СОГЛАСОВАНО

WILL OF LAND A

Генеральный директор ООО «Энерготестконтроль»

Павленко А.М.

« 03 ноября 2022 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Ново- Салаватская ТЭЦ»

Методика поверки МП 26.51/185/22

Содержание

Стр.
1 ВВЕДЕНИЕ
2 ОБЩИЕ ПОЛОЖЕНИЯ
3 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ4
4 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ 5
5 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ7
6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ7
7 УСЛОВИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ7
8 ВНЕШНИЙ ОСМОТР
9 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ АИИС КУЭ
10 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ14
11 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК АИИС КУЭ15
12 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ
ТРЕБОВАНИЯМ15
13 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

1 ВВЕДЕНИЕ

Настоящая методика распространяется на измерительные каналы (далее - ИК) системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Ново-Салаватская ТЭЦ», заводской номер 044-22, предназначенной для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами ООО «Ново-Салаватская ТЭЦ», сбора, хранения, обработки и передачи полученной информации. Выходные данные системы могут использоваться для коммерческих расчетов.

2 ОБЩИЕ ПОЛОЖЕНИЯ

Поверке подлежит каждый ИК АИИС КУЭ, реализующий косвенный метод измерений электрической энергии. ИК подвергают поверке покомпонентным (поэлементным) способом с учетом положений раздела 8 ГОСТ Р 8.596-2002.

Первичную поверку системы выполняют после утверждения типа АИИС КУЭ. Допускается при поверке использовать положительные результаты испытаний по опробованию методики поверки. При этом свидетельство о поверке оформляется только после утверждения типа.

Периодическую поверку системы выполняют в процессе эксплуатации.

Периодичность поверки АИИС КУЭ осуществляется в соответствии с установленным при утверждении ее типа интервалами поверки.

Для обеспечения прослеживаемости, входящие в состав ИК АИИС КУЭ средства измерений, должны быть утвержденных типов и поверяться по соответствующим методикам поверки, в соответствии с интервалами между поверками, установленными при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки АИИС КУЭ, поверяется только этот компонент и поверка АИИС КУЭ в целом не проводится. После поверки измерительного компонента и восстановления ИК выполняется проверка ИК в той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой измерительного компонента, не нарушили метрологических свойств ИК (схема соединения, коррекция времени и т.п.).

При наступлении событий в процессе эксплуатации, которые могли повлиять на метрологические характеристики АИИС КУЭ (ремонт системы, замена ее измерительных компонентов, аварии в энергосистеме) проводится внеочередная поверка в объеме первичной поверки АИИС КУЭ. Допускается подвергать поверке только те ИК, которые подверглись указанным воздействиям, при условии, что собственник АИИС КУЭ подтвердит официальным заключением, что остальные ИК этим воздействиям не подвергались. В этом случае оформляется свидетельство о поверке системы с перечнем поверенных ИК. Допускается проведение поверки только тех ИК АИИС КУЭ, которые подверглись вышеуказанным воздействиям с обязательным указанием в приложении к свидетельству о поверке информации об объеме проведенной поверки, срок действия свидетельства о поверке на АИИС КУЭ в части указанных ИК, устанавливается до окончания срока действия основного свидетельства о поверке.

Во всех указанных случаях оформляется технический акт о внесенных изменениях, который должен быть подписан руководителем или уполномоченным им лицом и руководителем или представителем метрологической службы Предприятия -владельца. Технический акт хранится совместно со свидетельством о поверке, как неотъемлемая часть эксплуатационных документов на АИИС КУЭ.

Допускается проведение поверки отдельных измерительных каналов из состава АИИС КУЭ в соответствии с заявлением владельца АИИС КУЭ, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

Средства поверки (эталоны, средства измерений и вспомогательные технические средства), указываемые в методике поверки, должны обеспечивать определение метрологических характеристик поверяемого средства измерений с требуемой точностью, передачу единиц величин средству измерений при его поверке и прослеживаемость эталонов и средств измерений, применяемых при поверке, к государственным первичным эталонам единиц величин.

