

Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт метрологической службы»

119361, г. Москва, ул. Озерная, 46

Тел.: (495) 437 55 77 E-mail: Office@vniims.ru Факс: (495) 437 56 66 www.vniims.ru

СОГЛАСОВАНО

Заместитель директора неском по производственной метрологии ФГБУ «ВНИИМС» А.Е. Коломин «29 » июля 2022 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Системы термометрии волоконно-оптические распределенного типа СТВОР

МЕТОДИКА ПОВЕРКИ МП 207-024-2022

Общие положения

Настоящая методика распространяется на системы термометрии волоконнооптические распределенного типа СТВОР (далее по тексту – системы или СТВОР) и устанавливает методы и средства их первичной и периодической поверок.

При определении метрологических характеристик в рамках проводимой поверки обеспечивается передача единицы температуры в соответствии с ГОСТ 8.558-2009 «ГСИ. Государственная поверочная схема для средств измерений температуры», подтверждающая прослеживаемость к государственному первичному эталону ГЭТ 34-2020 «Государственный первичный эталон единицы температуры в диапазоне от 0 до 3200 °С» и ГЭТ 35-2021 «Государственный первичный эталон единицы температуры - кельвина в диапазоне от 0,3 до 273,16 К».

При определении метрологических характеристик поверяемого средства измерений используется метод непосредственного сличения с эталонным термометром в суховоздушных термостатах, а также в камерах тепла-холода и в термошкафах.

1 Перечень операций поверки средства измерений

1.1 При проведении первичной и периодической поверок выполняют операции, приведённые в таблице 1.1.

Таблица 1.1

	Обязательность выполнения операций поверки при		Номер раздела (пункта) методики
Наименование операции поверки	первичной поверке	периодической поверке	поверки, в соответствии с которым выполняется операция поверки
Внешний осмотр	Да	Да	6
Контроль условий поверки (при подготовке к поверке и опробовании средства измерений)	Да	Да	7.1
Опробование (при подготовке к поверке и опробовании средства измерений)	Да	Да	7.3
Проверка программного обеспечения (ПО)	Да	Да	8
Определение метрологических характеристик средства измерений	Да	Да	9
Подтверждение соответствия средства измерений метрологическим требованиям	Да	Да	10

Примечания:

- 1. При получении отрицательных результатов в процессе проведения той или иной операции поверка прекращается.
- 2. Методикой поверки не допускается проводить поверку в сокращенном диапазоне измерений.

2 Требования к условиям проведения поверки

- 2.1 При проведении поверки соблюдают следующие условия:
- температура окружающего воздуха, °С

20±5;

- относительная влажность окружающего воздуха, %

45-80:

- атмосферное давление, кПа

84,0-106,7;

- напряжение питания, В

220 +10%;

- частота питающей сети, Гц

50±2.

- 2.2 Средства поверки должны быть защищены от вибраций и ударов, от внешних магнитных и электрических полей.
- 2.3 Подготавливают систему к работе в соответствии с Руководством по эксплуатации. На персональном компьютере устанавливают и запускают программное обеспечение (ПО) для конфигурации измерений и отображения результатов измерений.

3 Требования к специалистам, осуществляющим поверку

Поверка СИ должна выполняться специалистами организации, аккредитованной в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации на проведение поверки средств измерений данного вида, имеющими необходимую квалификацию, ознакомленными с эксплуатационной документацией и освоившими работу с техническими средствами, используемыми при поверке.

4 Метрологические и технические требования к средствам поверки

При проведении поверки применяют средства измерений и вспомогательное оборудование, указанные в таблице 4.1.

Таблица 4.1

Операция поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
п. 7.1 Контроль условий поверки	Средства измерений температуры окружающей среды от 15 до 25 °C с абсолютной погрешностью не более ±0,5 °C; Средства измерений относительной влажности окружающего воздуха от 30 до 80 % с абсолютной погрешностью не более ±3 %	Приборы комбинированные Testo 608-H1, Testo 608-H2, Testo 610, Testo 622, Testo 623, per.№ 53505-13
	Средства измерений атмосферного давления в диапазоне от 86 до 106,7 кПа с абсолютной погрешностью не более ±5 гПа	Измерители давления Testo 510, Testo 511, per. № 53431-13
п. 8 Определение метрологических характеристик	Термометры сопротивления (платиновые), электронные (цифровые) термометры эталонные, соответствующие требованиям к эталонам не ниже 3 разряда по ГПС в соответствии с ГОСТ 8.558-2009	Термометр сопротивления эталонный ЭТС-100, рег. № 19916-10

