

ООО ЦМ «СТП»

Уникальный номер записи об аккредитации в реестре аккредитованных лиц RA.RU.311229

«СОГЛАСОВАНО»

Технический директор по испытаниям

000 ЦМ «СТП»

В.В. Фефелов

2021 г.

Государственная система обеспечения единства измерений

Система измерений количества и показателей качества нефтепродуктов № 1252

МЕТОДИКА ПОВЕРКИ

МП 0112/1-311229-2021

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на систему измерений количества и показателей качества нефтепродуктов № 1252 (далее СИКН), заводской № 01, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 СИКН соответствует требованиям к средству измерений (далее СИ), установленным Государственной поверочной схемой для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости, утвержденной Приказом Росстандарта от 7 февраля 2018 года № 256, и прослеживается к Государственному первичному специальному эталону единиц массы и объема жидкости в потоке, массового и объемного расходов жидкости ГЭТ 63-2019.
- 1.3 Метрологические характеристики СИ, входящих в состав СИКН, подтверждаются сведениями о поверке в Федеральном информационном фонде по обеспечению единства измерений (далее ФИФОЕИ). Метрологические характеристики СИКН определяются на месте эксплуатации расчетным методом. Допускается определение метрологических характеристик измерительных каналов (далее ИК) массового расхода комплектным методом.
- 1.4 Если очередной срок поверки СИ или ИК массового расхода (в случае поверки СИКН в части отдельного ИК массового расхода), входящего в состав СИКН, наступает до очередного срока поверки СИКН, или появилась необходимость проведения периодической или внеочередной поверки СИ или СИКН в части отдельного ИК массового расхода, входящего в состав СИКН, то поверяют только это СИ или СИКН в части отдельного ИК массового расхода, при этом внеочередную поверку СИКН не проводят.
- 1.5 Поверку СИКН проводят в диапазоне измерений, указанном в описании типа, или фактически обеспечивающемся при поверке диапазоне измерений с обязательной передачей сведений об объеме проведенной поверки в ФИФОЕИ. Фактический диапазон измерений СИКН не может превышать диапазон измерений, указанный в описании типа СИКН.
- 1.6 Допускается проведение поверки СИКН в части отдельного ИК массового расхода в соответствии с заявлением владельца СИКН.

2 Перечень операций поверки средства измерений

При проведении поверки должны быть выполнены операции, представленные в таблице 1.

Таблица 1 – Перечень операций поверки

	Номер	Проведение операции при			
Наименование операции	пункта методики поверки	Первичной поверке	Периодической поверке		
Внешний осмотр СИ	7	Да	Да		
Подготовка к поверке и опробование СИ	8	Да	Да		
Проверка программного обеспечения СИ	9	Да	Да		
Определение метрологических характеристик СИ	10	Да	Да		
Подтверждение соответствия СИ метрологическим требованиям	11	Да	Да		
Оформление результатов поверки СИ	12	Да	Да		

При получении отрицательного результата по какому-либо пункту методики поверки поверку прекращают.

3 Требования к условиям проведения поверки средства измерений

- 3.1 Поверку проводят при условиях, сложившихся на момент проведения поверки и удовлетворяющих условиям эксплуатации СИКН и средств поверки.
- 3.2 При комплектном методе определения метрологических характеристик ИК массового расхода необходимо выполнить следующие условия:
- определение метрологических характеристик ИК массового расхода выполняют на месте эксплуатации в комплекте с элементами измерительной линии;
- изменение температуры рабочей жидкости за время одного измерения не должно превышать 0,2 °C;
- изменение расхода рабочей жидкости в процессе определения метрологических характеристик ИК массового расхода от установленного значения (в точке расхода) не должно превышать 2,5 %;
 - содержание свободного газа в рабочей жидкости не допускают;
- избыточное давление рабочей жидкости в конце технологической схемы рекомендуется устанавливать не менее 0,3 МПа;
- требуемую величину расхода устанавливают с помощью регулятора расхода, установленного в конце технологической схемы по потоку рабочей жидкости.

4 Требования к специалистам, осуществляющим поверку

К работе по поверке должны допускаться лица:

- достигшие 18-летнего возраста;
- прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию СИКН, СИ, входящие в состав СИКН, и средства поверки;
- изучившие требования безопасности, действующие на территории объекта, а также предусмотренные «Правилами технической эксплуатации электроустановок потребителей».

5 Метрологические и технические требования к средствам поверки

5.1 При проведении поверки СИКН применяют средства поверки, указанные в таблице 2.

Таблица 2 – Перечень средств поверки

T COCCULATION -	110 00 10112 1 0 0 0 0 0 0 0 0 0 0 0 0 0				
	Наименование и тип (условное обозначение)	Пример возможного			
Номер	основного или вспомогательного средства	средства поверки с			
пункта	поверки; обозначение нормативного документа,	указанием наименования			
методики	регламентирующего технические требования, и	заводского обозначения, а			
поверки	(или) метрологические и основные технические	при наличии – обозначения			
•	характеристики средства поверки	типа, модификации			
7-10	СИ температуры окружающей среды, диапазон	Термогигрометр ИВА-6			
, 10	измерений от 15 до 30 °C, пределы допускаемой	(регистрационный номер			
	основной абсолютной погрешности измерений	46434-11 в ФИФОЕИ)			
	±0,5 °C				
	СИ относительной влажности окружающей				
	среды, диапазон измерений от 30 до 80%,				
	пределы допускаемой основной абсолютной				
	погрешности измерений ±5 %				
	СИ атмосферного давления, диапазон измерений				
	от 84 до 107 кПа, пределы допускаемой				
	абсолютной погрешности измерений				
	атмосферного давления ±0,5 кПа				

	Наименование и тип (условное обозначение)	Пример возможного			
Номер	основного или вспомогательного средства	средства поверки с			
пункта	поверки; обозначение нормативного документа,	указанием наименования,			
методики	регламентирующего технические требования, и	заводского обозначения, а			
поверки	(или) метрологические и основные технические	при наличии – обозначения			
	характеристики средства поверки	типа, модификации			
10.2	Рабочий эталон единицы объемного расхода	Установка поверочная			
	жидкости 1-го или 2-го разряда в соответствии с	трубопоршневая			
	частью 2 приказа Росстандарта от 7 февраля	двунаправленная OGSB			
	2018 года № 256	(регистрационный номер			
		62207-15 в ФИФОЕИ)			
		(далее – ТПУ)			

- 5.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик СИКН с требуемой точностью.
- 5.3 Применяемые эталоны и СИ должны соответствовать требованиям нормативных правовых документов Российской Федерации в области обеспечения единства измерений.

