СОГЛАСОВАНО

Главный метролог

ФБУ «Нижегородский ЦСМ»

Т.Б. Змачинская

М.П.

«3/» 246aps 2022 г.

Государственная система обеспечения единства измерений

Микротвердомеры Виккерса Восток-7 Методика поверки

МП 1600-16-22

1 Общие положения

- 1.1 Настоящая методика поверки (далее методика) распространяется на микротвердомеры Виккерса Восток-7 моделей ПМТ-3, ПМТ-3М согласно эксплуатационной документации [1] и устанавливает методы и средства их поверки.
- 1.2 В результате поверки должны быть подтверждены следующие метрологические требования, приведенные в таблице 1 и 2.

Таблица 1

Обозначение шкалы твёрдости	Интервалы измерений твёрдости HV							
	св. 50 до 200 включ.	св. 200 до 350 включ.	св. 350 до 550 включ.	св. 550 до 850 включ.	св. 850 до 1500			
	Пределы допускаемой абсолютной погрешности микротвердомера, HV, (±)							
HV0,01	20,0	35,0	_	-	_			
HV0,025	20,0	35,0	_	_	_			
HV0,05	20,0	35,0	65	_	_			
HV0,1	15,0	35.0	60.0	100,0				
HV0,2	15,0	30,0	60,0	100,0	110,0			
HV0,3	15,0	25,0	45,0	90,0	110,0			
HV0,5	10,0	20,0	35,0	70,0	120,0			
HV1	8,0	15,0	25,0	50,0	75,0			

Таблица 2

Номинальные значения испытательных	Пределы допускаемой относительная				
нагрузок, Н (кгс)	погрешности испытательных нагрузок, %				
0,098 (0,010)	±1,5				
0,245 (0,025)	±1,5				
0,490 (0,050)	±1,5				
0,981 (0,100)	±1,5				
1,961 (0,200)	±1,0				
2,942 (0,300)	±1,0				
4,903 (0,500)	±1,0				
9,807 (1,000)	±1,0				
Диапазон измерений длины диагоналей	Предел абсолютной погрешности измерения				
отпечатков (d), мм	длины диагоналей отпечатков (d), мм, не более				
0,02≤d≤0,040	0,0004				
0,040 <d≤0,200< td=""><td colspan="4">0,01·d</td></d≤0,200<>	0,01·d				

- 1.3 Прослеживаемость при поверке микротвердомеров обеспечивается применением эталонов единиц величин и (или) средств измерений, применяемых в качестве эталонов единиц величин согласно Положению об эталонах [2] по государственным поверочным схемам [3]-[5] устанавливающая порядок передачи единиц или шкал величин от государственных первичных эталонов единиц (шкал) величин [6]-[8] к поверяемому микротвердомеру.
 - 1.4 В методике поверки реализуются методы прямых измерений.
 - 1.5 Интервал между поверкам 1 раз в год.

2 Перечень операций поверки средства измерений

2.1 Перечень операций поверки, распространяющихся на все виды твердомеров, приведен в таблице 3

Таблица 3 – операции поверки для всех видов твердомеров

Наименование операции	Номер пункта методики поверки	Необходимость выполнения операции при		
поверки		первичной поверке	периодической поверке	
Внешний осмотр средства измерений	7	Да	Да	
Подготовка к поверке и опробование средства измерений	8	Да	Да	
Проверка программного обеспечения	9	Да	Да	
Проверка метрологических характеристик средства измерений и подтверждение соответствия твердомера метрологическим требованиям.	10	Да	Да	
Проверка абсолютной погрешности твердомера по шкалам Виккерса	10.1	Да	Да	
Проверка относительной погрешности испытательных нагрузок	10.2	Да	Да	
Проверка абсолютной погрешности оптической системы	10.3	Да	Да	
Оформление результатов поверки	11	Да	Да	

- 2.2 Поверка микротвердомера осуществляется аккредитоваными в установленном порядке юридическими лицами и индивидуальными предпринимателями
- 2.3 Допускается проведение поверки по отдельным шкалам и диапазонам измерений твердости, которые используются при эксплуатации. Соответствующая запись должна быть сделана в эксплуатационных документах и свидетельстве о поверке на основании решения эксплуатирующей организации.
- 2.4 Микротвердомеры должны поверяться на месте эксплуатации. Допускается проведение первичной поверки на месте изготовления его изготовления, при условии проведения внеочередной поверки в объеме периодической на месте его эксплуатации.

