

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ И МОСКОВСКОЙ ОБЛАСТИ» (ФБУ «РОСТЕСТ-МОСКВА»)

СОГЛАСОВАНО

Заместитель генерального директора

ФБУ «Ростест-Москва»

А.Д. Меньшиков

«07» апреля 2022 г.

Государственная система обеспечения единства измерений

АНАЛИЗАТОРЫ СИСТЕМ СВЯЗИ R8200

Методика поверки РТ-МП-1503-441-2021

1 Общие положения

- 1.1 Настоящая методика распространяется на анализаторы систем связи R8200 (далее по тексту анализаторы) и устанавливает порядок и объем их первичной и периодической поверок.
- 1.2 В целях обеспечения прослеживаемости поверяемого анализатора к государственным первичным эталонам необходимо соблюдать требования настоящей методики поверки.

Выполнение всех требований настоящей методики обеспечивает прослеживаемость поверяемого анализатора к:

- ГЭТ 1-2022 Государственный первичный эталон единиц времени, частоты и национальной шкалы времени;
- ГЭТ 26-2010 Государственный первичный эталон единицы мощности электромагнитных колебаний в волноводных и коаксиальных трактах в диапазоне частот от 0.03 до 37.50 ГГц;
- ГЭТ 193-2011 Государственный первичный эталон единицы ослабления электромагнитных колебаний в диапазоне частот от 0 до 178 ГГц;
- ГЭТ 166-2020 Государственный первичный эталон единицы девиации частоты;
- ГЭТ 180-2010 Государственный первичный эталон единицы коэффициента амплитудной модуляции высокочастотных колебаний;
- ГЭТ 75-2017 Государственный первичный эталон единицы волнового сопротивления в коаксиальных волноводах;
- ГЭТ 13-01 Государственный первичный эталон единицы электрического напряжения;
- ГЭТ 89-2008 Государственный первичный специальный эталон единицы электрического напряжения (вольта) в диапазоне частот $10 \div 3 \times 10^7$ Гц.

Для обеспечения реализации методики поверки при определении метрологических характеристик по пунктам 10.1-10.9, 10.12, 10.13, 10.16-10.20 применяется метод прямых измерений; по пунктам 10.10, 10.11, 10.14, 10.15 применяется метод непосредственного сличения.

2 Перечень операций поверки средства измерений

2.1 При поверке выполняются операции, представленные в таблице 1.

Таблица 1 – Операции поверки

	Наименование пункта методики	Проведение операции при поверке	
Наименование операции		первичной	периодическ ой 4
1		3	
Внешний осмотр	7	да	да
Опробование	8	да	да
Проверка программного обеспечения	9	да	да
Определение метрологических характеристик опорного генератора частоты			
Определение относительной погрешности частоты опорного генератора	10.1	да	да

Продолжение таблицы 1

Продолжение таблицы 1			
1	2	3	4
Определение метрологических характеристик			
генератора сигналов			
Определение диапазона рабочих частот	10.2	да	нет
Определение погрешности установки уровня	10.2		
мощности сигнала на выходе «RF Gen Out»	10.3	да	да
Определение погрешности установки уровня	10.4		
мощности сигнала на выходе «RF In/Out»	10.4	да	да
Определение уровня гармонических искажений	10.5	да	да
Определение уровня фазовых шумов	10.6	да	нет
Определение остаточной частотной модуляции и	40 W 90 W		
абсолютной погрешности установки девиации	10.7	да	да
частоты			
Определение остаточной амплитудной модуляции	100		
и абсолютной погрешности установки КАМ	10.8	да	да
Определение метрологических характеристик			
измерительного приемника и анализатора спектра			
Определение относительной погрешности			
установки полосы обзора в режиме анализатора	10.9	да	нет
спектра			
Определение погрешности измерений уровня			
мощности сигнала на входе «RF In/Out»	10.10	да	да
Определение погрешности измерений уровня			
мощности сигнала на входе «Antenna»	10.11	да	да
Определение чувствительности измерительного	10.12	да	да
приемника при узкополосной частотной	10.12	да	Au
модуляции			
Определение чувствительности измерительного	10.13	да	да
приемника при широкополосной частотной		A	-
модуляции			
Определение абсолютной погрешности	10.14	да	да
измерений девиации частоты			-
Определение абсолютной погрешности	10.15	да	да
измерений КАМ	10.10	744	A
Определение метрологических характеристик			
векторного анализатора цепей			
Определение погрешности измерений модуля	10.16	да	да
коэффициента отражения	10.10	244	Д
Определение метрологических характеристик			
цифрового вольтметра			
Определение абсолютной погрешности	10.17	да	да
измерений постоянного электрического	10.17	Zu	Ди
напряжения			
Определение абсолютной погрешности	10.18	да	да
измерений переменного электрического	10.10	244	
напряжения			
Определение метрологических характеристик			
низкочастотного осциллографа			
Определение относительной погрешности	10.19	да	да
коэффициента отклонения	.0.15		да
Определение верхней частоты полосы	10.20	да	да
пропускания по относительному уровню	. 0.20	Au	да
мощности минус 3 дБ			

- 2.2 На основании письменного заявления владельца СИ допускается проводить периодическую поверку анализаторов систем связи R8200 для меньшего числа измерительных каналов (функций) и для меньшего числа измеряемых величин:
- в ограниченном диапазоне частот до 1 ГГц для анализаторов с опцией R8-3G в части операций по пунктам 10.2-10.7 и 10.9-10.11;
- для меньшего числа измерительных каналов (функций): генератор сигналов, измерительный приемник и анализатора спектра, векторный анализатор цепей, цифровой вольтметр, низкочастотный осциллограф.

3 Требования к условиям проведения поверки

При проведении поверки должны соблюдаться нормальные условия, установленный в ГОСТ 8.395-80 «Государственная система обеспечения единства измерений. Нормальные условия измерений при поверке. Общие требования»:

- температура окружающей среды, °Сот 18 до 28;
- относительная влажность воздуха, %, не более 80.

4 Требования к специалистам, осуществляющим поверку

К проведению поверки анализаторов систем связи R8200 допускаются специалисты, имеющие необходимую квалификацию, освоившие работу с анализаторами и применяемыми средствами поверки, изучившие настоящую методику поверки.

5 Метрологические и технические требования к средствам поверки

- 5.1 При проведении поверки анализаторов применяют средства поверки, указанные в таблице 2.
- 5.2 Допускается применение других средств поверки с метрологическими и техническими характеристиками, обеспечивающими передачу единицы величины поверяемому средству измерений с точностью, удовлетворяющей требованиям соответствующих государственных поверочных схем.

Таблица 2 – Средства поверки

Номер	Наименование	Требуемые тех	нические	Рекомендуемое
пункта	средства	характеристики сре	дства поверки	средство поверки
документа	поверки	Пределы	Пределы	
по поверке		измерений	допускаемой	
			погрешности	
1	2	3	4	5
10.1	Стандарт	10 МГц	± 1·10 ⁻⁹	Стандарт частоты
10.2	частоты			рубидиевый GPS-12RG,
				рег. № 70172-18 в
				$\Phi M \Phi_1$
10.1	Частотомер	Диапазон частот		Частотомер
10.2	универсальный	от 250 кГц до 3 ГГц	$\pm 5.10^{-6}$	универсальный CNT-
			300000000000000000000000000000000000000	90, per. № 70888-18 в
				ФИФ

Продолжение таблицы 2

1	2	3	4	5
10.3	Ваттметр	От минус 50 до 10		Преобразователь
10.4	поглощаемой	дБ (1 мВт) в		измерительный
10.10	мощности	диапазоне частот		NRP-Z21,
10.11	мощности	от 10 МГц до 3 ГГц	± 0,5 дБ	рег. № 37008-08 в ФИФ
10.3	Ваттметр	От минус 30 до 10	± 0,5 дв	Ваттметр поглощаемой
10.4	поглощаемой	дБ (1 мВт) на		мощности СВЧ
10.4	мощности	частоте	± 0.5 ¬F	NRP18T,
	мощности	1 МГц	± 0,5 дБ	рег. № 69958-17 в ФИФ
10.3	Анализатор	Диапазон частот		Приемник
10.3	спектра	от 1 МГц до 3 ГГц;	± 10 ⁻⁶	измерительный
10.5	Спектра	Диапазон измерений	<u> </u>	R&S FSMR26,
10.6		отношений уровня		рег. № 50678-12 в ФИФ
10.7		от 0 до минус 140 дБ	1 0 5 -F	рег. № 30078-12 в ФИФ
10.7		(1 мВт);	± 0,5 дБ	
10.14		Уровень		
10.14		гармонических		
10.13		искажений		
		не более		
		минус 40 дБн ²⁾ ;		
		Уровень фазовых		
		шумов при		
		отстройке от		
		несущей 20 кГц не		
		более		
		минус 115 дБн/Гц ³⁾		
	Измеритель	Диапазон частот		
	модуляции	от 1 МГц до 3 ГГц;		
	модулиции	Диапазон		
		измерений		
		коэффициента АМ	± 2 %	
		от 0 до 100 %;		
		Диапазон измерений		
		девиации частоты	± 2 %	
		от 0 до 100 кГц	/0	
10.9	Генератор	Диапазон частот		Генератор сигналов
10.10	сигналов ВЧ	от 1 МГц до 3 ГГц;		SMA100B,
10.11		Диапазон установки		рег. № 68980-20 в ФИФ
10.12		выходной мощности		per. 3/2 00/80-20 B 4/14
10.13		от -120 до	± 0,5 дБ	
10.14		+10 дБ (1 мВт);	± 0,5 дв	
10.15		Диапазон		
		установки		
		коэффициента АМ		
		от 0 до 80 %;		
		Диапазон		
		установки		
		1		
		девиации частоты		

