

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы»

119361, г. Москва, ул. Озерная, 46

Тел.: (495) 437 55 77 E-mail: Office@vniims.ru Факс: (495) 437 56 66 www.vniims.ru

СОГЛАСОВАНО Заместитель директора ФГУП «ВНИИМС» по производственной метрологии

А.Е. Коломин

12 " рогра 2021 г.

М. П.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ КОНТРОЛЛЕРЫ МНОГОФУНКЦИОНАЛЬНЫЕ МИР КТ-51М МЕТОДИКА ПОВЕРКИ МП 206.1-129-2021

1 ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика поверки распространяется на контроллеры многофункциональные МИР КТ-51М (далее - контроллеры).

Поверка осуществляется в соответствии с действующим законодательством Российской Федерации в области обеспечения единства измерений.

При выпуске из производства и периодической поверке производится поверка каждого контроллера в полном составе.

По требованию заказчика допускается проводить поверку в сокращенном объеме, с обязательным указанием информации об объеме проведенной поверки.

При отрицательных результатах любой операции поверки, поверка прекращается, информация об отрицательных результатах поверки передается в Федеральный информационный фонд по обеспечению единства измерений, а изделие направляется в ремонт.

Настоящая методика поверки обеспечивает прослеживаемость к ГЭТ 182-2010, ГЭТ 1-2018, ГЭТ 4-91.

Реализацию методики поверки обеспечивает прямой метод измерений.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

Таблица 1 – Перечень операций поверки средства измерений

Наименование операции	Пункт ме- тодики	Обязательность операции		
		При выпуске из	При эксплуатации и	
		производства	после хранения	
Внешний осмотр средства измерений	7	да	да	
Подготовка к поверке и опробо-	8	πo	по	
вание средства измерений	0	да	да	
Проверка программного обеспе-	9	да	да	
чения средства измерений	9			
Определение основной абсолют-		да		
ной погрешности суточного хода	10.1		да	
часов контроллера				
Определение приведенной по-		да	да	
грешности измерения постоян-	10.2			
ного тока				
Определение абсолютной по-	10.3	да	да	
грешности счета импульсов	10.5			
Подтверждение соответствия				
средства измерений метрологиче-	11	да	да	
ским требованиям				

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

Испытания проводят при следующих значениях влияющих факторов:

- температура окружающего воздуха, °С

20±5:

- относительная влажность, %

не более 80;

- атмосферное давление, кПа

от 84 до 106.7;

- напряжение питания УСПД, В

от 3,0 до 3,8

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К проведению поверки систем допускаются лица со средним или высшим техническим образованием, ознакомленные с руководством по эксплуатации и документацией по поверке, аттестованными в качестве поверителей в установленном порядке.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

Таблица 2 - Средства поверки

Номер пункта методики	Наименование и тип основного средства поверки; метрологические и основные технические характеристики средства
10.1	Частотомер электронно-счётный Agilent 53131A. Диапазон измеряемых частот ВЧ сигналов 0-225 МГц. Диапазон измеряемых СВЧ сигналов 200 МГц – 12,4 ГГц. ПГ \pm 5·10 ⁻⁶ %.
10.2; 10.3	Калибратор универсальный Fluke 9100. Погрешность формирования сигнала постоянного напряжения — ±0,004%, постоянного тока — ±0,01% Диапазоны выходного напряжения — от 0 до 1050 В, тока — от 0 до 20 А Частота основного сигнала — от 48 до 63 Гц Длительность импульса — от 0.30 мкс до1999,99 мс Форма выходного сигнала - синусоида, прямоугольная, треугольная, трапецеидальная и импульс

Допускается использовать средства поверки отличные от указанных в таблице, при условии обеспечения необходимой точности измерений.

6 ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПО-ВЕРОК

6.1 При проведении поверки необходимо соблюдать требования безопасности, указанные в руководствах по эксплуатации контроллеров МИР КТ-51М, средств поверки и оборудования, используемого при поверке.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 При проведении внешнего осмотра проверяют:
 - отсутствие механических повреждений корпуса и контактов;
 - читаемость информации на наклейке, приклеенной к корпусу.
- 7.2 При обнаружении механических повреждений или не читаемости информации на наклейке, контроллер признается непригодным к применению.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 Проверить, что у средств поверки не истекли сроки поверки и, или сроки аттестации.
- 8.2 Собрать схему согласно эксплуатационной документации на контроллер и используемые средства поверки.
 - 8.3 Проконтролировать соблюдение условий поверки.
 - 8.4 Запустить ПО.
 - 8.5 Установить соединение с контроллером.