6 Требования (условия) по обеспечению безопасности проведения поверки

- 6.1 При проведении поверки должны соблюдаться требования правил безопасности при эксплуатации средств поверки и СИКН, приведенных в их эксплуатационных документах, и инструкций по охране труда, действующих на объекте.
- 6.2 К проведению поверки допускаются лица, изучившие настоящую методику поверки, инструкции (руководства) по эксплуатации СИКН и средств поверки и прошедшие инструктаж по охране труда.

7 Внешний осмотр средства измерений

- 7.1 При внешнем осмотре проверяют:
- состав СИ и комплектность СИКН;
- пломбировку СИ, входящих в состав СИКН (при наличии информации в описании типа СИ об указании мест и способов ограничения доступа к местам настройки (регулировки));
 - отсутствие механических повреждений СИКН, препятствующих ее применению;
 - четкость надписей и обозначений.
 - 7.2 Поверку продолжают, если:
 - состав СИ и комплектность СИКН соответствуют описанию типа СИКН;
- пломбировка СИ, входящих в состав СИКН, выполнена в соответствии со сведениями в их описаниях типа;
 - отсутствуют механические повреждения СИКН, препятствующие ее применению;
 - надписи и обозначения четкие.

8 Подготовка к поверке и опробование средства измерений

- 8.1 Выполняют следующие подготовительные операции:
- проверяют наличие заземления СИ, работающих под напряжением;
- средства поверки и СИКН устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
- осуществляют соединение и подготовку к проведению измерений средств поверки и
 СИКН в соответствии с требованиями эксплуатационной документации.
- 8.2 Проверяют наличие информации о положительных результатах поверки в ФИФОЕИ и действующих знаков поверки на все средства поверки.
- 8.3 Для средств поверки, аттестованных в качестве эталонов, в ФИФОЕИ проверяют информацию о периодической аттестации.

- 8.4 Собирают и заполняют нефтепродуктом технологическую схему. Оперативным персоналом путем визуального осмотра проверяется отсутствие утечек через фланцевые, резьбовые и уплотнительные соединения элементов технологической схемы СИКН. На элементах технологической схемы СИКН не должно наблюдаться следов нефтепродуктов. При обнаружении следов нефтепродуктов поверку прекращают и принимают меры по устранению утечки.
- 8.5 Проверяют отсутствие сообщений об ошибках и соответствие текущих измеренных СИКН значений температуры, давления, плотности, массового расхода нефтепродуктов данным, отраженным в описании типа СИКН.
- 8.6 Результаты опробования считают положительными, если отсутствуют сообщения об ошибках и текущие измеренные СИКН значения измеряемых параметров находятся внутри диапазонов измерений, отраженных в описании типа СИКН.

9 Проверка программного обеспечения средства измерения

- 9.1 Проверка идентификационных данных программного обеспечения
- 9.2 Проверку идентификационных данных программного обеспечения (далее ПО) СИКН, реализованном в измерительно-вычислительном комплексе (далее ИВК), проводят в следующей последовательности:
- вызвать экранную форму «Основное окно» нажатием одноименной кнопки в верхнем меню экрана панели оператора;
- вызвать экранную форму «Сведения о ПО» с помощью одноименной кнопки, расположенной на экранной форме «Основное меню»;
- на экранной форме «Сведения о ПО» в виде таблицы отображаются идентификационные данные метрологически значимой части ПО ИВК. Метрологически значимая часть ПО представлена набором программных модулей, выполняющих определенные вычислительные операции;
- идентификация каждого модуля производится по идентификационному наименованию номеру версии и цифровому идентификатору.
- 9.3 Результаты проверки идентификационных данных ПО СИКН считают положительными, если идентификационные данные ПО СИКН соответствуют указанным в описании типа СИКН.

10 Определение метрологических характеристик средства измерений

- 10.1 Проверяют наличие сведений о поверке СИ, входящих в состав СИКН. СИ, входящие в состав СИКН, на момент проведения поверки СИКН должны быть поверены в соответствии с действующим порядком проведения поверки СИ на территории РФ. При наличии сведений о поверке СИКН в части отдельных ИК массового расхода сведения о поверке счетчиков-расходомеров массовых (далее СРМ) из их состава не требуются. При наличии действующих сведений о поверке СИКН в части отдельного и/или отдельных ИК массового расхода метрологические характеристики этого и/или этих ИК массового расхода при текущей поверке СИКН не определяются.
 - 10.2 Определение метрологических характеристик ИК массового расхода
- 10.2.1 Последовательно к СРМ подключают ТПУ и подготавливают технологическую схему к гидравлическим испытаниям и проверке на герметичность.
 - 10.2.2 Используют один из двух вариантов подключения СРМ к ТПУ:
- вариант 1: рабочий СРМ подключают последовательно с контрольно-резервным. При этом варианте измерения массы нефтепродуктов, проходящей (прошедшей) через технологическую поверочную схему, рекомендуется проводить, используя контрольно-резервный СРМ;
 - вариант 2: СРМ подключают к ТПУ.
- 10.2.3 Включают в работу поточный преобразователь плотности (далее ПП) из состава СИКН, выполнив соответствующие технологические переключения.