Окончание таблицы 2

	THE COURSE OF THE PARTY OF THE			
1	2	3	4	5
10.10	Аттенюатор	От 0 до 80 дБ с	± 0,5 дБ	Аттенюатор
10.11	ступенчатый	шагом 10 дБ в	2 разряд	ступенчатый R&S
		диапазоне частот		RSC03, модуль 03,
		от 1 МГц до 3 ГГц		рег. № 48368-11 в ФИФ
		Диапазон частот		
		от 1 МГц до 6 ГГц;		
10.16	Набор мер	Коэффициент		Набор мер НЗМ-11,
10.16	коэффициентов	отражения		рег. № 70750-18 в ФИФ
	отражения	0.091	± 0.006	
		0,333	$\pm 0,008$	
10.17	Калибратор	Постоянное		Калибратор
10.18	постоянного и	напряжение		многофункциональный
10.19	переменного	от 0,01 до 100 В;	± 0,4 %	Fluke 5522A с опцией
10.20	напряжения с	Переменное		SC600,
	опцией	напряжение		рег. № 70345-18 в ФИФ
	калибровки	от 0,01 до 70 В	±1%	
	осциллографов	в диапазоне частот		
		от 50 Гц до 50 кГц		
10.1-10.20	Термо-	от 0 °C до +60 °C	± 0,4 °C	Прибор
	гигрометр	от 10 % до 95 %	± 3 %	комбинированный
				Testo 622,
				рег. № 53505-13 в ФИФ
	I	Вспомогательные средо	ства поверки	
10.10	Делитель	Несимметричность		Agilent 11667A
10.11	мощности	выходных плеч на		
10.14		частотах до 3 ГГц		
10.15		не более ± 0,3 дБ		
10.1-10.20	Кабели	BNC, N, banana		
	Адаптеры			

Примечание:

2) дБн – дБ относительно несущей

6 Требования (условия) по обеспечению безопасности проведения поверки

- 6.1 При проведении поверки необходимо соблюдать:
- общие правила техники безопасности в соответствии с требованиями
 ГОСТ 12.2.003 «Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности»;
- правила по охране труда при эксплуатации электроустановок, утвержденные Приказом Министерства труда и социальной защиты Российской Федерации 15 декабря 2020 года № 903н «Об утверждении Правил по охране труда при эксплуатации электроустановок»;
- указания по технике безопасности, приведенные в эксплуатационной документации на средства поверки;

 $^{^{1)}}$ ФИФ – Федеральный информационный фонд по обеспечению единства измерений

³⁾ дБн/Гц – дБ относительно несущей, приведенное к полосе пропускания 1 Гц

- указания по технике безопасности, приведенные в эксплуатационной документации на анализаторы.
- 6.2 К проведению поверки допускаются специалисты, имеющие 3 группу допуска по электробезопасности и прошедшие инструктаж по технике безопасности на рабочем месте.
- 6.3 На рабочем месте должны быть приняты меры по обеспечению защиты от воздействия статического электричества.

7 Внешний осмотр средства измерений

При проведении внешнего осмотра установить соответствие анализатора следующим требованиям:

- внешний вид должен соответствовать фотографиям, приведённым в описании типа на данное средство измерений;
 - наличие маркировки, подтверждающей тип, и заводской номер;
- наличие пломб от несанкционированного доступа, установленных в местах согласно описанию типа на данное средство измерений.
- наружная поверхность не должна иметь следов механических повреждений, которые могут влиять на работу прибора и его органов управления;
 - разъемы должны быть чистыми;
- комплектность должна соответствовать указанной в технической документации фирмы-изготовителя.

Результаты выполнения операции считать положительными, если выполняются перечисленные требования. Дальнейшую поверку анализатора проводят при выполнении вышеперечисленных требований.

8 Подготовка к поверке и опробование средства измерений

8.1 Подготовка к поверке

Перед началом работы изучить Руководство по эксплуатации на поверяемый анализатор, а также руководства по эксплуатации применяемых средств поверки. Выдержать анализатор в условиях, указанных в п. 6 настоящей методики поверки, в течение 1 часа. Выполнить операции, оговоренные в руководствах по эксплуатации на применяемые средства поверки и поверяемый анализатор по подготовке их к измерениям.

Осуществить предварительный прогрев средств поверки и поверяемого анализатора в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева анализатора 30 мин.

8.2 Опробование

Включить анализатор. По истечении времени загрузки убедиться, что загрузился режим работы анализатора спектра по входу «RF In/Out». Нажать клавишу DISPLAY Zone... Изменяя значение опорного уровня (Reference Level) от 0 до минус 20 дБ (1 мВт), убедиться в смещении линии развертки собственных шумов анализатора по вертикали.

Результаты опробования считать удовлетворительными, если после включения анализатора не возникают сообщения об ошибках, загружается режим анализатора спектра и наблюдается развертка собственных шумов анализатора и ее смещение при изменении опорного уровня (Reference Level).

При наличии дефектов, препятствующих нормальной работе анализатора, его дальнейшую поверку не проводят.

9 Проверка программного обеспечения средства измерений

- 9.1 Выполнить идентификацию программного обеспечения анализатора через меню [Setting] > About. Номер версии ПО отображается в поле «Version» диалогового окна. Номер версии ПО должен быть не ниже 4.3.1.0. В противном случае дальнейшую поверку анализатора не проводят.
 - 9.2 Выполнить проверку наличия опции R8-3G через меню [Setting] > Option.

10 Определение метрологических характеристик средства измерений

- 10.1 Определение относительной погрешности частоты опорного генератора
- 10.1.1 Установить на выходе «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
 - 10.1.2 Соединить приборы по схеме, приведенной на рис. 1.

Рисунок 1 – Схема определения относительной погрешности частоты опорного генератора

10.1.3 Измерить частоту опорного генератора поверяемого анализатора. Данные занести в таблицу 3.

Таблица 3 – Определение относительной погрешности частоты опорного генератора

Частота опорного генератора,	Значение частоты, измеренное	Относительная погрешность
f_0 , М Γ ц	частотомером, $f_{\text{изм}}$, МГц	частоты опорного генератора
10		

- 10.2 Определение диапазона рабочих частот генератора сигналов
- 10.2.1 Диапазон частот определить измерением частоты с выхода «RF Gen Out». Измерения провести на частотах 250 кГц, 1 МГц и 1 ГГц для анализатора без опции R8-3G, и 250 кГц, 1 МГц и 2,991 ГГц для анализатора с опцией R8-3G. Соединить приборы по схеме, приведенной на рис. 2.

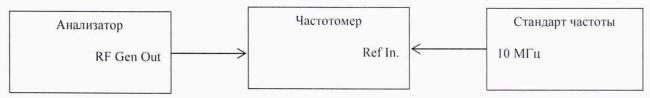


Рисунок 2 – Схема определения диапазона частот генератора сигналов

- 10.2.2 Настройки частотомера установить в соответствии с его инструкцией по эксплуатации.
 - 10.2.3 На анализаторе сделать следующие установки:

[Generate] > RF Zone

Generate frequency: выбранная частота

Modulation Type: FM Gen port: Gen Out Output Level: 0 dBm [Esc] > Audio Zone Fixed 1 kHz: off Synth Mode: Off Tone A Mode: Off Tone B Mode: Off DTMF Mode: Off Microphone Mode: Off Mod in Port Mode: Off

10.2.4 Включить выход генератора на анализаторе клавишей [RF On/Off].

10.2.5 Результаты измерений занести в таблицу 4.

Таблица 4 – Определение диапазона частот генератора сигналов

Установленная частота (Generate frequency), МГц	Измеренная частота, МГц	Относительная погрешность установки частоты генератора сигналов
0,250		Не нормируется
1,0		
1000		
2991 (только для опции R8-3G)		

- 10.3 Определение погрешности установки уровня мощности сигнала на выходе «RF Gen Out»
- 10.3.1 Присоединить преобразователь ваттметра поглощаемой мощности к разъему «RF Gen Out».
- 10.3.2 Настройки ваттметра установить в соответствии с его инструкцией по эксплуатации.
 - 10.3.3 На поверяемом анализаторе сделать следующие установки:

[Generate] > RF Zone

Generate frequency: выбранная частота

Modulation Type: FM Gen port: Gen Out

Output Level: выбранный уровень мощности

[Esc] > Audio Zone Fixed 1 kHz: Off Synth Mode: Off Tone A Mode: Off Tone B Mode: Off DTMF Mode: Off Microphone Mode: Off Mod in Port Mode: Off

- 10.3.4 Включить выход генератора на анализаторе клавишей [RF On/Off].
- 10.3.5 Измерения провести на уровнях мощности (Output Level) от +5 до минус 30 дБ (1 мВт) и частотах (Generate frequency) согласно таблице 5. Данные занести в таблицу 5.
- 10.3.6 На уровнях выходного сигнала ниже минус 30 дБ (1 мВт) измерения провести при помощи анализатора спектра.

- 10.3.7 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.3.8 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации анализатора спектра. Перевести анализатор спектра в режим внешней синхронизации.