3 Требования к условиям проведения поверки

При проведении поверки:

- температура окружающего воздуха должна быть в пределах плюс (20±5) °С;
- относительная влажность воздуха должна быть в пределах от 30 % до 80 %.

4 Требования к специалистам, осуществляющим поверку

- поверку выполняет один специалист, соответствующий требованиям 41 и 42 Критериев аккредитации [9].

5 Метрологические и технические требования к средствам поверки

5.1 Метрологические и технические требования к средствам поверки приведены в таблице 2

Таблица 4 – Метрологические и технические требования к средствам поверки

таблица ч — Мстрологич	еские и технические треоова	ния к средствам поверки
Операции поверки,	Метрологические и	Перечень рекомендуемых средств
требующие применение	технические требования к	поверки
средств поверки	средствам поверки	
п.8.1 Контроль внешних	Измерение температуры	Термогигрометр электронный
условий при подготовке к	окружающей среды в	CENTER 315, per. № 22129-04
поверке	диапазоне измерений от 10	
	до 60 °C, с погрешностью	
	не более 1 °C	
	Измерение относительной	
	влажности воздуха в	
	диапазоне от 10 до 99 %, с	
	погрешностью не более 3 %	
п.10.1 Проверка абсолютной	Рабочие эталоны не ниже 2	Меры микротвердости эталонные
погрешности твердомера по	разряда по ГОСТ 8.063-	Виккерса ММТВ-МЕТ,
шкалам Виккерса	2012, со значениями	per № 65701-16
	микротвердости (
	200±50) HV; (450±75) HV;	
	(800±50) HV	
п. 10.2 Проверка	Рабочие эталоны не ниже 2	Динамометры электронные DK-C,
относительной погрешности	разряда в соответствии с	per. № 38379-08
испытательных нагрузок	приказом Росстандарта №	
	2498 от 22.10.2019.	
	Пределы допускаемой	4
*	относительной	
	погрешности ±0,24 %	
п.10.3 Проверка абсолютной	Средства измерений для	Объект-микрометр ОМ-О (рег. №
погрешности оптической	определения увеличения	28962-16)
системы	линейного поля	
	микроскопов в диапазоне	
	измерений от 0 до 1 мм, с	
	абсолютной погрешностью	
	± 0,1 мкм	

- 5.2 Допускается применение других средств поверки, обеспечивающих передачу единиц или шкал величин поверяемому средству измерений с точностью, предусмотренную государственными поверочными схемами.
- 5.3 Средства поверки должны иметь действующее свидетельство о поверке, эталоны-действующие свидетельства об аттестации.

6 Требования (условия) по обеспечению безопасности проведения поверки

- нормативно-правовые акты, требования по обеспечению безопасности и условий проведения поверки твердомеров с целью сохранения жизни и здоровья поверителей, не предусмотрены.
- при проведении поверки следует соблюдать требования безопасности, предусмотренные эксплуатационной документацией на средства поверки, предусмотренные таблицей 4.

7 Внешний осмотр средства измерений

- 7.1 При внешнем осмотре средства измерений проверяют на соответствие внешнего вида поверяемого твердомера сведениям из описания типа средства измерений.
- 7.2 Проверка требований по защите твердомера от несанкционированного вмешательства не предусмотрена в виду ее отсутствия в описании типа средства измерений.
- 7.3 При внешнем осмотре проверяется отсутствие коррозии и механических повреждений на поверхностях микротвердомера.
- 7.4 Микротвердомер, не удовлетворяющий критериям внешнего осмотра, признается не годным, поверка дальше не проводится.

8 Подготовка к поверке и опробование средства измерений

- 8.1 Перед началом проведения поверки, убедиться что внешние условия соответствуют требованиям раздела 3 методики поверки.
- 8.2 Микротвердомеры должны быть установлены таким образом, чтобы отсутствовали видимые на глаз колебания показаний измерительной системы твердомера.
- 8.3 При проведении опробования вращают маховик подъемного винта он должен опускаться и подниматься плавно, без рывков и заеданий.