	Измерители электрического	Измеритель температуры
	сопротивления, соответствующие	многоканальный
	требованиям к эталонам не ниже 3	прецизионный МИТ
	разряда в соответствии с приказом	8.15(M), per. № 19736-11
*	Росстандарта от 30 декабря 2019 г.	
	№ 3456	
	Термостаты суховоздушные, печи,	Камера климатическая мод.
TR.	камеры тепла-холода, термошкафы с	MHU-880CSSA и др.
	нестабильностью поддержания	Печь муфельная
	заданного значения температуры в	высокотемпературная
	полезном объеме не более $\pm (0,10,2)$ °C	лабораторная Nabertherm
	(в течение 60-ти мин)	серии L/LT и др.
		Термошкаф (сушильный
		шкаф) Binder серии FD/FED
	*	и др.
		Емкость для
	8 4	термостатирования при
		комнатной температуре
	N NL 4 CA CA	(пассивный термостат)

Примечания:

- 1. Эталоны и средства измерений, применяемые в качестве эталонов, используемые при поверке, должны быть аттестованы или поверены в установленном порядке; применяемые средства измерений должны быть поверены; испытательное оборудование аттестовано.
- 2. Допускается применение аналогичных средств поверки, разрешенных к применению в Российской Федерации (внесенных в Федеральный информационный фонд по обеспечению единства измерений) и обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

5 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:

- ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности;
- требования безопасности, которые предусматривают «Правила по охране труда при эксплуатации электроустановок (ПОТЭУ)» (Приказ от 15 декабря 2020 года № 903н);
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений и средства испытаний;
- указания по технике безопасности, приведенные в руководстве по эксплуатации термометров.

6 Внешний осмотр средства измерений

При внешнем осмотре устанавливают отсутствие механических повреждений, коррозии, нарушений покрытий, надписей и других дефектов, которые могут повлиять на работу термометра и на качество поверки.

7 Подготовка к поверке и опробование средства измерений

- 7.1 Контроль условий поверки
- 7.1.1 В помещении, где будет проходить поверка средств измерений необходимо провести контроль условий окружающей среды определить температуру и влажность окружающей среды, а также атмосферное давление.
- 7.1.2 Результаты контроля окружающей среды заносят специальный журнал, а также отражают в протоколе поверки средства измерений.
 - 7.2 Подготовка к поверке средства измерений:

- 7.2.1. Все компоненты система перед проведением поверки должны предварительно выдерживаться в нерабочем состоянии при температуре окружающего воздуха от 15 до 25 °C, не менее:
- 12 ч при разнице температур воздуха в помещении и местом, откуда вносится СИ, более 10 °C;
- 1 ч при разнице температур воздуха в помещении и местом, откуда вносится СИ, от 1 до 10 °C:
 - при разнице указанных температур менее 1 °C выдержка не требуется.
 - 7.3 Опробование
- 7.3.1 Собирают и подключают систему в соответствии с Руководством по эксплуатации. Далее размещают кабель системы на рабочей поверхности стола и при помощи соответствующего ПО считывают результаты измерений, соответствующие текущим значениям температуры воздуха в лаборатории.
- 7.3.2 Результат проверки положительный, если выполняется вышеперечисленное требование.

8 Проверка программного обеспечения средства измерений

Проверка систем проводится в форме подтверждения соответствия тому ПО, которое было документировано (внесено в базу данных) при испытаниях в целях утверждения типа. Процедура соответствия сводится к сравнению идентификационных данных ПО систем с данными, которые были внесены в описание типа.

Система считается поверенной, если идентификационные данные совпадают с данными указанными в таблице 8.1.

Таблица 8.1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	CTBOP_las_dts
Номер версии (идентификационный номер) ПО, не ниже	2.1
Цифровой идентификатор программного обеспечения	не применяется

9 Определение метрологических характеристик средства измерений

- 9.1 Определение основной абсолютной погрешности
- 9.1.1 При первичной поверке погрешность определяют в 4-х контрольных точках, находящихся внутри диапазона измерений температуры, включая нижний и верхний пределы диапазона, и используют при этом в зависимости от длины, конструктивного исполнения и максимальной температуры применения кабеля: суховоздушные термостаты, климатические камеры (камеры тепла-холода), термошкафы (сушильные шкафы) или лабораторные печи.
- 9.1.2 Помещают кабель системы, свернутый в бухту, в рабочее пространство термостата, камеры, печи или шкафа (в зависимости от требуемой температуры). Туда же помещают и эталонный термометр. Далее в соответствии с Руководством по эксплуатации на оборудование устанавливают первую контрольную точку и после достижения теплового равновесия между термостатируемой средой, поверяемым и эталонным СИ при помощи соответствующего ПО считывают и фиксируют результаты измерений распределения температуры (при установленном времени единичного измерения, равном 1200 с) и заносят их в протокол измерений. Параллельно заносят в протокол значения температуры, измеренные эталонным термометром. Проводят не менее 2-х 3-х измерений и после снятия показаний устанавливают следующую контрольную точку и проводят аналогичные операции.
- 9.1.3 При периодической поверке погрешность систем определяют при температуре окружающей среды в специальном технологическом «шкафу», который в данном случае является пассивным термостатом, при помощи эталонного термометра. Данный «шкаф» должен быть установлен между аппаратной с размещенным в ней измерительным модулем системы и, например, скважиной, в которой будет находится волоконно-оптический кабель.