10.3.9 Установить на анализаторе спектра следующие настройки:

Reference Level: -30 dBm

Center Frequency: выбранная частота

Span: 1 kHz RBW: Auto

Trace Averages: 10

Preamp: ON

10.3.10 Подать на анализатор спектра сигнал уровня минус 30 дБ (1 мВт). Найти пик сигнала на анализаторе спектра и включить дельта-маркер. Убедиться, что отсчет дельта-маркера ΔM равен 0,0 дБ. Устанавливать на поверяемом приборе уровни мощности (Output Level) и частотах (Generate frequency) согласно таблице 5. Измеренное значение мощности на уровнях выходного сигнала ниже минус 30 дБ (1 мВт) Рт рассчитать по формуле $Pm = P(-30) + \Delta M$, где P(-30) -измеренное ваттметром СВЧ мощности значение уровня минус 30 дБ (1 мВт), $\Delta M -$ показания дельта-маркера. Рассчитанные значения уровня выходного сигнала занести в таблицу 5.

Таблица 5 – Определение погрешности установки уровня мощности на выходе «RF Gen Out» в режиме частотной модуляции

Установленная частота (Generate frequency), МГц	Установленный уровень мощности (Output Level), дБ (1 мВт)	Измеренный уровень мощности, дБ (1 мВт)	Погрешность установки уровня мощности, дБ
1	2	3	4
	+5		
	0		
1,1	-10		
	-20		
	-30		
	+5		
	0		
10,1	-10		
	-20		
	-30		
	+5		
	0		
100,1	-10		
	-20		
	-30		
	+5		
	0		
300,1	-10		
	-20		
	-30		

Продолжение таблицы 5

1	2	3	4
	+5		
	0		
500,1	-10		
	-20		
	-30		
	+5		
	0		
	-10		
	-20		
	-30		
	-40		
	-50		
999,9	-60		
	-70		
	-80		
	-90		
	-100		
	-110		
	-120		
	-125		
	+5		
2000,1	0		
голько для опции	-10		
R8-3G)	-20		
	-30		
	-5		
	-10		
	-20		
	-30		
	-40		
2001	-50		
2991	-60		
голько для опции	-70		
R8-3G)	-80		
	-90		
	-100		
	-110		
	-120		
	-125		

- 10.4 Определение погрешности установки уровня мощности сигнала на выходе «RF In/Out»
- 10.4.1 Присоединить преобразователь ваттметра поглощаемой мощности к разъему «RF In/Out».
- 10.4.2 Настройки ваттметра установить в соответствии с его инструкцией по эксплуатации.
 - 10.4.3 На анализаторе сделать следующие установки:

[Generate] > RF Zone

Generate frequency: выбранная частота

Modulation Type: FM

Gen port: RF In/Out

Output Level: выбранный уровень мощности

[Esc] > Audio Zone Fixed 1 kHz: Off Synth Mode: Off Tone A Mode: Off Tone B Mode: Off DTMF Mode: Off Microphone Mode: Off Mod in Port Mode: Off

10.4.4 Включить выход генератора на анализаторе клавишей [RF On/Off].

10.4.5 Измерения провести на уровне мощности (Output Level) минус 30 дБ (1 мВт) на частотах (Generate frequency) от 1 МГц до 1 ГГц (2 ГГц для опции R8-3G) согласно таблице 6, и минус 40 дБ (1 мВт) на частоте 2,991 ГГц для опции R8-3G.

- 10.4.6 На уровнях выходного сигнала ниже минус 30 дБ (1 мВт) для частот от 1 МГц до 1 ГГц (2 ГГц для опции R8-3G) и минус 40 дБ (1 мВт) на частоте 2,991 ГГц для опции R8-3G измерения провести при помощи анализатора спектра.
- 10.4.7 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.4.8 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации анализатора спектра. Перевести анализатор спектра в режим внешней синхронизации.

10.4.9 Установить на анализаторе спектра следующие настройки:

Reference Level: -30 dBm

Center Frequency: выбранная частота

Span: 1 kHz RBW: Auto

Trace Averages: 10

Preamp: ON

10.4.10 Подать на анализатор спектра сигнал уровня минус 30 дБ (1 мВт) на частотах от 1,1 до 999,9 МГц (2,0001 ГГц для опции R8-3G) и минус 40 дБ (1 мВт) на частоте 2,991 ГГц для опции R8-3G. Найти пик сигнала на анализаторе спектра и включить дельта-маркер. Убедиться, что отсчет дельта-маркера ΔM равен 0,0 дБ. Устанавливать на поверяемом приборе уровни мощности (Output Level) и частотах (Generate frequency) согласно таблице 6. Измеренное значение мощности на уровнях выходного сигнала ниже минус 30 дБ (1 мВт) на частотах от 1 МГц до 1 ГГц (2 ГГц для опции R8-3G) Рт рассчитать по формуле Рт = P(-30) + ΔM , где P(-30) — измеренное ваттметром СВЧ мощности значение уровня минус 30 дБ (1 мВт), ΔM — показания дельтамаркера. Измеренное значение мощности на уровнях выходного сигнала ниже минус 40 дБ (1 мВт) на частоте 2,991 ГГц для опции R8-3G Рт рассчитать по формуле Рт = P(-40) + ΔM , где P(-40) — измеренное ваттметром СВЧ мощности значение уровня минус 40 дБ (1 мВт), ΔM — показания дельта-маркера. Рассчитанные значения уровня выходного сигнала занести в таблицу 6.

Таблица 6 - Определение погрешности установки уровня мощности на выходе «RF

In/Out» в режиме частотной модуляции

Variation	Установленный	Измеренный	
Установленная (С.	уровень мощности	уровень	Погрешность установки
частота (Generate	(Output Level),	мощности,	уровня мощности, дБ
frequency), ΜΓιι	дБ (1 мВт)	дБ (1 мВт)	
1,1	-30		
1,1	-40		
10,1	-30		
10,1	-40		
100,1	-30		
100,1	-40		
	-30		
300,1	-40		
	-30		
500,1	-40		
300,1	-30		
	-30		
	-40		
	-50		
	-60		
	-70		
999,9	-80		
	-90		
	-100		
	-110		
	-120		
	-130		
2000,1	-30		
(только для опции R8-3G)	-40		
	-30		
	-40		
	-50		
	-60		
2991	-70		
(только для опции	-80		
R8-3G)	-90		
	-100		
	-110		
	-120		
	-130		

10.5 Определение уровня гармонических искажений

- 10.5.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.5.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации анализатора спектра. Перевести анализатор спектра в режим внешней синхронизации.
 - 10.5.3 На поверяемом анализаторе сделать следующие установки:

[Generate] > RF Zone

Generate frequency: 10,1 MΓμ

Modulation Type: FM Gen port: Gen Out Output Level: + 5 dBm [Esc] > Audio Zone Fixed 1 kHz: Off Synth Mode: Off Tone A Mode: Off Tone B Mode: Off DTMF Mode: Off Microphone Mode: Off Mod in Port Mode: Off

10.5.4 Установить на анализаторе спектра следующие настройки:

Reference Level: 10 dBm Center Frequency: 10,1 ΜΓμ

Span: 1 kHz RBW: Auto

Trace Averages: 10

10.5.5 Найти пик сигнала на анализаторе спектра и включить дельта-маркер. Убедиться, что отсчет дельта-маркера равен 0,0 дБ.

10.5.6 Установить на анализаторе спектра: Center Frequency: 2·Generate frequency ΜΓμ

- 10.5.7 Найти пик сигнала на анализаторе спектра и записать отсчет дельтамаркера в таблицу 7.
 - 10.5.8 Установить на анализаторе спектра:

Center Frequency: 3-Generate frequency МГц.

- 10.5.9 Найти пик сигнала на анализаторе спектра и записать отсчет дельтамаркера в таблицу 7.
- 10.5.10 Повторить пп. 10.5.3-10.5.9 для частот 999,9 МГц и 2991 МГц для опции R8-3G, данные занести в таблицу 7.

Таблица 7 – Определение уровня гармонических искажений

Установленная частота (Generate frequency), МГц	Измеренное значение уровня 2-й гармоники, дБн	Измеренное значение уровня 3-й гармоники, дБн
10,1		
999,9		
2991 (только для опции R8-3G)		

10.6 Определение уровня фазовых шумов

- Определение уровня фазовых шумов провести анализатором спектра с помощью маркера шума при отстройке от несущей частоты на 20 кГц с выхода «RF Gen Out» поверяемого анализатора.
 - 10.6.2 На поверяемом анализаторе сделать следующие установки:

[Generate] > RF Zone

Generate frequency: выбранная частота

Modulation Type: FM Gen port: Gen Out Output Level: + 5 dBm [Esc] > Audio Zone Fixed 1 kHz: Off Synth Mode: Off Tone A Mode: Off

Tone B Mode: Off DTMF Mode: Off Microphone Mode: Off Mod in Port Mode: Off

10.6.3 Измерения провести при уровне мощности (Output Level) +5 дБ (1 мВт) на частоте (Generate frequency) 999,9 МГц и уровне мощности минус 5 дБ (1 мВт) на частоте 2991 МГц для опции R8-3G согласно таблице 8. Данные занести в таблицу 8.

Таблица 8 - Определение уровня фазовых шумов

Установленная частота (Generate frequency), МГц	Установленный уровень мощности (Output Level), дБ (1 мВт)	Измеренный уровень фазовых шумов, дБн/Гц
999,9	+ 5	
2991 (только для опции R8-3G)	- 5	

- 10.7 Определение остаточной частотной модуляции и абсолютной погрешности установки девиации частоты
- 10.7.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.7.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации измерительного приемника. Перевести анализатор спектра в режим внешней синхронизации.
- 10.7.3 Соединить выход «RF Gen Out» поверяемого анализатора с ВЧ входом измерительного приемника, и убедиться в том, что измерительный приемник находится в режиме внешней синхронизации.
 - 10.7.4 На поверяемом анализаторе сделать следующие установки:

[Generate] > RF Zone

Generate frequency: 500,1 MHz

Modulation Type: FM
Gen Port: Gen Out
Output Level: 0 dBm
[Esc] > Audio Zone
Fixed 1 kHz: Off
Synth Mode: Off
Tone A Mode: Off
Tone B Mode: Off
Tone C Mode: Off
DTMF Mode: Off
Microphone Mode: Off
Mod in Port Mode: Off

10.7.5 На измерительном приемнике сделать следующие установки:

Center Frequency: 500,1 MHz

Measure: FM

High Pass Filter: 300 Hz Low Pass Filter: 3 kHz

Range, Dev Per Division: 20 Hz

Demod BW: 400 Hz Meas Time: 999 ms

10.7.6 Записать маркерный отсчет девиации частоты на измерительном приемнике в таблицу 9.