- 10.2.4 Технологические переключения по 10.2.1 10.2.3 проводят с соблюдением требований эксплуатационной документации СИКН.
- 10.2.5 Проверяют закрытое положение (при необходимости закрывают) дренажных и воздушных вентилей (кранов), установленных на технологических трубопроводах СИКН, ТПУ и в блоке измерений показателей качества (далее БИК).
- 10.2.6 Устанавливают любое значение расхода в пределах рабочего диапазона, в технологической схеме поверки создают максимальное рабочее давление, которое может быть при поверке. СИКН считают испытанной на герметичность, если в течение 10 минут после создания давления не наблюдается течи рабочей жидкости через фланцевые соединения, через сальники технологических задвижек (шаровых кранов), дренажных и воздушных вентилей (кранов).
- 10.2.7 Проверяют отсутствие протечек рабочей жидкости через запорные органы задвижек (шаровых кранов), дренажных и воздушных вентилей (кранов) при их закрытом положении. В случае отсутствия возможности проверки герметичности запорных органов задвижек, вентилей (кранов) или при установлении наличия протечек во фланцевые соединения устанавливают металлические заглушки («блины»).
- 10.2.8 Проверяют отсутствие воздуха (газа) в технологической схеме. При любом значении расхода (в рабочем диапазоне) проводят несколько пусков шарового поршня ТПУ. Открывая воздушные вентили, установленные на ТПУ, на верхних точках технологической схемы, в БИК проверяют наличие воздуха (газа), при необходимости воздух (газ) выпускают. Считают, что воздух (газ) в технологической схеме отсутствует, если из вентилей вытекает струя рабочей жидкости без пузырьков воздуха (газа).
- 10.2.9 Контролируют стабилизацию температуры рабочей жидкости в технологической схеме, для чего при любом расходе проводят несколько последовательных пусков шарового поршня ТПУ (контроль проводят посредством СИ температуры, входящих в состав СИКН). Температуру считают стабильной, если за один проход поршня изменение температуры не превышает 0,2 °C.
- 10.2.10 Проводят установку нуля СРМ согласно заводской (фирменной) инструкции по эксплуатации данной модели СРМ.
 - 10.2.11 В ИВК вводят исходные данные:
 - вместимость калиброванного участка ТПУ согласно свидетельству о ее поверке;
 - пределы допускаемой относительной погрешности ТПУ;
 - диаметр и толщина стенок калиброванного участка ТПУ;
- коэффициент линейного расширения и значение модуля упругости материала стенок
 ТПУ;
- пределы допускаемых абсолютных погрешностей датчиков температуры (или термометров), используемых в процессе поверки для измерений температуры рабочей жидкости в ТПУ и поточном ПП;
 - пределы допускаемой относительной погрешности поточного ПП;
- пределы допускаемой относительной погрешности ИВК при вычислении коэффициентов преобразования СРМ;
- коэффициент преобразования СРМ по импульсному выходу, вводимый в память ИВК при конфигурировании сенсора, первичного электронного преобразователя СРМ;
 - стабильность нуля СРМ.
- 10.2.12 Представители сдающей и принимающей сторон определяют способ (в первичном электронном преобразователе (далее ПЭП) СРМ или в ИВК) и вид реализации градуировочной характеристики (далее Γ X) СРМ.
- 10.2.13 Метрологические характеристики СРМ определяют при крайних значениях расхода рабочего диапазона и значениях, установленных с интервалом от 25 до 30 % от максимального расхода рабочего диапазона. Допускается определение метрологических характеристик проводить в трех точках рабочего диапазона: при минимальном (Q_{min}), среднем ($0.5 \cdot (Q_{min} + Q_{max})$) и максимальном (Q_{max}) значениях расхода (T/T). Требуемые значения расхода

устанавливают, начиная от Q_{min} в сторону увеличения или от Q_{max} в сторону уменьшения.

- 10.2.14 Устанавливают требуемый расход Q_i (т/ч), значение которого контролируют по 10.2.15 или 10.2.16 в зависимости от варианта подключения СРМ.
- 10.2.15 Если СРМ подключают по варианту 2, представленному в 10.2.2, то контроль соответствия установленного расхода Q_i, т/ч, требуемому значению проводят по 10.2.15.1 -10.2.15.3.
- 10.2.15.1 После установления расхода запускают поршень, измеряют время прохождения поршня по калиброванному участку ТПУ и вычисляют значение расхода в ј-ой точке расхода $Q_{T\Pi y_i}$, т/ч, по формуле

$$Q_{T\Pi y_j} = \frac{V_0^{T\Pi y} \cdot 3600}{T_i} \cdot \rho_j^{\Pi\Pi} \cdot 10^{-3}, \qquad (1)$$

где $V_0^{\text{ТПУ}}$ – вместимость калиброванного участка ТПУ, согласно свидетельству о поверке ТПУ, M^3 ;

Т_ј – время прохождения поршнем калиброванного участка ТПУ в ј-ой точке расхода, с;

 $\rho_{i}^{\Pi\Pi}$ — плотность рабочей жидкости, измеренная поточным ПП при установлении расхода в ј-ой точке, кг/м3.

10.2.15.2 Проверяют выполнение условия

$$\frac{Q_{j} - Q_{T\Pi Yj}}{Q_{T\Pi Yi}} \cdot 100 \le 2\%. \tag{2}$$

- 10.2.15.3 В случае невыполнения условия (2) корректируют расход, контролируя его значение по 10.2.15.1 - 10.2.15.3.
- 10.2.16 При подключении СРМ по варианту 1, представленному в 10.2.2, требуемое значение поверочного расхода устанавливают, используя результаты измерений контрольнорезервным СРМ. Операции по 10.2.15.1 – 10.2.15.3 не проводят.
- 10.2.17 После стабилизации расхода и температуры рабочей жидкости в ј-ой точке расхода проводят серию измерений, последовательно запуская поршень ТПУ. Количество измерений в каждой j-ой точке расхода (n_j) не менее пяти.
- 10.2.18 Для каждого і-го измерения в каждой ј-ой точке расхода регистрируют (отсчитывают) и записывают в протокол поверки:
 - время прохождения поршнем калиброванного участка ТПУ T_{ij}, c;
 - значение массового расхода Q_{ij}, т/ч;

Примечания

- 1. Расход Q_{ij} измеряют контрольно-резервным СРМ при схеме подключения по варианту 1, представленному в 10.2.2. При схеме подключения по варианту 2, представленному в 10.2.2, расход измеряют поверяемым массомером или вычисляют его значение по формуле (1).
- 2. При реализации ГХ СРМ в ИВК в виде линейно-кусочной аппроксимации рекомендуется дополнительно регистрировать выходную частоту СРМ (Гц).
- одного измерения, - количество импульсов, выдаваемое СРМ за время N_{ii}^{mac} , импульс;
 - значения температуры $\bar{t}_{ij}^{\text{тпу}}$, °С, и давления $\bar{P}_{ij}^{\text{тпу}}$, МПа, в ТПУ;

где

значения параметров (температуры и давления), измеренные соответствующими СИ, установленными на входе и выходе ТПУ.

— значение плотности рабочей жидкости, измеренное поточным ПП $\, \rho_{\,i}^{\,\Pi\Pi} \,$, кг/м³;

— значения температуры $\bar{t}_{ij}^{\Pi\Pi}$, °С, и давления $\bar{P}_{ij}^{\Pi\Pi}$, МПа, рабочей жидкости в поточном ПП.

10.2.19 Определение параметров ГХ СРМ

При любом способе реализации ГХ (в ПЭП или ИВК) проводят операции по 10.2.19.1-10.2.19.3.