9 Проверка программного обеспечения

- 9.1 Проверка программного обеспечения (далее ПО) твердомеров проводится при помощи компьютера (далее ПК), подключенного к твердомеру:
- при подключении компьютера к твердомеру, на рабочем столе ПК появится ярлык ПО твердомера.
 - открыть ярлык однократным нажатием правой кнопки мыши
- в появившемся контекстном меню ПО выбрать строчку «Свойства», после чего появится информационное окно, где отображена информация о наименовании ПО и номере версии.
- 9.2 Результаты проверки считаются положительными, если отображенные данные на ПК соответствуют требованиям таблицы 5

Таблица 5 – Идентификационные данные программного обеспечения твердомеров

Идентификационные данные (признаки)	Значение
Идентификационное наименование	Vt-Po
Номер версии (идентификационный номер ПО)	не ниже 2.0
Цифровой идентификатор ПО	-

10 Проверка метрологических характеристик средства измерений и подтверждение соответствия твердомера метрологическим требованиям.

- 10.1 Проверка абсолютной погрешности твердомера по шкалам Виккерса.
- 10.1.1 При поверке твердомеров применяются меры твердости, согласно таблице 6.

Обозначение шкалы твёрдости	Значения твердости для мер, обеспечивающих проверку метрологических характеристик, HV		
HV0,01	(200±50)		
HV0,025			
HV0,05	(200±50), (450±75)		
HV0,1	(200±50), (450±75), (800±50)		
HV0,2			
HV0,3			
HV0,5			
HV1			

Таблина 7

Обозначение шкалы твёрдости	Интервалы измерений твёрдости HV							
	св. 50 до 200 включ.	св. 200 до 350 включ.	св. 350 до 550 включ.	св. 550 до 850 включ.	св. 850			
	Пределы допускаемой абсолютной погрешности микротвердомера. HV. (±)							
HV0,01	20,0	35,0	_	_	-			
HV0,025	20,0	35,0	-	-	-			
HV0,05	20,0	35,0	65	_				
HV0.1	15,0	35,0	60,0	100,0				
HV0,2	15,0	30,0	60,0	100,0	110.0			
HV0,3	15,0	25,0	45,0	90,0	110,0			
HV0.5	10,0	20,0	35,0	70,0	120,0			
HV1	8.0	15.0	25.0	50.0	75.0			

10.1.2 Выбранную эталонную меру устанавливают на рабочий стол твердомера и наносят один или два отпечатка для плотного прилегания к столу. Затем наносят пять отпечатков по всей рабочей поверхности меры и измеряют твердость. Далее снимают результаты измерений твердости и определяют погрешность твердомера по формуле (1)

10.1.3 Абсолютную погрешность твердомера рассчитывается по формуле 1

$$\Delta = H_{cp} - H_o (1)$$

где H_{ср} – среднее арифметическое результатов пяти измерений, HV;

H₀ – число твердости, приписанное мере, HV.

- 10.1.4 Значение абсолютной погрешности, полученное по формуле (1) не должно выходить за границы, установленные таблицей 7.
- 10.1.5 Допускается применение не всех мер твердости, приведенных в таблице 6 (обязательным является применение хотя бы двух мер) - в этом случае необходимо провести проверку относительной погрешности по усилию для всех нагрузок, воспроизводимых микротвердомером.
 - 10.2 Проверка относительной погрешности испытательных нагрузок
- 10.2.1 Проверка относительной погрешности по нагрузкам проводится с применением динамометров на сжатие. Динамометр устанавливается на рабочий стол твердомера. Далее на динамометр устанавливается мера твердости Виккерса (любая) и проводится нагружение динамометра совместно с мерой. Перед нагружением динамометр вместе с установленной на него мерой устанавливается на нуль. Нагружение проводят не менее трех раз. Относительная погрешность по нагрузке определяется по формуле 2.

$$\Delta_{\rm o}F = \frac{F_{\rm o} - F_{\rm cp}}{F_{\rm o}} \cdot 100$$
 (2)

где F_{cp} – среднее арифметическое результатов измерения силы динамометром, H;

 $F_{\rm o}$ — измеряемое значение силы, H, при необходимости рассчитываемое как: $F_{\rm o}=9,\!80665\cdot F_{\rm okrc},$ где $F_{\rm okrc}$ — измеряемая нагрузка, кгс.

- 10.2.2 Значение относительной погрешности $\Delta_0 F$, рассчитанное по формуле (2), не должно превышать $\pm 1,5$ % для нагрузок от 0,010 кгс до 0,1 кгс включительно и $\pm 1,0$ % для нагрузок свыше 0,1 кгс.
 - 10.3 Проверка предела абсолютной погрешности измерения длин диагоналей отпечатков
- 10.3.1 Проверку результатов измерений оптической системы проводят при помощи объект-микрометра ОМ-О (далее ОМ-О), установленного на рабочую часть твердомера, таким

образом, чтобы деление шкалы ОМ-О оказались между вертикальными штрихами оптической системы.