10.7.7 Повторить пп. 10.7.4-10.7.6 для частоты 1800,1 МГц (только для опции R8-3G), данные занести в таблицу 9.

Таблица 9 – Остаточная частотная модуляция генератора

Установленная частота (Generate frequency), МГц	Измеренное значение остаточной ЧМ, Гц
500,1	
1800,1 (только для опции R8-3G)	

10.7.8 Сделать установку широкополосной ЧМ на поверяемом анализаторе:

[Generate] > RF Zone

Generate frequency: 500,1 MHz

Modulation Type: FM Gen Port: Gen Out Output Level: 0 dBm Bandwidth: 200 kHz [Esc] > Audio Zone

Fixed 1 kHz Level: 75 kHz Fixed 1 kHz Mode: Continuous

10.7.9 Сделать установки на измерительном приемнике, оставив остальные настройки без изменений:

Center Frequency 500,1 MHz Range, Dev Per Division: 50 kHz

Demod BW: 1,6 MHz Meas Time: 800 ms

10.7.10 Записать маркерный отсчет девиации частоты на измерительном приемнике в таблицу 10.

10.7.11 Повторить пп. 10.7.8-10.7.10 для частоты 1800,1 МГц (только для опции R8-3G), данные занести в таблицу 10.

10.7.12 Сделать установку узкополосной ЧМ на поверяемом анализаторе, оставив остальные настройки без изменений:

[Generate] > RF Zone

Center Frequency 500,1 MHz

Bandwidth: 25 kHz [Esc] > Audio Zone

Fixed 1 kHz Level: 9,95 kHz Fixed 1 kHz Mode: Continuous

10.7.13 Сделать установки на измерительном приемнике, оставив остальные настройки без изменений:

Center Frequency 500,1 MHz Range, Dev Per Division: 5 kHz

Demod BW: 100 kHz

Meas Time: 1 s

10.7.14 Записать маркерный отсчет девиации частоты на измерительном приемнике в таблицу 10.

10.7.15 Повторить пп. 10.7.12 -10.7.14 для частоты 1800,1 МГц (только для опции R8-3G), данные занести в таблицу 10.

Таблица 10 – Абсолютная погрешность установки девиации частоты генератора

Установленная частота (Generate frequency), МГц	Измеренное значение девиации ЧМ, кГц	Абсолютная погрешность установки девиации частоты генератора, ΔF_d , Γ ц
Широкополо	осная модуляция, девиация 75	кГц
500,1		
1800,1 (только для опции R8-3G)		
Узкополось	ая модуляция, девиация 9,95	кГц
500,1		
1800,1 (только для опции R8-3G)		

- 10.8 Определение остаточной амплитудной модуляции и абсолютной погрешности установки КАМ
- 10.8.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.8.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации измерительного приемника. Перевести анализатор спектра в режим внешней синхронизации.
- 10.8.3 Соединить выход "RF Gen Out" поверяемого анализатора с ВЧ входом измерительного приемника, и убедиться в том, что измерительный приемник находится в режиме внешней синхронизации.
 - 10.8.4 На поверяемом анализаторе сделать следующие установки:

[Generate] > RF Zone

Generate frequency: 500,1 MHz

Modulation Type: AM Gen Port: Gen Out Output Level: -1 dBm [Esc] > Audio Zone Fixed 1 kHz Level: 0 %

Fixed 1 kHz: Off
Synth Mode: Off
Tone A Mode: Off
Tone B Mode: Off
Tone C Mode: Off
DTMF Mode: Off
Microphone Mode: Off
Mod in Port Mode: Off

10.8.5 На измерительном приемнике сделать следующие установки:

Center Frequency 500,1 MHz

Measure: AM

High Pass Filter: 300 Hz Low Pass Filter: 3 kHz

Range, Dev Per Division: 0,5 %

Demod BW: 400 Hz Meas Time: 999 ms

10.8.6 Записать маркерный отсчет коэффициента амплитудной модуляции (КАМ) на измерительном приемнике таблицу 11.

Таблица 11 – Остаточная амплитудная модуляция генератора

Установленная частота (Generate frequency), МГц	Измеренное значение остаточной АМ, %
500,1	

10.8.7 Сделать установку амплитудной модуляции на поверяемом анализаторе:

[Generate] > Audio Zone Fixed 1 kHz Level: 50 %

Fixed 1 kHz Mode: Continuous

10.8.8 Сделать установку диапазона на измерительном приемнике, оставив остальные настройки без изменений:

Range, Dev Per Division: 10 %

10.8.9 Записать отсчет КАМ на измерительном приемнике в таблицу 12.

10.8.10~ Повторить пп. 10.8.7~ -10.8.8~ для установленных значений КАМ 10~и 90~%. Данные занести в таблицу 12.

Таблица 12 – Абсолютная погрешность установки КАМ генератора

Установленное значение КАМ, %	Измеренное значение КАМ, %	Абсолютная погрешность установки КАМ, Δ_{KAM} , %
10,0		
50,0	-	
90,0		

- 10.9 Определение относительной погрешности установки полосы обзора в режиме анализатора спектра
- 10.9.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.9.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации генератора. Перевести генератор в режим внешней синхронизации.
- 10.9.3 Соединить вход «RF In/Out» поверяемого анализатора с ВЧ выходом генератора, и убедиться в том, что генератор находится в режиме внешней синхронизации.
 - 10.9.4 На поверяемом анализаторе сделать следующие установки:

[Monitor]

Mon port: RF In/Out

[Instrument] > Spectrum Analyzer...

Generate frequency: 500 MHz (1500 МГц для опции R8-3G)

SPAN: выбранная частота обзора

10.9.5 На генераторе сделать следующие установки:

Output Level: -20 dBm

- 10.9.6 Установить выходную частоту сигнала генератора такую, чтобы пик сигнала установился на первое слева деление шкалы дисплея. Зафиксировать по генератору значение частоты F1.
- 10.9.7 Установить выходную частоту сигнала генератора такую, чтобы пик сигнала установился на первое справа деление шкалы дисплея. Зафиксировать по генератору значение частоты F2.
 - 10.9.8 Результаты измерений занести в таблицу 13.

Таблица 13 - Определение относительной погрешности установки полосы обзора в

режиме анализатора спектра

Полоса обзора, SPAN, кГц	F1, кГц	F2, кГц	δ_{SPAN} , %
10			
100			
1000			
5000			
10000			

- 10.10 Определение погрешности измерения уровня мощности сигнала на входе «RF In/Out»
- 10.10.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.10.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации генератора. Перевести генератор в режим внешней синхронизации.
- 10.10.3 Соединить вход «RF In/Out» поверяемого анализатора с ВЧ выходом генератора через ступенчатый аттенюатор и делитель, и убедиться в том, что генератор находится в режиме внешней синхронизации. Генератор подключается к входному плечу делителя мощности через аттенюатор, поверяемый анализатор к выходному плечу делителя мощности. К другому выходному плечу делителя мощности присоединить измерительный преобразователь ваттметра поглощаемой СВЧ мощности.

Схема соединения приведена на рис. 3

Рисунок 3 — Схема соединения приборов для измерения абсолютной погрешности измерения уровня мощности сигнала на входе «RF In/Out»

10.10.4 На поверяемом анализаторе сделать следующие установки:

[Monitore] > RF Zone Mon Port: RF In/Out

Monitor Frequency: 10,1 MHz

Modulation Type: FM

Span: 10 kHz

Bandwidth: 6,25 kHz Attenuation: 0 dB Pre-Amplifier: Off [Esc] > Display Zone Reference Level: + 5 dBm

10.10.5 Установить на генераторе сигналов ВЧ частоту 10,1 МГц, уровень +5 дБ (1 мВт), на внешнем ступенчатом аттенюаторе установить ослабление 0 дБ.

10.10.6 Отрегулировать выходной уровень сигнала генератора таким образом, чтобы показания ваттметра составляли ровно + 5 дБ (1 мВт). Данные измерений (Input level) занести в таблицу 14.

10.10.7 Провести измерения значений уровня мощности на входе анализатора от +5,0 до минус 30,0 дБ (1 мВт) при установленных по ваттметру значениях уровня мощности в соответствии с таблицей 14.

10.10.8 Включить на приборе предварительный усилитель

Pre-Amplifier: On

10.10.9 Уменьшать уровень входного сигнала шагами по 10 дБ ступенчатым аттенюатором от минус 30 до минус 70 дБ (1 мВт), данные занести в таблицу 14.

10.10.10 Повторить действия по пунктам 10.10.4 — 10.10.9 для остальных значений частоты генератора сигналов ВЧ и состояний предварительного усилителя на поверяемом анализаторе, указанных в таблице 14.