10.2.19.1~Для каждого і-го измерения в ј-ой точке расхода вычисляют значение массы рабочей жидкости M_{ii}^{ps} , т, используя результаты измерений ТПУ и поточного ПП, по формуле

$$\mathbf{M}_{ij}^{p_3} = \mathbf{V}_{npij}^{T\Pi Y} \cdot \boldsymbol{\rho}_{npij}^{\Pi \Pi} \cdot 10^{-3}, \tag{4}$$

где $V_{\text{пріј}}^{\text{тпу}}$ — вместимость калиброванного участка ТПУ, приведенная к рабочим условиям (температуре и давлению рабочей жидкости) в ТПУ при і-ом измерении в ј-ой точке расхода, м³, вычисляют по 10.2.19.2;

 $\rho_{\text{пріј}}^{\text{III}}$ — плотность рабочей жидкости, измеренная поточным ПП и приведенная к рабочим условиям в ТПУ при і-ом измерении в ј-ой точке расхода, кг/м³, вычисляют по 10.2.19.3.

10.2.19.2 Значение $V_{npij}^{T\Pi y}$, м³, вычисляют по формуле

$$V_{npij}^{T\Pi Y} = V_0^{T\Pi Y} \cdot \left[1 + 3\alpha_t \cdot (\overline{t}_{ij}^{T\Pi Y} - 20) \right] \cdot \left(1 + \frac{0.95 \cdot D}{E \cdot s} \cdot \overline{P}_{ij}^{T\Pi Y} \right), \tag{5}$$

где α_t – коэффициент линейного расширения материала стенок ТПУ, °С⁻¹ (указан в таблице А.1 приложения А);

 D и s – диаметр и толщина стенок калиброванного участка ТПУ соответственно, мм (из эксплуатационной документации ТПУ);

– модуль упругости материала стенок ТПУ, МПа (указан в таблице А.1 приложения А).

10.2.19.3 Значение ρ_{mpij}^{IIII} , кг/м³, вычисляют по формуле

$$\rho_{mpij}^{\Pi\Pi} = \rho_{ij}^{\Pi\Pi} \cdot \left[1 + \beta_{\pi ij} \cdot \left(t_{ij}^{\Pi\Pi} - \overline{t}_{ij}^{T\PiY} \right) \right] \cdot \left[1 + \gamma_{\pi ij} \cdot \left(\overline{P}_{ij}^{T\PiY} - P_{ij}^{\Pi\Pi} \right) \right], \tag{6}$$

где $\rho_{ij}^{\Pi\Pi}$ — значение плотности рабочей жидкости, измеренное поточным ПП при i-ом измерении в j-ой точке расхода, $\kappa r/m^3$;

 β_{*ij} — коэффициент объемного расширения рабочей жидкости, значение которого определяют по приложению Б, °С-1;

 t_{ij}^{IIII} — значение температуры рабочей жидкости в поточном ПП при і-ом измерении в j-ой точке расхода, °C;

 γ_{**ij} — коэффициент сжимаемости рабочей жидкости, значение которого определяют по приложению Б, МПа⁻¹;

 $P_{ij}^{\Pi\Pi}$ значение давления рабочей жидкости в поточном ПП при i-ом измерении в j-ой точке расхода, МПа.

Примечание – Вычисление значений $V_{npij}^{T\Pi Y}$ и $\rho_{npij}^{\Pi\Pi}$ допускается проводить по приложению В.

10.2.20 Дальнейшую обработку результатов измерений проводят по 10.2.21 или 10.2.22 в зависимости от способа реализации ΓX .

10.2.21 ГХ реализуют в ПЭП.

10.2.21.1~Для каждого і-го измерения в ј-ой точке расхода определяют значение массы рабочей жидкости, измеренное СРМ M_{ii}^{mac} , т , по формуле

$$M_{ij}^{\text{mac}} = \frac{N_{ij}^{\text{mac}}}{KF_{\text{конф}}}, \tag{7}$$

где $KF_{\kappa o H \varphi}$ — коэффициент преобразования СРМ по импульсному выходу, импульс/т; 10.2.21.2 Определяют коэффициент коррекции измерений массы (mass-factor)

(далее – коэффициент коррекции) при і-ом измерении в j-ой точке расхода MF_{ij} по формуле

$$MF_{ij} = \frac{M_{ij}^{po}}{M_{ii}^{mac}} \cdot MF_{\text{диап}}^{ycr}, \qquad (8)$$

где $MF_{\text{диап}}^{\text{уст}}$ — коэффициент коррекции измерений массы, установленный в ПЭП по результатам предыдущей периодической поверки.

Примечание — Для СРМ, оснащенного с ПЭП без функции ввода в его память, значения коэффициента коррекции измерений массы равны единице.

10.2.21.3 Вычисляют среднее арифметическое значение коэффициента коррекции в j-ой точке расхода $\overline{\mathrm{MF}}_{\mathrm{i}}$ по формуле

$$\overline{MF_{j}} = \frac{\sum_{i=1}^{n_{j}} MF_{ij}}{n_{i}},$$
(9)

где n_j — количество измерений в j-ой точке расхода.

10.2.21.4 Оценивают среднее квадратическое отклонение (далее — СКО) результатов определений средних арифметических значений коэффициентов коррекции для точек расхода в рабочем диапазоне $S_{\text{диап}}^{\text{MF}}$, %, по формуле

$$S_{\text{диап}}^{\text{MF}} = \sqrt{\frac{\sum_{i=1}^{\Sigma n_{i}} \left(MF_{ij} - \overline{MF_{j}}\right)^{2}}{\Sigma n_{i} - m}} \cdot \frac{1}{\overline{MF_{i}}} \cdot 100, \qquad (10)$$

где Σn_i – суммарное количество измерений в рабочем диапазоне;

точек разбиения рабочего диапазона.

10.2.21.5 Проверяют выполнение условия

$$S_{\text{пнап}}^{\text{MF}} \le 0,03\%$$
 (11)

10.2.21.6 В случае невыполнения условия (11) в какой-либо точке расхода дальнейшую обработку результатов измерений прекращают, выясняют и устраняют причины, вызвавшие невыполнение условия (11). Повторно проводят операции по 10.2.13 – 10.2.18, 10.2.21.1 – 10.2.21.5.

При выполнении условия (11) проводят дальнейшую обработку результатов измерений.