10.3.2 Полученные результаты измерений оптической системы, для длин диагоналей менее 0,040 мм включ. и длин диагоналей более 0,200 мм рассчитывается по формуле 3

 $A_I = I - I_0$ (3)

где I – интервал между делениями шкалы OM по показаниям твердомера

I₀ – номинальное значение интервала шкалы ОМ-О.

10.3.3 Расчет погрешности оптической системы, для длин диагоналей более 0,040 мм и менее 0,200 включ. проводится по формуле 4.

 $A_I = 100\% \cdot (I - I_0)/I_0$ (4)

10.3.4 Значение предела абсолютной погрешности, рассчитанное по формулам (3) и (4) и не должно выходить за границы значений, установленные таблицей 8.

Таблица 8

A GOTTING O						
Диапазон изг	мерений	длины	Предел	абсолютной	погрешности	измерения
диагоналей отпечатков (d), мм			длины д	иагоналей отп	ечатков (d), мм,	не более
0,02≤d≤0,040			0	,0004		
0,040 <d≤0,200< td=""><td colspan="3">0,01·d</td></d≤0,200<>		0,01·d				

11 Оформление результатов поверки

- 11.1 При поверке ведется протокол, форма которого устанавливается организацией, проводящей поверку.
- 11.2 Сведения о результатах поверки в целях ее подтверждения должны быть переданы в Федеральный информационный фонд по обеспечению единства измерений согласно пункту 21 Порядка поверки [10].
- 11.3 При подтверждении средства измерений установленным метрологическим требованиям (положительный результат поверки) оформляется свидетельство о поверке согласно Требованиям к свидетельству [11]. На свидетельство наносится знак поверки согласно Требованиям к знаку поверки [12].
- 11.4 Если по результатам поверки соответствие метрологическим требованиям не подтверждается (отрицательный результат поверки), оформляется извещение о непригодности согласно пункту 26 Порядка поверки [10].

Руководитель сектора отдела промышленной метрологии ФБУ «Нижегородский ЦСМ»

Инженер 2 кат. по испытаниям ФБУ «Нижегородский ЦСМ»

К.К. Савровский

М.С. Баранов

Нормативные ссылки

- [1] ПМ-РЭ Твердомеры Виккерса Восток-7. Руководство по эксплуатации
- [2] Положение об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений. Утверждены Постановлением Правительства РФ № 734 от 23.09.2010 (в ред. № 1355 от 21.10.2019)
- [3] ГОСТ 8.063–2012 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений твердости металлов и сплавов по шкалам Виккерса
- [4] Государственная поверочная схема для средств измерений длины в диапазоне от $1 \cdot 10^{-9}$ до 100 м и длин волн в диапазоне от 0,2 до 50 мкм (в тексте ГПС длины)
- [5] Государственная поверочная схема для средств измерений силы. Утверждена приказом Росстандарта № 2498 от 22.10.2019 (в тексте ГПС силы)
- [6] ГЭТ31-2010 Государственный первичный специальный эталон твердости металлов по шкалам Виккерса;
 - [7] ГЭТ32-2011 Государственный первичный эталон единицы силы;
 - [8] ГЭТ2-2021 Государственный первичный эталон единицы длины
- [9] Критерии аккредитации и перечень документов, подтверждающих соответствие заявителя, аккредитованного лица критериям аккредитации. Утверждены приказом Минэкономразвития № 707 от 26.10.2020 (в тексте Критерии аккредитации)
- [10] Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке. Утверждён приказом Минпромторга России № 2510 от 31.07.2020. Приложение № 1 (Зарегистрирован в Минюсте России 20.11.2020 № 61033) (в тексте Порядок поверки)
- [11] Требования к содержанию свидетельства о поверке. Утверждены приказом Минпромторга России № 2510 от 31.07.2020. Приложение № 3 (Зарегистрирован в Минюсте России 20.11.2020 № 61033) (в тексте Требования к свидетельству)
- [12] Требования к знаку поверки. Утверждены приказом Минпромторга России № 2510 от 31.07.2020. Приложение № 2 (Зарегистрирован в Минюсте России 20.11.2020 № 61033) (в тексте Требования к знаку поверки)