Таблица 14 – Определение погрешности измерения мощности на входе «RF In/Out»

гаолица 14 – Определ	тение погрешности из	мерения мощности на	
Уровень мощности на входе Р _{уст} , дБ (1 мВт)	Ослабление аттенюатора, дБ	Измеренное значение уровня мощности Р _{изм} , дБ (1 мВт)	Погрешность измерений уровня мощности сигнала на входе «RF In/Out», ΔР, дБ
1	2	3	4
		10,1 МГц	
Pre-Amplifier: Off			
+5.0	0		
0.0	0		
-10.0	0		
-20.0	0		
-30.0	0		
Pre-Amplifier: On			
-40.0	10		
-50.0	20		
-60.0	30		
-70.0	40		
	Частота	а 500 МГц	
Pre-Amplifier: Off			
+5.0	0		
0.0	0		
-10.0	0		
-20.0	0		
-30.0	0		
Pre-Amplifier: On			
-40.0	10		
-50.0	20		
-60.0	30		
-70.0	40		
	Частота	1000 МГц	
Pre-Amplifier: Off			
+5.0	0		
0.0	0		
-10.0	0		
-20.0	0		
-30.0	0		
Pre-Amplifier: On			
-40.0	10		
-50.0	20		
-60.0	30		
-70.0	40		
	Частота 2991 МГц (то	олько для опции R8-3	3G)
Pre-Amplifier: Off			
+5.0	0		
0.0	0		
-10.0	0		
-20.0	0		

Продолжение таблицы 14

1	2	3	4
-30.0	0		
Pre-Amplifier: On			
-40.0	10		
-50.0	20		
-60.0	30		
-70.0	40		*

- 10.11 Определение погрешности измерений уровня мощности сигнала на входе «Antenna»
- 10.11.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.11.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации генератора. Перевести генератор в режим внешней синхронизации.
- 10.11.3 Соединить вход «Аптеппа» поверяемого анализатора с ВЧ выходом генератора через ступенчатый аттенюатор и делитель, и убедиться в том, что генератор находится в режиме внешней синхронизации. Генератор подключается к входному плечу делителя мощности через аттенюатор, поверяемый анализатор к выходному плечу делителя мощности. К другому выходному плечу делителя мощности присоединить измерительный преобразователь ваттметра поглощаемой СВЧ мощности.

Схема соединения приведена на рис. 4

Рисунок 4 — Схема соединения приборов для определения абсолютной погрешности измерений уровня мощности сигнала на входе «Antenna»

10.11.4 На поверяемом анализаторе сделать следующие установки:

[Monitore] > RF Zone

Mon Port: Antenna

Monitor Frequency 10,1 MHz

Modulation Type: FM

Span: 10 kHz

Bandwidth: 6,25 kHz Attenuation: 0 dB Pre-Amplifier: Off [Esc] > Display Zone

Reference Level: минус 20 dBm

- 10.11.5 Установить на генераторе сигналов ВЧ частоту 10,1 МГц, уровень минус 20 дБ (1 мВт), на внешнем ступенчатом аттенюаторе установить ослабление 0 дБ.
- 10.11.6 Отрегулировать выходной уровень сигнала генератора таким образом, чтобы показания ваттметра составляли ровно минус 20 дБ (1 мВт). Данные измерений (Input level) занести в таблицу 15.

- 10.11.7 Провести измерения значений уровня мощности на входе от минус 20,0 до минус 40,0 дБ (1 мВт) при установленных по ваттметру значениях уровня мощности в соответствии с таблицей 15.
 - 10.11.8 Включить на приборе предварительный усилитель Pre-Amplifier: On
- 10.11.9 Уменьшать уровень входного сигнала шагами по 10 дБ ступенчатым аттенюатором от минус 40 до минус 110 дБ (1 мВт), данные занести в таблицу 15.
- 10.11.10 Повторить действия по пунктам 10.11.4 10.11.9 для остальных значений частоты генератора сигналов ВЧ и состояний предварительного усилителя на поверяемом анализаторе, указанных в таблице 15.

Таблица 15 - Определение погрешности измерений мощности на входе «Antenna»

Уровень мощности	ение погрешности изме	Измеренное	Погрешность измерений уровня
-	Ослабление	значение уровня	мощности сигнала
на входе Руст,	аттенюатора, дБ	мощности Ризм,	на входе «RF
дБ (1 мВт)		дБ (1 мВт)	
1	2	3	In/Out», ΔP , дБ
ı			4
Day Amalifian Off	Частота 10	0,1 IVII Ц	
Pre-Amplifier: Off	0	T	
-20.0	0		
-30.0	0		
-40.0	0		
Pre-Amplifier: On			
-50.0	10		
-60.0	20		
-70.0	30		
-80.0	40		
-90.0	50		
-100.0	60		
-110.0	70		
	Частота 5	00 МГц	
Pre-Amplifier: Off			
-20.0	0		
-30.0	0		
-40.0	0		
Pre-Amplifier: On			
-50.0	10		
-60.0	20		
-70.0	30		
-80.0	40		
-90.0	50		
-100.0	60		
-110.0	70		
	Частота 10	000 ΜΓιι	1
Pre-Amplifier: Off	10010101		
-20.0	0		
-30.0	0		
-40.0	0		

Продолжение таблицы 15

продолжение гаолиц	DI 13		
1	2	3	4
Pre-Amplifier: On			
-50.0	10		
-60.0	20		
-70.0	30		
-80.0	40		
-90.0	50		
-100.0	60		
-110.0	70		
	Частота 2991 МГц (тол	ько для опции R8-3G)	
Pre-Amplifier: Off			
-20.0	0		
-30.0	0		
-40.0	0		
Pre-Amplifier: On			
-50.0	10		
-60.0	20		
-70.0	30		
-80.0	40		
-90.0	50		
-100.0	60		
-110.0	70		

- 10.12 Определение чувствительности измерительного приемника при узкополосной частотной модуляции
- 10.12.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.12.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации генератора. Перевести генератор в режим внешней синхронизации.
- 10.12.3 Соединить вход «Antenna» поверяемого анализатора с ВЧ выходом генератора. Ручку управления шумоподавлением «Sql» вывести в крайнее левое положение.
- 10.12.4 Соединить на приборе разъем «Demod Out» с разъемом «Meter In», используя переходник, входящий в комплект поставки.
 - 10.12.5 На поверяемом анализаторе сделать установку приема узкополосной ЧМ:

[Monitor] > RF Zone

Monitor Frequency: 10,1 MHz

Modulation Type: FM Bandwidth: 12,5 kHz Attenuation: 0 dB Pre-Amplifier: On Mon Port: Antenna [Esc] Audio Zone High Pass Filter: 300 k

High Pass Filter: 300 Hz Low Pass Filter: 3 kHz

[Esc] Meter Zone Select Meter

select Meter

SINAD/Distortion

10.12.6 На генераторе сигналов установить следующие параметры:

Частота: 10,1 МГц Уровень –100 dВm Модуляция: FM

Модулирующая частота: 1 kHz

Девиация частоты: 3 kHz

- 10.12.7 Изменяя уровень сигнала генератора сигналов добиться, чтобы отображаемый на дисплее прибора уровень SINAD был устойчиво больше 10 дБ.
 - 10.12.8 Записать значение уровня сигнала генератора сигналов в таблицу 16.
- 10.12.9 Повторить действия по пунктам 10.12.5 10.12.8 для остальных значений частоты, устанавливаемой на генераторе сигналов.

Таблица 16 - Чувствительность измерительного приемника при узкополосной

частотной модуляции

Установленная на генераторе частота, МГц	Измеренное значение чувствительности, дБ (1 мВт)
10,1	
150	
500	
1000	

- 10.13 Определение чувствительности измерительного приемника при широкополосной частотной модуляции
- 10.13.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.13.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации генератора. Перевести генератор в режим внешней синхронизации.
- 10.13.3 Соединить вход «Antenna» поверяемого анализатора с ВЧ выходом генератора. Ручку управления шумоподавлением «Sql» вывести в крайнее левое положение.
- 10.13.4 Соединить на приборе разъем «Demod Out» с разъемом «Meter In», используя переходник, входящий в комплект поставки.
- 10.13.5 На поверяемом анализаторе сделать установку приема широкополосной ЧМ:

[Monitor] > RF Zone

Monitor Frequency: 10,1 MHz

Modulation Type: FM
Bandwidth: 200 kHz
Attenuation: 0 dB
Pre-Amplifier: On
Mon Port: Antenna
[Esc] Audio Zone
High Pass Filter: 300 Hz
Low Pass Filter: 3 kHz

[Esc] Meter Zone

Select Meter

SINAD/Distortion

10.13.6 На генераторе сигналов установить следующие параметры:

Частота: 10,1 MHz Уровень –85 dBm Модуляция: FM

Модулирующая частота: 1 kHz Девиация частоты: 50 kHz

- 10.13.7 Изменяя уровень сигнала генератора сигналов добиться, чтобы отображаемый на дисплее прибора уровень SINAD был устойчиво больше 10 дБ.
 - 10.13.8 Записать значение уровня сигнала генератора сигналов в таблицу 17.
- 10.13.9 Повторить действия по пунктам 10.13.5 10.13.8 для остальных значений частоты, устанавливаемой на генераторе сигналов.

Таблица 17 - Чувствительность измерительного приемника при широкополосной

частотной модуляции

Установленная на генераторе частота, МГц	Измеренное значение чувствительности, дБ (1 мВт)
10,1	
150	
500	
1000	

- 10.14 Определение абсолютной погрешности измерений девиации частоты
- 10.14.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.14.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации генератора. Перевести генератор в режим внешней синхронизации.
- 10.14.3 Соединить вход «Аптеппа» поверяемого анализатора с ВЧ выходом генератора через делитель мощности, и убедиться в том, что генератор находится в режиме внешней синхронизации. Генератор подключается к входному плечу делителя мощности, поверяемый анализатор к выходному плечу делителя мощности. К другому выходному плечу делителя мощности присоединить измерительный приемник.