10.2.21.7 Вычисляют среднее арифметическое значение коэффициента коррекции измерений массы для СРМ в рабочем диапазоне расхода МГ_{лиап} по формуле

$$MF_{_{\text{ДИАП}}} = \frac{\sum_{j=1}^{m} \overline{MF_{j}}}{m}.$$
 (12)

10.2.21.8 Вычисляют новое значение градуировочного коэффициента $K_{_{\rm rp}}$ по формуле

$$K_{rp} = K_{rp}^{\Pi \ni \Pi} \cdot MF_{\mu \alpha \alpha \alpha}, \qquad (13)$$

где $K_{rp}^{\Pi \Im \Pi}$ — градуировочный коэффициент, определенный при предыдущей поверке или заводской калибровке и установленный в ПЭП.

Примечание — Новое значение K_{rp} определяют только для ПЭП, не имеющего функцию ввода коэффициента коррекции $MF_{nвап}$.

10.2.22 ГХ реализуют в ИВК.

10.2.22.1 Вычисляют значение K-фактора для і-го измерения в j-ой точке расхода KF $_{ij}$, импульс/т, по формуле

$$KF_{ij} = \frac{N_{ij}^{\text{mac}}}{M_{ij}^{\text{po}}}.$$
 (14)

10.2.22.2 Вычисляют среднее значение К-фактора для ј-ой точки $\overline{\mathrm{KF}}_{\mathrm{i}}$, импульс/т, по формуле

$$\overline{KF_{j}} = \frac{\sum_{i=1}^{n_{j}} KF_{ij}}{n_{i}}.$$
(15)

- 10.2.22.3 В зависимости от вида реализации ГХ в ИВК оценивают СКО результатов определений средних арифметических значений К-фактора для точек расхода:
- а) в рабочем диапазоне $S_{\text{диап}}^{\text{KF}}$, %, если ГХ реализуют в виде постоянного значения К-фактора в рабочем диапазоне, по формуле

$$S_{\text{диап}}^{\text{KF}} = \sqrt{\frac{\sum_{i=1}^{\Sigma n_{j}} \left(KF_{ij} - \overline{KF_{j}}\right)^{2}}{\Sigma n_{j} - m}} \cdot \frac{1}{\overline{KF_{j}}} \cdot 100; \tag{16}$$

б) в каждом k-ом поддиапазоне расхода S_k^{KF} , %, если ΓX реализуют в виде кусочнолинейной аппроксимации, по формуле

$$S_{k}^{KF} = \sqrt{\frac{\sum_{i=1}^{2} \left(KF_{ij} - \overline{KF_{j}}\right)^{2}}{\left(n_{j} + n_{j+1} - 2\right)_{k}}} \cdot \frac{1}{\overline{KF_{j}}} \cdot 100.$$
 (17)

- необходимости проводят операции по 10.2.21.6. При положительных результатах оценки $S_{\scriptscriptstyle \text{диап}}^{\scriptscriptstyle \text{KF}}$ или S_L проводят дальнейшую обработку результатов измерений.
- 10.2.22.5 Если ГХ СРМ реализуют в виде постоянного значения К-фактора в рабочем диапазоне, то вычисляют среднее значение К-фактора для рабочего диапазона КГдиап, импульс/т, по формуле

$$K_{_{\text{диал}}} = \frac{\sum_{j=1}^{m} \overline{KF_{j}}}{m}.$$
 (18)

- 10.2.23 Случайную и систематическую составляющие погрешности и относительную погрешность определяют по 10.2.25 – 10.2.27 в зависимости от способа и вида реализации ГХ.
- относительную погрешность погрешности И 10.2.24 Составляющие используемого как в качестве контрольного, так и рабочего, определяют при доверительной вероятности P = 0.95.
 - 10.2.25 Определение погрешностей при реализации ГХ СРМ в ПЭП
- 10.2.25.1 При реализации ГХ в ПЭП составляющие погрешности и относительную погрешность определяют для рабочего диапазона.
 - 10.2.25.2 Определение случайной составляющей погрешности

Случайную составляющую погрешности ϵ , %, определяют по формуле $\epsilon = t_{(P,n)} \cdot S_{\text{диап}}^{MF} \,,$

$$\varepsilon = t_{(P,n)} \cdot S_{n\mu\alpha\eta}^{MF}, \tag{19}$$

 $\mathbf{t}_{(\mathtt{P},\mathtt{n})}$ – квантиль распределения Стьюдента (коэффициент, зависящий доверительной вероятности P и количества измерений n ($n = \sum n_j$), значение которого определяют из таблицы Γ .1 приложения Γ);

- значение СКО, определенное по формуле (10).

10.2.25.3 Определение систематической составляющей погрешности Систематическую составляющую погрешности θ_{Σ} , %, определяют по формуле

$$\theta_{\Sigma} = 1, 1 \cdot \sqrt{\left(\delta_{\text{TIIY}}\right)^2 + \left(\delta_{\text{IIII}}\right)^2 + \left(\theta_{\text{t}}\right)^2 + \left(\delta_{\text{K}}^{\text{YOU}}\right)^2 + \left(\theta_{\text{диап}}^{\text{MF}}\right)^2 + \left(\delta_{0}^{\text{mac}}\right)^2} , \tag{20}$$

пределы допускаемой относительной погрешности ТПУ, %;

 $\delta_{\Pi\Pi}$ — пределы допускаемой относительной погрешности поточного ПП (из свидетельства о поверке), %;

составляющая систематической погрешности, дополнительная обусловленная погрешностью измерений температуры, %;

ИВК допускаемой относительной при вычислении К-фактора СРМ (из свидетельства о поверке), %;

- составляющая систематической погрешности, вызванная усреднением (аппроксимацией) коэффициента коррекции (МГдиап) в рабочем диапазоне,

значение относительной погрешности стабильности нуля СРМ, %.

Значение дополнительной составляющей систематической погрешности θ_{+} вычисляют по формуле

 $\theta_{t} = \beta_{\text{mmax}} \cdot \sqrt{(\Delta t_{\text{TIIY}})^2 + (\Delta t_{\text{TIY}})^2} \cdot 100$ (21)

где β_{*max} — максимальное из ряда значений β_{*ij} , определенных по приложению Б, С-1; $\Delta t_{T\Pi y}$, — пределы допускаемых абсолютных погрешностей датчиков температуры (или термометров), используемых в процессе поверки для измерений температуры рабочей жидкости в ТПУ и поточном ПП, соответственно (из действующих свидетельств о поверке), °С.