Размеры «шкафа» должны быть таковыми, чтобы в внутри него могла бы разместиться бухта кабеля с длиной не менее 300 м. Также в «шкафу» должно быть предусмотрено технологическое отверстие для ввода во внутреннее пространство первичного преобразователя температуры эталонного термометра.

- 9.1.4 Помещают первичный преобразователь температуры эталонного термометра в пассивный термостат, в котором уже находится бухта волоконно-оптического кабеля. Далее, для определения местоположения контролируемого участка по длине кабеля, помещают на некоторое время в пассивный термостат дополнительное нагревательное устройство направленного действия (бытовой фен) и нагревают в течение 10-15 минут. Местоположение проверяемого участка определяют и фиксируют на графике распределения температуры по всей длине волоконно-оптического кабеля, которая индицируется на мониторе персонального компьютера.
- 9.1.5 Извлекают нагревательное устройство из пассивного термостата, закрывают его и выдерживают кабель и первичный преобразователь температуры эталонного термометра в пассивном термостате в течение не менее 6-ти часов до установления теплового равновесия. Далее снимают серию показаний температуры в проверяемом участке оптоволоконного кабеля и соответствующие им показания эталонного термометра.
 - 9.1.6 Далее, находят погрешность в соотв. с п.10.

10 Подтверждение соответствия средства измерений метрологическим требованиям

- 10.1 После завершения всех измерений вычисляют средние арифметические значения показаний системы и эталонного термометра.
 - 10.2 Погрешность системы (Δ) в каждой контрольной точке вычисляют по формуле:

$$\Delta = tx - t3$$
,

где: t_X – среднее арифметическое значение показаний системы, °С;

- tэ среднее арифметическое значение показаний эталонного термометра, °С.
- 10.3 В том случае, если погрешность системы при первичной поверке превышает предельно допустимое значение, необходимо провести рекалибровку (подстройку) при помощи соответствующего программного обеспечения. После завершения процедуры подстройки системы проверяют погрешность по п.9.
- 10.4 Система считается выдержавшей поверку, если полученное значение основной абсолютной погрешности в каждой проверяемой точке не превышает допускаемых нормированных значений, указанных в Приложении А настоящей методики.

11 Оформление результатов поверки

- 11.1 Сведения о результатах поверки системы в соответствии с действующим законодательством в области обеспечения единства измерений РФ передаются в Федеральный информационный фонд по обеспечению единства измерений.
- 11.2 Системы, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. По заявлению владельца средства измерений или лица, представившего его на поверку, на средство измерений выдается свидетельство о поверке.
- 11.3 При отрицательных результатах поверки на средство измерений по заявлению владельца средства измерений или лица, представившего его на поверку, оформляется извещение о непригодности к применению.

Начальник отдела 207 ФГБУ «ВНИИМС» А.А. Игнатов

Таблица А.1

Наименование характеристики	Значение
Диапазон измерений температуры, °С (1)	от -60 до +350
Пределы допускаемой абсолютной погрешности, °С	$\pm 0,5^{(2)}$
Минимальное время единичного измерения, с	30
Разрешение (наименьший разряд цифрового кода в режиме измерений), °C	0,001
Пространственное разрешение (3), м	
(в зависимости от исполнения системы):	
- CTBOP-1/2-1 (2;8)-MM, CTBOP-1/2-1 (2;8)-OM	0,5;
- CTBOP-1-1 (2;8)-MM, CTBOP-1-1 (2;8)-OM	1;
- CTBOP-2-1 (2;8)-MM, CTBOP-2-1 (2;8)-OM	2;
- CTBOP-4-1 (2;8)-MM, CTBOP-4-1 (2;8)-OM	4

Примечания:

(1) Допускается изготовление и применение систем в диапазонах измерений температуры, согласованных с пользователем, но лежащих внутри полного диапазона измерений. ⁽²⁾ При времени единичного измерения, равном 1200 с.

⁽³⁾ Пространственное разрешение представляет собой расстояние между точками 10 % и 90 % при реакции датчика на шаговое изменение температуры секции оптоволокна.