Схема соединения приведена на рис. 5

Рисунок 5 – Схема соединения приборов для измерений девиации частоты

10.14.4 На поверяемом анализаторе сделать следующие установки:

[Monitore] > RF Zone Mon Port: Antenna

Monitor Frequency 500 MHz

Modulation Type: FM Bandwidth: 200 kHz Attenuation: 0 dB Pre-Amplifier: Off

10.14.5 На генераторе сигналов установить следующие параметры:

Частота: 500 МГц Уровень –20 dВm Модуляция: FM

Модулирующая частота: 1 kHz

Девиация частоты: выбранная девиация частоты

10.14.6 На измерительном приемнике сделать следующие установки:

Center Frequency: 500 MHz

Measure: FM

High Pass Filter: 300 Hz Low Pass Filter: 3 kHz

Range, Dev Per Division: в зависимости от измеряемой девиации частоты

Demod BW: в зависимости от измеряемой девиации частоты Meas Time: в зависимости от измеряемой девиации частоты

10.14.7 Изменять девиацию частоты генератора согласно таблице 18, контролируя ее измерительным приемником. Данные измерений (Deviation) занести в таблицу 18.

Таблица 18 – Абсолютная погрешность измерений девиации ЧМ

Установленное значение девиации частоты, кГц	Значение девиации частоты, измеренное поверяемым анализатором, кГц	Значение девиации частоты, измеренное измерительным приемником, кГц	Абсолютная погрешность измерений девиации частоты, ΔF_d , Γ ц
1			
20			
50			
75			

10.15 Определение абсолютной погрешности измерений КАМ

- 10.15.1 Установить на выходе поверяемого прибора «Ref In/Out 10 MHz» сигнал синхронизации через меню [Setting] > System Setting, Reference Clock Mode: Output.
- 10.15.2 Соединить выход «Ref In/Out 10 MHz» поверяемого прибора с входом синхронизации генератора. Перевести генератор в режим внешней синхронизации.
- 10.15.3 Соединить вход «Апtenna» поверяемого анализатора с ВЧ выходом генератора через делитель мощности, и убедиться в том, что генератор находится в режиме внешней синхронизации. Генератор подключается к входному плечу делителя мощности, поверяемый анализатор к выходному плечу делителя мощности. К другому выходному плечу делителя мощности присоединить измерительный приемник.

Схема соединения приведена на рис. 5.

10.15.4 На поверяемом анализаторе сделать следующие установки:

[Monitore] > RF Zone Mon Port: Antenna

Monitor Frequency 500 MHz

Modulation Type: AM Bandwidth: 25 kHz Attenuation: 0 dB Pre-Amplifier: Off

10.15.5 На генераторе сигналов установить следующие параметры:

Частота: 500 МГц Уровень –20 dВm Модуляция: АМ

Модулирующая частота: 1 kHz

Коэффициент амплитудной модуляции: выбранный КАМ

10.15.6 На измерительном приемнике сделать следующие установки:

Center Frequency 500 MHz

Measure: AM

High Pass Filter: 300 Hz Low Pass Filter: 3 kHz

Range, Dev Per Division: в зависимости от измеряемого КАМ

Demod BW: в зависимости от измеряемого КАМ Meas Time: в зависимости от измеряемого КАМ

10.15.7 Изменять коэффициент амплитудной модуляции согласно таблице 19, контролируя его измерительным приемником. Данные измерений (Deviation) занести в таблицу 19.

Таблица 19 – Абсолютная погрешность измерений КАМ

Установленное значение КАМ, %	Значение КАМ, измеренное поверяемым анализатором, %	Значение КАМ, измеренное измерительным приемником, %	Абсолютная погрешность измерений КАМ, Δ_{KAM} , %
10			
30			
50			
80			

10.16 Определение погрешности измерений модуля коэффициента отражения

10.16.1 На поверяемом анализаторе сделать следующие установки:

[Instrument] > Single Port VNA...

Start Frequency: 1 MHz Stop Frequency: 6000 MHz

of Points: 1001

10.16.2 Провести калибровку векторного анализатора цепей калибровочной мерой, входящей в комплект поставки.

Для этого вызвать меню калибровки нажатием клавиш Select Display > Calibration. Поочередно присоединяя калибровочную меру к порту VNA через переходник, входящий в комплект поставки, провести калибровки Open, Short и Load (клавиша RF On/Off должна быть активна). Калибровка закончена, как только загорается соответствующий индикатор в нижней части дисплея. Сохранить результаты калибровки и выйти из меню калибровки нажатием клавиши Save.

10.16.3 На поверяемом анализаторе сделать следующие установки:

Output Level: High Averaging: On Average Factor: 10

10.16.4 Присоединить к порту VNA рассогласованную нагрузку из набора мер при помощи тарировочного ключа. На анализаторе нажать клавишу Return Loss Auto Scale. Для измерения коэффициента отражения включить маркер нажатием клавиш Marker Mode > Absolute. Определить с помощью маркера значения модуля коэффициента отражения на частотах, приведенных в таблице 20.

10.16.5 Повторить п. 10.16.4 для других рассогласованных нагрузок из набора мер. Данные занести в таблицу 20.

Таблица 20 - Определение погрешности измерений модуля коэффициента отражения

Частота проведения измерений, МГц	Значение модуля коэффициента отражения эталонной меры, дБ	Измеренное значение модуля коэффициента отражения, дБ	Погрешность измерений модуля коэффициента отражения, $\Delta_{\kappa o}$, дБ
1			
1000			
2000			
3000			
4000			
5000			
6000			

- 10.17 Определение абсолютной погрешности измерений постоянного электрического напряжения
- 10.17.1 Соединить вход «Meter In», используя переходник из комплекта поверяемого анализатора с выходными гнездами «HI» и «LO» калибратора напряжения, соблюдая полярность.
 - 10.17.2 На поверяемом анализаторе сделать следующие установки:

[Monitor] > Meter Zone Select Meter: Voltmeter

Select Voltmeter Mode: DC Volts

DC Range: 1 V

10.17.3 Устанавливать на калибраторе значения постоянного напряжения, указанные в таблице 21. Измеренные значения напряжения занести в таблицу 21.

10.17.4 Повторить п. 10.17.3 для диапазонов (DC Range) 10 V и 100 V.

Таблица 21 - Определение абсолютной погрешности измерений постоянного

электрического напряжения

электрического напря Диапазон измерений, В	Установленное на калибраторе значение напряжения, В	Измеренное анализатором значение напряжения, В	Абсолютная погрешность измерений постоянного
		Б	электрического напряжения, $\Delta_{\text{пост}}$, В
1	0,1		
1	0,3		
1	0,5		
1	0,7		
1	0,9		
1	-0,9		
10	1,0		
10	3,0		
10	5,0		
10	7,0		
10	9,0		
10	-9,0		
100	10,0		
100	30,0		
100	48,0		
100	-48,0		

- 10.18 Определение абсолютной погрешности измерений переменного электрического напряжения
- 10.18.1 Соединить вход «Meter In», используя переходник из комплекта поверяемого анализатора с выходными гнездами «HI» и «LO» калибратора напряжения, соблюдая полярность.

10.18.2 На поверяемом анализаторе сделать следующие установки:

[Monitor] > Meter Zone Select Meter: Voltmeter

Select Voltmeter Mode: AC Volts

FC Range: 1 V

10.18.3 Устанавливать на калибраторе значения переменного напряжения и частоты, указанные в таблице 22. Измеренные значение напряжения занести в таблицу 22.

10.18.4 Повторить п. 10.18.3 для диапазонов (AC Range) 10 V и 70 V.

Таблица 22 – Определение абсолютной погрешности измерений переменного электрического напряжения

Диапазон измерений, В —	Установленное на калибраторе значение		Измеренное анализатором	Абсолютная погрешность измерений скз
	частоты, Гц	напряжения, В	значение напряжения, В	переменного электрического напряжения, $\Delta_{\text{пер}}$, В
1	55	0,1		
1	55	0,3		
1	55	0,5		
1	55	0,7		
1	55	0,9		
1	20 000	0,1		
1	20 000	0,3		
1	20 000	0,5		
1	20 000	0,7		
1	20 000	0,9		
10	55	1,0		
10	55	3,0		
10	55	5,0		
10	55	7,0		
10	55	9,0		
10	20 000	1,0		
10	20 000	3,0		
10	20 000	5,0		
10	20 000	7,0		
10	20 000	9,0		
70	55	7,0		
70	55	21,0		
70	55	35,0		
70	20 000	7,0		
70	20 000	21,0		
70	20 000	33,0		

- 10.19 Определение относительной погрешности коэффициента отклонения
- 10.19.1 На поверяемом анализаторе сделать следующие установки: [Instrument] > Oscilloscope...

Coupling: DC

Horizontal Scale: 500 μs/div Vertical Scale: 50 mV/div

10.19.2 Соединить вход «Меter In», используя переходник из комплекта

поверяемого анализатора с выходом «SCOPE OUT» калибратора Fluke 5522A.

10.19.3 Последовательно устанавливать на выходе калибратора 5522А положительное и отрицательное напряжение постоянного тока на нагрузке 1 МОм для всех значений коэффициента отклонения осциллографа равное 3-КО. Плавным изменением выходного напряжения калибратора добиться точного совпадения изображения сигнала с третьим делением от середины сверху и снизу для положительного и отрицательного напряжения соответственно. Для значений коэффициента отклонения ≥ 15 В/дел максимальное значение постоянного напряжения должно быть в пределах ±48 В. Для этого устанавливать положительное и отрицательное напряжение равным 2-КО при КО равным 15 В/дел, 20 В/дел и 1-КО, В, при КО равным 25 В/дел. Данные занести в таблицу 23.