Составляющую систематической погрешности $\theta_{\text{диап}}^{\text{MF}}$, %, определяют по формуле

$$\theta_{\text{диап}}^{\text{MF}} = \left| \frac{\overline{\text{MF}_{j}} - \text{MF}_{\text{диап}}}{\text{MF}_{\text{диап}}} \right|_{\text{max}} \cdot 100. \tag{22}$$

Относительную погрешность стабильности нуля определяют по формуле

$$\delta_0^{\text{mac}} = \frac{ZS}{Q_{\text{min}} + Q_{\text{max}}} \cdot 100, \qquad (23)$$

значение стабильности нуля, т/ч (из описания типа СРМ). гле

- 1. При проверке СРМ в составе СИКН на месте эксплуатации дополнительной систематической погрешностью СРМ, вызванной изменением давления рабочей жидкости при эксплуатации от значения, имеющего место при поверке, пренебрегают.
- 2. Относительную погрешность стабильности нуля (δ_0^{mac}) определяют только для тех СРМ, для которых δ_0^{mac} является составляющей относительной погрешности СРМ (согласно описанию типа, учитывая тип ПЭП).

10.2.25.4 Определение относительной погрешности

Относительную погрешность СРМ
$$\delta$$
, %, определяют по формуле
$$\delta = \begin{cases} Z_{p} \cdot (\theta_{\Sigma} + \epsilon), \text{ если } 0, 8 \leq \theta_{\Sigma} / S_{\text{диап}}^{\text{MF}} \leq 8, \\ \theta_{\Sigma}, & \text{ если } \theta_{\Sigma} / S_{\text{диап}}^{\text{MF}} > 8; \end{cases}, \tag{24}$$

где Z_P - коэффициент, зависящий от доверительной вероятности P и величины соотношения $\theta_{\scriptscriptstyle \Sigma}$ / $S_{\scriptscriptstyle \rm диап}^{\rm MF}$, значение которого берут из таблицы $\Gamma.2$ приложения $\Gamma.$

10.2.26 Определение погрешностей при реализации ГХ СРМ в ИВК в виде постоянного значения К-фактора (импульс/т)

При таком виде реализации ГХ в ИВК составляющие погрешности и относительную погрешность определяют для рабочего диапазона.

10.2.26.1 Определение случайной составляющей погрешности

Случайную составляющую погрешности є, %, определяют по формуле

$$\varepsilon = t_{(P,n)} \cdot S_{\mu\mu\alpha\Pi}^{KF} , \qquad (25)$$

где $S_{\text{пнап}}^{\text{KF}}$ – значение СКО, определенное по формуле (16).

Примечание — При определении $t_{(P,n)}$ принимают: $n = \sum n_j$.

10.2.26.2 Определение систематической составляющей погрешности Систематическую составляющую погрешности θ_{Σ} , %, определяют по формуле

$$\theta_{\Sigma} = 1, 1 \cdot \sqrt{\left(\delta_{\text{TITY}}\right)^2 + \left(\delta_{\text{IIII}}\right)^2 + \left(\theta_{\text{t}}\right)^2 + \left(\delta_{\text{K}}^{\text{YOU}}\right)^2 + \left(\theta_{\text{диап}}^{\text{KF}}\right)^2 + \left(\delta_{0}^{\text{mac}}\right)^2}, \tag{26}$$

где аппроксимацией ГХ СРМ в рабочем диапазоне расхода, %.

Составляющую систематической погрешности, обусловленной аппроксимацией ГХ СРМ в рабочем диапазоне расхода $\theta_{\text{диап}}^{\text{KF}}$, %, определяют по формуле

$$\theta_{\text{диап}}^{\text{KF}} = \frac{\overline{KF_{j}} - KF_{\text{диап}}}{KF_{\text{диап}}} \cdot 100. \tag{27}$$

10.2.26.3 Определение относительной погрешности

Относительную погрешность СРМ δ, %, определяют по формуле

$$\delta = \begin{cases} Z_{(P)} \cdot (\theta_{\Sigma} + \epsilon), \text{ если } 0, 8 \leq \theta_{\Sigma} / S_{\text{диал}}^{KF} \leq 8, \\ \theta_{\Sigma}, & \text{ если } \theta_{\Sigma} / S_{\text{диал}}^{KF} > 8 \end{cases}, \tag{28}$$
 где $Z_{(P)}$ — коэффициент, зависящий от доверительной вероятности P и величины

соотношения $\theta_{\scriptscriptstyle \Sigma}$ / $S_{\scriptscriptstyle {\scriptscriptstyle \text{диап}}}^{\scriptscriptstyle {\scriptscriptstyle KF}}$, значение которого берут из таблицы $\Gamma.2$ приложения $\Gamma.$

10.2.27 Определение погрешностей при реализации ГХ СРМ в ИВК в виде кусочнолинейной аппроксимации

При таком виде реализации ГХ составляющие погрешности и относительную погрешность определяют для каждого к-го поддиапазона расхода.

10.2.27.1 Определение случайной составляющей погрешности

Случайную составляющую погрешности СРМ ϵ_k , %, определяют по формуле

$$\varepsilon_{k} = t_{(P,n)} \cdot S_{k}^{KF}, \tag{29}$$

S^{KF} – значение СКО, определенное по формуле (17).

Примечание — При определении $t_{(P,n)}$ принимают: $n = (n_j + n_{j+1})_k$.

10.2.27.2 Определение систематической составляющей погрешности Систематическую составляющую погрешности θ_{Σ_k} , %, определяют по формуле

$$\theta_{\Sigma k} = 1, 1 \cdot \sqrt{\left(\delta_{T\Pi Y}\right)^2 + \left(\delta_{\Pi\Pi}\right)^2 + \left(\theta_t\right)^2 + \left(\delta_K^{YOM}\right)^2 + \left(\theta_k^{KF}\right)^2 + \left(\delta_{0 k}^{mac}\right)^2} , \tag{30}$$

– составляющая систематической обусловленная аппроксимацией ГХ СРМ в k-ом поддиапазоне расхода, %; $\delta_{0\,\mathrm{k}}^{\mathrm{mac}}$ — относительная погрешность стабильности нуля в k-ом поддиапазоне, %.

