
- $\pm 1''$ для тахеометров исполнений Zoom 75 A10 1", Zoom 95 A10 1", Zoom 75 A5 1", Zoom 95 A5 1".
 - 10.2 Определение максимальной абсолютной погрешности измерений расстояний
- 10.2.1 Определение максимальной абсолютной погрешности провести путём сличения на рабочем эталоне 2-го разряда (далее базис) с фазовым светодальномером из состава базиса (далее дальномер). Для этого измерить дальномером линии базиса во всём диапазоне работы поверяемого тахеометра (не менее 3-х линий). Полученные значения линий считать эталонными. Затем измерить эти же линии поверяемым тахеометром, в соответствии с документом «Тахеометры электронные GeoMax Zoom. Руководство по эксплуатации» не менее 10 раз. Повторить измерения во всех режимах работы тахеометра.
 - 10.2.2 Абсолютную погрешность измерений расстояний вычисляют по формуле (7):

$$R_{L_j} = L_{i_j} - L_{\text{действ}j} , \qquad (7)$$

где $\mathbf{L_{i}}_{j}$ – полученное значение j-го расстояния i-м приёмом по поверяемому тахеометру;

 $L_{\text{действ}j}$ – эталонное (действительное) значение j-го расстояния, полученное с помощью дальномера.

Максимальные значения абсолютной погрешности измерений расстояний считаются значениями абсолютной погрешности измерений расстояний (R_I) поверяемого тахеометра.

10.2.3 Результаты поверки считать положительными, если значения максимальной абсолютной погрешности измерений расстояний находятся в пределах: $\pm (1+1,5\cdot 10^{-6}\cdot L)$ мм при использовании отражательного режима на одну призму и на три призмы; $\pm (5+2,0\cdot 10^{-6}\cdot L)$ мм при использовании режим увеличенной дальности на одну призму; $\pm (2+2,0\cdot 10^{-6}\cdot L)$ мм при использовании диффузного режима в диапазоне измерений расстояний от 0,9 м до 500,0 м включ.; $\pm (2+2,0\cdot 10^{-6}\cdot L)$ мм при использовании диффузного режима в диапазоне измерений расстояний св. 500 м до 1000 м включ., где L- измеряемое расстояние ($L_{\text{действ}}$), мм.

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛО-ГИЧЕСКИМ ТРЕБОВАНИЯМ

11.1 Определение доверительных границ абсолютной погрешности измерений углов (при доверительной вероятности 0, 997)

Результаты поверки считать положительными, если доверительные границы абсолютной погрешности измерений горизонтальных и вертикальных углов (при доверительной вероятности 0, 997) составляют:

- $\pm 5''$ для тахеометров исполнений Zoom 75 A10 5", Zoom 95 A10 5", Zoom 75 A5 5", Zoom 95 A5 5";
- $\pm 2''$ для тахеометров исполнений Zoom 75 A10 2", Zoom 95 A10 2", Zoom 75 A5 2", Zoom 95 A5 2";
- $\pm 1''$ для тахеометров исполнений Zoom 75 A10 1", Zoom 95 A10 1", Zoom 75 A5 1", Zoom 95 A5 1".
 - 11.2 Определение максимальной абсолютной погрешности измерений расстояний

Результаты считаются положительными, если значения максимальной абсолютной погрешности измерений расстояний находятся в пределах: $\pm (1+1,5\cdot10^{-6}\cdot L)$ мм при использовании отражательного режима на одну призму и на три призмы; $\pm (5+2,0\cdot10^{-6}\cdot L)$ мм при использовании режим увеличенной дальности на одну призму; $\pm (2+2,0\cdot10^{-6}\cdot L)$ мм при использовании диффузного режима в диапазоне измерений расстояний от 0,9 м до 500,0 м включ.; $\pm (2+2,0\cdot10^{-6}\cdot L)$ мм при использовании диффузного режима в диапазоне измерений расстояний св. 500 м до 1000 м включ., где L — измеряемое расстояние ($L_{\text{лейств}}$), мм.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

12.1 Результаты поверки тахеометра подтверждаются сведениями о результатах поверки средств измерений, включенными в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца тахеометра или лица, представившего его на поверку, на средство измерений наносится знак поверки, и (или) выдается свидетельство о поверке и (или) в паспорт тахеометра вносится запись о проведенной поверке, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки, или выдается извещение о непригодности к применению средства измерений.

12.2 Результаты поверки оформить установленным порядком.

Начальник отделения НИО-8 ФГУП «ВНИИФТРИ»

Заместитель начальника НИО-8

Начальник отдела № 83 ФГУП «ВНИИФТРИ»

ФГУП «ВНИИФТРИ»

А.М. Каверин

И.С. Сильвестров

А.В. Мазуркевич