Таблица 23 – Определение относительной погрешности коэффициента отклонения

Установленный коэффициент отклонения	Установленное на калибраторе значение отрицательного напряжения постоянного тока, мВ, В	Установленное на калибраторе значение положительного напряжения постоянного тока, мВ, В	Относительная погрешность коэффициента отклонения, %
50 мВ/дел			
100 мВ/дел			
200 мВ/дел			
500 мВ/дел			
1 В/дел			
2 В/дел			
5 В/дел			
10 В/дел			
15 В/дел			
20 В/дел			
25 В/дел			

10.20 Определение верхней частоты полосы пропускания по относительному уровню мощности минус 3 дБ

10.20.1 На поверяемом анализаторе сделать следующие установки:

[Instrument] > Oscilloscope...

Coupling: DC

Horizontal Scale: 500 μs/div Vertical Scale: 500 mV/div

10.20.2 Соединить вход «Meter In», используя переходник из комплекта поверяемого анализатора с выходными гнездами «HI» и «LO» калибратора напряжения, соблюдая полярность.

10.20.3 Установить на выходе калибратора Fluke 5522A синусоидальный сигнал напряжением 1 В частотой 1 кГц.

10.20.4 Измерить размах сигнала $U_{\text{оп}}$ при помощи маркеров. Для этого ввести вертикальные маркеры на осциллографе прибора:

Marker Mode: Delta V

Toggle Marker

Перемещение между первым и вторым маркерами осуществляется клавишей Toggle Marker. Данные измерений (Delta) занести в таблицу 24.

10.20.5 Установить на выходе калибратора Fluke 5522A сигнал с частотой, соответствующей верхней граничной частоте полосы пропускания осциллографа поверяемого анализатора 50 кГц и напряжением, равным напряжению в п. 10.20.3.

10.20.6 На поверяемом анализаторе сделать следующие установки:

Horizontal Scale: 20 µs/div

10.20.7 Измерить размах сигнала U_{rp} при помощи маркеров. Данные занести в таблицу 24.

Таблица 24 – Определение верхней частоты полосы пропускания

Измеренный размах сигнала	Неравномерность АЧХ, дБ
50 κΓμ, B	перавномерность А 1Л, дв
	U _{гр} на частоте

11 Подтверждение соответствия средства измерений метрологическим требованням

11.1 Относительную погрешность частоты опорного генератора δf , измеренную в п. 10.1, рассчитать по формуле (1)

$$\delta f = \frac{f_{\text{M3M}} - f_0}{f_0},\tag{1}$$

где $f_{\text{изм}}$ – значение частоты, измеренное частотомером, МГц;

 $f_0 = 10 \text{ M}\Gamma$ ц, значение частоты опорного генератора.

Данные занести в таблицу 3.

Относительная погрешность частоты опорного генератора должна находиться в пределах $\pm~1\cdot10^{-7}$ при первичной поверке (поверке после заводской калибровки) и $\pm~1\cdot10^{-7}\cdot N$ при периодической поверке, где N – количество лет после заводской калибровки.

11.2 Относительную погрешность частоты генератора с выхода «RF Gen Out» δf , измеренную в п. 10.2, рассчитать по формуле (1), где $f_{\rm изм}$ — значение частоты, измеренное частотомером, МГц; f_0 — значение частоты, установленное на выходе выхода «RF Gen Out», МГц. Данные занести в таблицу 4.

Относительная погрешность измерений частоты должна находиться в пределах допустимой погрешности, указанной в п. 11.1, в начальной точке диапазона частот погрешность не нормируется.

11.3 Для полученных в пунктах 10.3.1-10.3.5 результатов рассчитать погрешность установки уровня мощности выходного сигнала ΔP , дБ, по формуле (2)

$$\Delta P = P_{\text{H3M}} - P_{\text{VCT}},\tag{2}$$

где $P_{\text{изм}}$ – показания ваттметра, дБ (1 мВт);

 P_{vcr} – установленный уровень мощности сигнала, дБ (1 мВт).

Данные занести в таблицу 5.

Для полученных в пунктах 10.3.6-10.3.10 результатов рассчитать погрешность установки уровня мощности выходного сигнала ΔP , дБ, по формуле (3).

$$\Delta P = P_{\rm m} - P_{\rm vcr},\tag{3}$$

где P_m – измеренное значение мощности, рассчитанное в п. 10.3.9;

Руст – установленный уровень мощности сигнала, дБ (1 мВт).

Данные занести в таблицу 5.

Погрешность установки уровня мощности не должна превышать $\pm 2,0$ дБ.

11.4 Для полученных в пунктах 10.4.1-10.4.5 результатов рассчитать погрешность установки уровня мощности выходного сигнала ΔP , дБ, по формуле (2). Данные занести в таблицу 6.

Для полученных в пунктах 10.4.6-10.4.10 результатов рассчитать погрешность установки уровня мощности выходного сигнала ΔP , дБ, по формуле (3), где P_m – измеренное значение мощности, рассчитанное в п. 10.4.1.9. Данные занести в таблицу 6.

Погрешность установки уровня мощности не должна превышать \pm 1,0 дБ на частотах сигнала от 1 МГц до 1 ГГц включительно, и \pm 2,0 дБ на частотах сигнала свыше 1 ГГц до 3 ГГц.

- 11.5 Уровень гармонических искажений, измеренный в п. 10.5, не должен превышать минус 20 дБ относительно несущей.
- 11.6 Уровень фазовых шумов при отстройке от несущей на 20 кГц, измеренный в п. 10.6, не должен превышать минус 95 дБн/Гц на частоте сигнала 1 ГГц, и минус 93 дБн/Гц на частоте сигнала 2,991 ГГц.
- 11.7 Для полученных в пунктах 10.7.8-10.7.14 результатов рассчитать абсолютную погрешность установки девиации частоты генератора ΔF_d , Γ ц, по формуле 4:

$$\Delta F_{\rm d} = (F_{\rm d \, BBM} - F_{\rm d \, ycr}) \cdot 1000,$$
 (4)

где $F_{d \, \text{изм}}$ – значение девиации частоты, измеренное измерительным приемником, к Γ ц;

 $F_{d\,ycr}$ – значение девиации частоты, установленное на поверяемом анализаторе, к Γ ц.

Данные занести в таблицу 10.

Остаточная частотная модуляция не должна превышать 4,0 Гц на частотах сигнала от 1 МГц до 1 ГГц включительно, и 5,0 Гц на частотах сигнала свыше 1 ГГц до 3 ГГц.

Абсолютная погрешность установки девиации частоты не должна превышать $\pm (0.05 \cdot \mathrm{F_d} + 5) \, \Gamma_\mathrm{U}$

11.8 Для полученных в пунктах 10.8.7-10.8.9 результатов рассчитать абсолютную погрешность установки КАМ $\Delta_{\text{КАМ}}$, %, по формуле 5:

$$\Delta_{KAM} = KAM_{HBM} - KAM_{vct}, \tag{5}$$

где $KAM_{изм}$ – значение коэффициента амплитудной модуляции, измеренное измерительным приемником, %;

 KAM_{yct} – значение коэффициента амплитудной модуляции, установленное на поверяемом анализаторе, %.

Данные занести в таблицу 12.

Остаточная амплитудная модуляция не должна превышать 1,0 %.

Абсолютная погрешность установки КАМ не должна превышать $\pm (0.05 \cdot K_{AM} + 1)$.

11.9 Для полученных в пункте 10.9 результатов рассчитать относительную погрешность установки полосы обзора δ_{SPAN} , %, по формуле 6:

$$\delta_{SPAN} = (1 - (F2 - F1)/(SPAN \cdot 0.8)) \cdot 100 \%, \tag{6}$$

где F2 – значение частоты на первом справа делении шкалы, кГц;

F1 – значение частоты на первом слева делении шкалы, кГц;

SPAN – установленная полоса обзора, кГц.

Данные занести в таблицу 13.

Относительная погрешность установки полосы обзора не должна превышать \pm 5,0 %.

11.10 Для полученных в пункте 10.10 результатов рассчитать погрешность измерений уровня мощности сигнала на входе «RF In/Out» ΔP, дБ, по формуле (7):

$$\Delta P = P_{\text{H3M}} - P_{\text{vcr}},\tag{7}$$

где $P_{\text{изм}}$ – уровень мощности сигнала, измеренный поверяемым анализатором, дБ (1 мВт);

Руст – уровень сигнала, поданный на вход поверяемого анализатора, дБ (1 мВт).

Р_{уст} равно установленным показаниям ваттметра при ослаблении аттенюатора 0 дБ и значении мощности сигнала минус 30 дБ (1 мВт);

 $P_{ycr} = (P_{on} - A_{д})$ при ослаблении аттенюатора от 10 до 70 дБ, где $A_{д}$ – действительные значения ослабления аттенюатора на частоте поверки, P_{on} - показания ваттметра при ослаблении аттенюатора 0 дБ.

Данные занести в таблицу 14.

Погрешность измерений уровня мощности сигнала на входе «RF In/Out» не должна превышать $\pm 2,0$ дБ.

11.11 Для полученных в пункте 10.11 результатов рассчитать погрешность измерений уровня мощности сигнала на входе «Antenna» ΔP , дБ (1 мВт), по формуле (7), где $P_{\text{уст}}$ равно установленным показаниям ваттметра при ослаблении аттенюатора 0 дБ и значении мощности сигнала минус 40 дБ (1 мВт).