Составляющую систематической погрешности, обусловленную аппроксимацией ГХ СРМ в k-м поддиапазоне расхода θ_k^{KF} , %, определяют по формуле

$$\theta_{k}^{KF} = \frac{1}{2} \cdot \left| \frac{\overline{KF}_{j} - \overline{KF}_{j+1}}{\overline{KF}_{j} + \overline{KF}_{j+1}} \right|_{(k)} \cdot 100. \tag{31}$$

Относительную погрешность стабильности нуля $\delta_{0\,k}^{\scriptscriptstyle mac}$, %, определяют по формуле

$$\delta_{0k}^{\text{mac}} = \frac{ZS}{Q_{\text{kmin}} + Q_{\text{kmax}}} \cdot 100, \qquad (32)$$

где Q_{kmin} , — минимальное и максимальное значения расхода в k-ом поддиапазоне (в Q_{kmax} начале и в конце k-го поддиапазона) соответственно, т/ч.

10.2.27.3 Определение относительной погрешности

Относительную погрешность СРМ δ_k , %, определяют по формуле

$$\delta_{k} = \begin{cases} Z_{(P)} \cdot (\theta_{\Sigma k} + \varepsilon_{k}), \text{ если } 0, 8 \le \theta_{\Sigma k} / S_{k}^{KF} \le 8, \\ \theta_{\Sigma k}, & \text{ если } \theta_{\Sigma k} / S_{nk}^{KF} > 8; \end{cases}$$
(33)

10.2.28 Оценивание относительных погрешностей

10.2.28.1 Оценивают значения относительных погрешностей, определенных по 10.2.25.4 (или 10.2.26.3, или 10.2.27.3) — в зависимости от способа и вида реализации ГХ, для чего проверяют выполнение условий:

- для СРМ, используемого в качестве контрольного

$$(|\delta|, |\delta_k|) \le \pm 0.20 \%; \tag{34}$$

- для СРМ, используемого в качестве рабочего

$$(|\delta|, |\delta_k|) \le \pm 0.25 \%. \tag{35}$$

10.2.28.2 Если для СРМ, применяемого (эксплуатируемого) в качестве контрольного, не выполняется условие (34) и для СРМ, эксплуатируемого в режиме рабочего, не выполняется условие (35) — в зависимости от вида реализации ГХ, то выясняют причины, устраняют их и проводят повторные операции.

10.2.28.3 При невыполнении одного из условий по 10.2.28.1 рекомендуется:

- увеличить количество измерений в точках расхода;
- уменьшить рабочий диапазон, если ГХ СРМ реализуется в ПЭП в виде постоянного значения градуировочного коэффициента (K_{rp}) или коэффициента коррекции (meter-factor $MF_{диап}$), или в ИВК в виде постоянного значения K-фактора в рабочем диапазоне ($KF_{диап}$, импульс/т);
- увеличить количество точек разбиения рабочего диапазона (уменьшить поддиапазон расхода), если ΓX СРМ реализуется в ИВК в виде кусочно-линейной аппроксимации значений $\overline{\mathrm{KF}}_{\mathrm{i}}$ (импульс/т).
- 10.2.29 Операции по 10.2 проводят в автоматизированном режиме по алгоритмам в соответствии с МИ 3151–2008, реализованным в комплексе измерительно-вычислительном ТН-01.
- 10.2.30 Результаты измерений заносят в протокол. Допускается использовать форму протокола, приведенную в приложении А МИ 3151–2008.
- 10.2.31 Относительная погрешность измерений массового расхода нефтепродуктов с применением ИК массового расхода принимается равной относительной погрешности СРМ, входящего в состав соответствующего ИК массового расхода.
 - 10.3 Определение относительной погрешности измерений массы нефтепродуктов
- 10.3.1 Относительная погрешность при измерении массы нефтепродуктов при прямом методе динамических измерений принимается равной относительной погрешности ИК массового расхода, входящих в состав СИКН.

11 Подтверждение соответствия средства измерений метрологическим требованиям

СИКН соответствует метрологическим требованиям, установленным при утверждении типа, результаты поверки СИКН считают положительными, если:

- СИ, входящие в состав СИКН, поверены в соответствии с действующим порядком проведения поверки СИ на территории РФ и имеют положительные результаты поверки;
- диапазон измерений массового расхода не выходит за пределы диапазона измерений, установленного при утверждении типа СИКН;
 - при определении метрологических характеристик ИК массового расхода

относительная погрешность ИК массового расхода не выходит за пределы $\pm 0,25\,\%$ для рабочих измерительных линий и $\pm 0,2\,\%$ для контрольно-резервной измерительной линии;

- относительная погрешность СИКН при измерении массы нефтепродуктов не выходит за пределы ± 0.25 %.

12 Оформление результатов поверки средства измерений

- 12.1 Оформление результатов поверки СИКН
- 12.1.1 Результаты поверки СИКН оформляют протоколом поверки произвольной формы с указанием даты проведения поверки, условий проведения поверки, применяемых средств поверки, заключения по результатам поверки.
- 12.1.2 Аккредитованным на поверку лицом, проводившим поверку СИКН, в ФИФОЕИ передаются сведения о результатах поверки.
- 12.1.3 При положительных результатах поверки, по письменному заявлению владельца или лица, представившего СИКН на поверку, аккредитованное на поверку лицо, проводившее поверку, оформляет свидетельство о поверке СИКН в соответствии с действующим порядком проведения поверки СИ на территории РФ.
- 12.1.4 К свидетельству о поверке прикладывают перечень ИК массового расхода с указанием заводских номеров СИ, входящих в состав ИК массового расхода, перечень СИ, входящих в состав СИКН и протокол поверки СИКН.

Примечание — При определении метрологических характеристик ИК массового расхода нефтепродукта, аккредитованное на поверку лицо, проводившее поверку, наносит знак поверки на СРМ, входящий в состав ИК массового расхода, в соответствии с описанием типа СИКН.

- 12.1.5 Знак поверки наносится на свидетельство о поверке СИКН.
- 12.1.6 При отрицательных результатах поверки СИКН к эксплуатации не допускают. По письменному заявлению владельца или лица, представившего СИКН на поверку, аккредитованное на поверку лицо, проводившее поверку, оформляет извещение о непригодности в соответствии с действующим порядком проведения поверки СИ на территории РФ.
- 12.2 Оформление результатов поверки СИКН в части отдельного ИК массового расхода
- 12.2.1 Результаты поверки СИКН в части отдельного ИК массового расхода оформляют протоколом поверки произвольной формы с указанием даты проведения поверки, условий проведения поверки, применяемых средств поверки, заключения по результатам поверки.
- 12.2.2 Аккредитованным на поверку лицом, проводившим поверку СИКН в части отдельного ИК массового расхода, в ФИФОЕИ передаются сведения о результатах поверки.
- 12.2.3 При положительных результатах поверки, по письменному заявлению владельца или лица, представившего СИКН в части отдельного ИК массового расхода на поверку, аккредитованное на поверку лицо, проводившее поверку, оформляет свидетельство о поверке СИКН в части отдельного ИК массового расхода в соответствии с действующим порядком проведения поверки СИ на территории РФ. Срок действия свидетельства о поверке СИКН в части отдельного ИК массового расхода определяется интервалом между поверками СИКН.
- 12.2.4 Знак поверки наносится на свидетельство о поверке СИКН в части отдельного ИК массового расхода и на СРМ, входящий в состав отдельного ИК массового расхода, в соответствии с описанием типа СИКН.