- 8.6 При отсутствии связи проверить:
 - правильность подключения адаптера интерфейса к ПК и контроллеру;
 - питание контроллера;
 - работоспособность адаптера интерфейса;
 - правильность выбора СОМ порта;
 - отсутствие ошибок драйвера в диспетчере устройств Windows ;
- отсутствие неисправностей в разъемах и кабелях для подключения адаптера интерфейса.
- 8.7 Если после этого не удалось установить связь, контроллер признается непригодным к применению.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

9.1 Проверить наименование, номер версии и цифровой идентификатор ПО в соответствии с таблицей 3.

Таблица 3

Идентификацион-	Значение для модуля					
ные данные (при- знаки)	МП-04	TC-01	ТУ-01	ТИТ-01	УСО-01	
Идентификацион- ное наименование ПО	m12.12407- 01.vhd	TS_01_W ork.mhx	TU_01_W ork.mhx	TIT_01_ Work.mhx	USO_01_ Work.mhx	
Номер версии (идентификацион- ный номер) ПО	Не ниже 1.0.0.0	Не ниже v 2.1	Не ниже v 2.0	Не ниже v 2.0	Не ниже v 2.2	
Цифровой идентификатор ПО	-	-	=	-	-	
Алгоритм вычис- ления цифрового идентификатора ПО	MD5	CRC-32	CRC-32	CRC-32	CRC-32	

Примечание – Номер версии метрологически значимой части ПО определяют первые две цифры, остальные – номер версии метрологически незначимой части.

9.2 При несоответствии вышеуказанным требованиям изделие признается непригодным к применению.

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ

- 10.1 Определение основной абсолютной погрешности суточного хода часов контроллера
- 10.1.1 Для определение основной абсолютной погрешности суточного хода часов контроллера с модулем МП-04 необходимо:
- собрать схему согласно эксплуатационной документации на контроллер и используемые средства поверки;
- выполнить конфигурацию модуля МП-04 в режим контроля погрешности суточного хода часов:
 - измерить частоты сигнала на выходе 1,2 соединителя X3;
 - определить абсолютной погрешности суточного хода часов по формуле:

$$\Delta_{\text{суточная}} = (F_0 - 8) \cdot 10800 \tag{1}$$

- 10.1.2 Если полученное значение не превышает ± 1 с, контроллер признается пригодным к применению.
 - 10.2 Определение приведенной погрешности измерения постоянного тока.
- 10.2.1 Собрать схему согласно эксплуатационной документации на контроллер и используемые средства поверки.
 - 10.2.2 Подавать с калибратора значения постоянного тока согласно таблице 4.

Таблипа 4

Диапазон измерения постоянного тока	Измеряемое значение постоянного тока, мА
От 0 до плюс 5 мА	0
	2,5
От 0 до плюс 20 мА	0
	10
	20
От минус 5 мА до плюс 5 мА	-5
	1
	5
От минус 5 мА до плюс 5 мА	-20
	1
	20

10.2.3 Вычислить приведенную погрешность по формуле:

$$\gamma = \pm \frac{\Delta}{X_n} \cdot 100\% \tag{2}$$

- 10.2.4 Если полученное значение по каждому измерению не превышает $\pm 0,25\%$, контроллер признается пригодным к применению.
 - 10.3 Определение абсолютной погрешности счета импульсов
- 10.3.1 Собрать схему согласно эксплуатационной документации на контроллер и используемые средства поверки.
 - 10.3.2 Подать с калибратора 1000 сигналов согласно таблице 5.

Таблица 5

Модуль	Длительность сигнала, мс
УСО-01	10
TC-01	10
ТУ-01	10
МП-04	100

- 10.3.3 Проверить полученное значение количества импульсов на контроллере.
- 10.3.4 Рассчитать абсолютную погрешность счета импульсов по формуле:

$$\Delta = X_{\text{H3M}} - X_{\text{A}} \tag{3}$$

10.3.5 Если полученное значение погрешности не превышает ± 2 , контроллер признается пригодным к применению.

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРО-ЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

- 11.1 Средство измерений считают соответствующим метрологическим требованиям если:
- Абсолютная погрешность суточного хода часов контроллера не превышает указанную в п. 10.1 настоящей методики поверки;
- Приведенная погрешность измерения постоянного тока не превышает указанную в п. 10.2 настоящей методики поверки.
- Абсолютная погрешность счета импульсов не превышает указанную в п. 10.3 настоящей методики поверки.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 Результаты поверки передаются в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком, установленным действующим законодательством.
- 12.2 При положительных результатах поверки знак поверки наносится в формуляр (при наличии) и на пломбах, установленных в местах пломбировки контроллера.
- 12.3 При отрицательных результатах любой операции поверки, поверка прекращается, контроллер направляется в ремонт.