Данные занести в таблицу 15.

Погрешность измерений уровня мощности сигнала на входе «Antenna» не должна превышать ± 2.0 дБ.

- 11.12 Чувствительность измерительного приемника при узкополосной частотной модуляции, измеренная в п. 10.12, не должна быть более минус 101 дБ (1 мВт) или 2 мкВ.
- 11.13 Чувствительность измерительного приемника при широкополосной частотной модуляции, измеренная в п. 10.13, не должна быть более минус 87 дБ (1 мВт) или 10 мкВ.
- 11.14 Для полученных в пункте 10.14 результатов рассчитать абсолютную погрешность измерений девиации частоты ΔF_d , $\Gamma \mu$, по формуле 8:

$$\Delta F_d = (F_{d \text{ H3M}} - \Delta F_{\text{ 3T}}) \cdot 1000, \tag{8}$$

где $F_{d \text{ изм}}$ – значение девиации частоты, измеренное поверяемым анализатором, к Γ ц;

 $\Delta F_{\text{эт}}$ – значение девиации частоты, измеренное измерительным приемником, к Γ ц.

Данные занести в таблицу 18.

Абсолютная погрешность измерений девиации частоты не должна превышать $\pm (0.05 \cdot F_d + 5) \Gamma \mu$.

11.15 Для полученных в пункте 10.15 результатов рассчитать абсолютную погрешность измерений КАМ Δ_{KAM} , %, по формуле 9:

$$\Delta_{KAM} = KAM_{H3M} - KAM_{VCT}, \tag{9}$$

где КАМизм – значение КАМ, измеренное поверяемым анализатором, %;

КАМ_{уст} – значение КАМ, измеренное измерительным приемником, %.

Данные занести в таблицу 19.

Абсолютная погрешность измерений КАМ не должна превышать $\pm (0.05 \cdot K_{AM} + 1)$.

11.16 Для полученных в пункте 10.16 результатов рассчитать погрешность измерений модуля коэффициента отражения $\Delta_{\kappa o}$, дБ, по формуле 10:

$$\Delta_{KO} = KO_{H3M} - KO_{7T}, \tag{10}$$

где $KO_{\text{изм}}$ – значение модуля коэффициента отражения, измеренное поверяемым анализатором, дБ;

КО_л − значение модуля коэффициента отражения эталонной меры, дБ.

За значение модуля коэффициента отражения эталонной меры на частоте 1 МГц принять данные ее поверки на постоянном токе.

Данные занести в таблицу 20.

Погрешность измерений модуля коэффициента отражения не должна превышать $\pm\,0,4$ дБ при значениях модуля коэффициента отражения свыше минус 15 до 0 дБ, $\pm\,1,0$ дБ при значениях модуля коэффициента отражения свыше минус 25 до минус 15 дБ включительно, $\pm\,3,0$ дБ при значениях модуля коэффициента отражения свыше минус 35 до минус 25 дБ включительно.

11.17 Для полученных в пункте 10.17 результатов рассчитать абсолютную погрешность измерений постоянного электрического напряжения $\Delta_{\text{пост}}$, B, по формуле 11:

$$\Delta_{\text{HOCT}} = \mathbf{U}_{\text{H3M}} - \mathbf{U}_{\text{TT}},\tag{11}$$

где $U_{\text{изм}}$ — значение постоянного электрического напряжения, измеренное поверяемым анализатором, B:

 $U_{\text{эт}}$ – значение постоянного электрического напряжения, заданные на калибраторе напряжения, В.

Данные занести в таблицу 21.

Абсолютная погрешность измерений постоянного электрического напряжения не должна превышать \pm 0,02 B на диапазоне измерений 1 B, \pm 0,2 B на диапазоне измерений 10 B, \pm 2,0 B на диапазоне измерений 100 B.

11.18 Для полученных в пункте 10.18 результатов рассчитать абсолютную погрешность измерений переменного электрического напряжения $\Delta_{\text{пер}}$, B, по формуле 12:

$$\Delta_{\text{nep}} = U_{\text{H3M}} - U_{\text{9T}},\tag{12}$$

где $U_{\text{изм}}$ – среднеквадратическое значение переменного электрического напряжения, измеренное поверяемым анализатором, B;

 $U_{\text{эт}}$ – среднеквадратическое значение переменного электрического напряжения, заданные на калибраторе напряжения, B.

Данные занести в таблицу 22.

Абсолютная погрешность измерений переменного электрического напряжения не должна превышать \pm 0,07 B на диапазоне измерений 1 B, \pm 0,7 B на диапазоне измерений 10 B, \pm 4,9 B на диапазоне измерений 70 B.

11.19 Для полученных в пункте 10.19 результатов рассчитать относительную погрешность коэффициента отклонения δ_{KO} , %, по формуле 13:

$$\delta_{KO} = \left(\frac{Delta}{U_{K+} - U_{K-}} - 1\right) \cdot 100 \%,$$
(13)

где *Delta* – разность между положительным и отрицательным напряжением постоянного тока, установленная на осциллографе, равная 6-КО, мВ (В); *Delta* равна 4-КО, В, при КО равным 15 В/дел, 20 В/дел и 2-КО, В, при КО равным 25 В/дел;

 U_{κ^+} – установленное на выходе калибратора положительное напряжение постоянного тока, мВ (В);

 $U_{\kappa-}$ – установленное на выходе калибратора отрицательное напряжение постоянного тока, мВ (В).

Данные занести в таблицу 23.

Относительная погрешность коэффициента отклонения не должна превышать \pm 5,0 %.

11.20 Для полученных в пункте 10.20 результатов рассчитать значение неравномерности АЧХ $\Delta_{\text{AЧХ}}$, дБ, по формуле 14:

$$\Delta_{\text{AYX}} = 20 \log \left(\frac{U_{\text{rp}}}{U_{\text{out}}} \right), \tag{14}$$

где U_{rp} – размах сигнала, измеренный на частоте, равной полосе пропускания осциллографа, B;

 $U_{\text{оп}}$ – размах сигнала, измеренный на частоте 1 кГц, В.

Данные занести в таблицу 24.

Значение неравномерности АЧХ не должно превышать ± 3 дБ.

- 11.21 Критериями принятия специалистом, проводившим поверку, решения по подтверждению соответствия средства измерений метрологическим требованиям, установленным при утверждении типа, являются:
- обязательное выполнение всех процедур, перечисленных в разделах 7; 8; 9 и 10 и соответствие действительных значений метрологических характеристик анализаторов систем связи R8200 требованиям, указанным в пунктах раздела 11 настоящей методики;
- обеспечение прослеживаемости поверяемых анализаторов систем связи R8200 к государственным первичным эталонам единиц величин в соответствии с:

- Приказом Росстандарта № 1621 от 31.07.2018 «Об утверждении государственной поверочная схемы для средств измерений времени и частоты»;
- Приказом Росстандарта № 3461 от 30.12.2019 «Об утверждении государственной поверочной схемы для средств измерений мощности электромагнитных колебаний в диапазоне частот от 9 кГц до 37,5 ГГц»;
- Приказом Росстандарта от 30.12.2019 № 3383 «Об утверждении государственной поверочной схемы для средств измерений ослабления напряжения постоянного тока и электромагнитных колебаний в диапазоне частот от 20 Гц до 178,4 ГГп»:
- Приказом Росстандарта от 01.02.2022 № 233 «Об утверждении Государственной поверочной схемы для средств измерений девиации частоты»;
- ГОСТ Р 8.717-2010 «ГСИ. Государственная поверочная схема для средств измерений коэффициента амплитудной модуляции высокочастотных колебаний»;
- ГОСТ Р 8.813-2013 «ГСИ. Государственная поверочная схема для средств измерений волнового сопротивления, комплексных коэффициентов отражения и передачи в коаксиальных волноводах в диапазоне частот от 0,01 до 65 ГГц».
- Приказом Росстандарта № 3457 от 30.12.2019 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы»;
- Приказом Росстандарта № 1942 от 03.09.2021 «Об утверждении государственной поверочной схемы для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от 1×10⁻¹ до 2×10⁹ Гц»;
- Приказом Росстандарта № 3463 от 30.12.2019 «Об утверждении государственной поверочной схемы для средств измерений импульсного электрического напряжения».

12 Оформление результатов поверки

- 12.1 Результаты измерений, полученные в процессе поверки, заносят в протокол произвольной формы. Протокол должен наглядно отображать полученные результаты измерений в поверяемых точках и диапазонах частот, которые указаны в соответствующих пунктах настоящей методики поверки, а также сравнение полученных действительных и допустимых значений нормируемых погрешностей.
- 12.2 Сведения о результатах и объёме проведенной поверки анализаторов в целях её подтверждения передаются в Федеральный информационный фонд по обеспечению единства измерений в соответствии с Порядком создания и ведения Федерального информационного фонда по обеспечению единства измерений. Знак поверки наносится на свидетельство о поверке.
- 12.3 Свидетельство о поверке или извещение о непригодности к применению средства измерений выдаётся по заявлению владельцев анализаторов или лиц, представивших их на поверку. Свидетельство о поверке или извещение о непригодности к применению средства измерений должны быть оформлены в соответствии с требованиями действующих правовых нормативных документов. Знак поверки наносится на свидетельство о поверке.

Начальник лаборатории № 441 ФБУ «Ростест-Москва»

Начальник сектора лаборатории № 441 ФБУ «Ростест-Москва»

С. Н. Голышак

А. С. Каледин

35