приложение а

(справочное)

Коэффициенты линейного расширения (α_t) и значения модуля упругости (E) материала стенок ТПУ

А.1 Коэффициенты линейного расширения и значения модуля упругости материала стенок ТПУ определяют из таблицы А.1.

Таблица А.1 – Коэффициенты линейного расширения и значения модуля упругости материала стенок ТПУ

Материал стенок ТПУ	α _t , °C ⁻¹	Е, МПа
Сталь углеродистая	11,2·10 ⁻⁶	2,1·10 ⁵
Сталь легированная	11,0·10 ⁻⁶	2,0.105
Сталь нержавеющая	16,6·10 ⁻⁶	1,0·10 ⁵
Латунь	17,8·10 ⁻⁶	_
Алюминий	24,5·10 ⁻⁶	
Медь	17,4·10 ⁻⁶	_

Примечание – Если значения α_t и Е приведены в паспорте ТПУ, то в расчетах используют паспортные значения.

приложение Б

(справочное)

Определение коэффициентов объемного расширения и сжимаемости рабочей жидкости

- Б.1 Коэффициенты объемного расширения (β_* , °C-1) и сжимаемости (γ_* , МПа-1) определяют по реализованным в ИВК алгоритмам, разработанным согласно МИ 2823. В этом случае значения коэффициентов определяют при каждом измерении (β_* и γ_*).
- Б.2 При отсутствии алгоритмов согласно Б.1 коэффициенты объемного расширения (β_{*} , °C-1) и сжимаемости (γ_{*} , МПа-1) определяют по таблицам МИ 2823.

приложение в

(рекомендуемое)

Вычисление значений $V_{npij}^{T\Pi y}$ и $\rho_{npij}^{\Pi\Pi}$ при использовании ИВК

В.1 Значение $V_{\rm npij}^{\rm TITY}$ вычисляют по формуле

$$V_{npij}^{TTTY} = V_0^{TTTY} \cdot k_{ij}^t \cdot k_{ij}^P, \qquad (B.1)$$

 k_{ij}^t — коэффициент, учитывающий влияние температуры рабочей жидкости на вместимость ТПУ, значение которого вычисляют по формуле $k_{ij}^t = 1 + 3\alpha_t \cdot (\bar{t}_{ij}^{\text{TITIV}} - 10) \,, \tag{B.1-1}$

$$k_{ii}^{t} = 1 + 3\alpha_{t} \cdot (\bar{t}_{ij}^{TTTIV} - 10),$$
 (B.1-1)

 ${\bf k}_{ij}^{\rm P}$ — коэффициент, учитывающий влияние давления рабочей жидкости на вместимость ТПУ, значение которого вычисляют по формуле

$$k_{ij}^{P} = 1 + \frac{0.95 \cdot D}{E \cdot s} \cdot \overline{P}_{ij}^{TTTY}$$
 (B.1-2)

B.2 Значение $\rho_{\mathfrak{mp}\,ij}^{\text{IIII}}$ вычисляют по формуле

$$\rho_{np\,ij}^{\Pi\Pi} = \rho_{ij}^{\Pi\Pi} \cdot k_{ij}^{\Delta t} \cdot k_{ij}^{\Delta P}, \qquad (B.2)$$

где $k_{ij}^{\Delta t}$ — коэффициент, учитывающий разность температуры рабочей жидкости в поточном ПП и ТПУ при і-м измерении в ј-й точке расхода, значение которого вычисляют по формуле

$$k_{ij}^{\Delta t} = 1 + \beta_{xij} \cdot (t_{ij}^{\Pi\Pi} t_{ij}^{\Pi\PiV}), \qquad (B.2-1)$$

 $k_{ii}^{\Delta P}$ — коэффициент, учитывающий разность давления рабочей жидкости в поточном ПП и ТПУ при і-м измерении в ј-й точке расхода, значение которого вычисляют по формуле

$$k_{ij}^{\Delta P} = 1 + \gamma_{*ij} \cdot \left(\overline{P}_{ij}^{T\Pi Y} - P_{ij}^{\Pi\Pi}\right). \tag{B.2-2}$$

приложение г

(справочное)

Определение значений квантиля распределения Стьюдента $t_{(P,\,n)}$ и коэффициента $Z_{(P)}$

 Γ .1 Значение квантиля распределения Стьюдента при доверительной вероятности P=0.95 в зависимости от количества измерений п определяют из таблицы Γ .1.

Таблица $\Gamma.1$ – Значения квантиля распределения Стьюдента ($t_{(P, n)}$) при P=0.95

I WOULL	щигог	Olla 101	TILLI ICDU	TITLE P	parinpegantini e i biogenita ((i, ii)) ii pii i							
n-1	5	6	7	8	9	10	11	12	13	14	15	16
t _(P, n)	2,571	2,447	2,365	2,306	2,262	2,228	2,203	2,179	2,162	2,145	2,132	2,120

Продолжение таблины Г.1

n-1	17	18	19	20
t _(P, n)	2,110	2,101	2,093	2,086

Г.2 Значение коэффициента $Z_{(P)}$ при P=0,95 в зависимости от величины соотношения θ_{Σ}/S определяют из таблицы Г.2 ($\theta_{\Sigma}/S \Rightarrow \theta_{\Sigma}/S_{\text{диап}}^{\text{KF}}$ или $\theta_{\Sigma}/S_{\text{диап}}^{\text{MF}}$, или $\theta_{\Sigma k}/S_{k}^{\text{KF}}$).

Таблица $\Gamma.2$ – Значения коэффициента $Z_{(P)}$ при P=0.95

θ_{Σ}/S	0,5	0,75	i	2	3	4	5	6	7	8
$Z_{(P)}$	0,81	0,77	0,74	0,71	0,73	0,76	0,78	0,79	0,80	0,81