Прослеживаемость измерений в АИИС КУЭ обеспечивается посредством неразрывной цепи поверок средств измерений (измерительных компонентов), входящих в состав АИИС КУЭ, связывающими их с государственными первичным эталонам:

- ГЭТ1-2022 "ГПЭ единиц времени, частоты и национальной шкалы времени";
- ГЭТ 153-2019 "ГПЭ единицы электрической мощности в диапазоне частот от 1 до 2500 Гц";
- ГЭТ 175-2019 "ГПСЭ единиц коэффициента масштабного преобразования и угла фазового сдвига электрического напряжения переменного тока промышленной частоты в диапазоне от $0,1/\sqrt{3}$ до $750/\sqrt{3}$ кВ и единиц электрической емкости и тангенса угла потерь на напряжении переменного тока промышленной частоты в диапазоне от 1 до 500 кВ";
- ГЭТ 152-2018 "ГПЭ единиц коэффициентов преобразования силы электрического тока".
 Перечень ИК АИИС КУЭ приведен в формуляре.

3 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Обязательность проведения операции при		Номер раздела (пункта) методики
Наименование операции	первичной поверке	периодической поверке	поверки, в соответствии с которым выполняется операция поверки
1	2	3	4
1. Внешний осмотр АИИС КУЭ	Да	Да	8
2. Подготовка к поверке и опробование АИИС КУЭ	Да	Да	9.1, 9.2
3. Проверка соответствия измерительных компонентов АИИС КУЭ	Да	Да	9.3
4. Проверка счетчиков электрической энергии	Да	Да	9.4
4. Проверка функционирования УСПД энергии	Да	Да	9.5
5. Проверка функционирования центрального компьютера (сервера ИВК) АИИС КУЭ	Да	Да	9.6
6. Проверка функционирования вспомогательных устройств	Да	Да	9.7
7. Проверка нагрузки на вторичные цепи измерительных трансформаторов тока	Да	Да	9.8
8. Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения	Да	Да	9.9

Продолжение таблицы 1

1	2	3	4
9. Проверка падения напряжения в линии связи счетчика с измерительным трансформатором напряжения	Да	Да	9.10
10. Проверка системы обеспечения единого времени (COEB)	Да	Да	9.11
11. Проверка отсутствия ошибок информационного обмена	Да	Да	9.12
12. Проверка программного обеспечения АИИС КУЭ	Да	Да	10
13. Определение метрологических характеристик АИИС КУЭ	Да	Да	11
14. Подтверждение соответствия средства измерений метрологическим требованиям	Да	Да	12
15. Оформление результатов поверки	Да	Да	13

4 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

При проведении поверки применяют средства измерений в соответствии с методиками поверки, указанными в описании типа на средства измерений (измерительные компоненты) АИИС КУЭ эталоны и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в таблице 2.

Таблица 2

Операции поверки, требующие примене-ние средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
1	2	3
Раздел 7 Требования к условиям проведения поверки	Температура окружающего воздуха диапазон измерений: от -40 до +60 °C предел абсолютной погрешности: не более ± 1 °C	
	Барометрическое давление диапазон измерений: от 840 до 1060 гПа предел абсолютной погрешности: не более ± 3 гПа	Измеритель влажности и температуры ИВТМ-7 (рег. № 71394-18)
	Относительная влажность окружающего воздуха диапазон измерений: от 0 до 99% предел относительной погрешности: не более ± 2 %	

Продолжение таблицы 2

1	2	3
	Частота переменного тока диапазон измерений: от 45 до 75 Гц предел допускаемой абсолютной погрешности: $\pm 0,01$ Гц	Прибор для измерений электроэнергетических величин и показателей качества электрической энергии «Энергомонитор-3.3Т» (рег. № 31953-06) эталон 2 разряда согласно Приказу Росстандарта от 23.07.2021 № 1436
п. 9.8-9.10 Проверка нагрузки на вторичные цепи измерительных трансформаторов тока. Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения. Проверка падения напряжения в линии связи счетчика с измерительным трансформатором напряжения	Действующее (среднеквадратичное) значение переменного напряжения (U), В диапазон измерений: от 0,01 Uн до 1,5 Uн предел допускаемой относительной погрешности: $\pm [0,1+0,01((Uh/U)-1)]\%$ Действующее (среднеквадратичное) значение переменного тока (I), А диапазон измерений: от 0,005 I _н до 1,5 I _н предел допускаемой относительной погрешности: $\pm [0,1+0,05((Ih/I)-1)]\%$	Прибор для измерений электроэнергетических величин и показателей качества электрической энергии «Энергомонитор-3.3Т» (рег. № 39952-08) Прибор для измерений электроэнергетических величин и показателей качества электрической энергии «Энергомонитор-3.3Т» (рег. № 31953-06) эталон 2 разряда согласно
	Электрическая мощность диапазон измерений: от 0.01 до $1.2U_{\text{ном}}$ предел допускаемой относительной погрешности: ± 0.01 %	Приказу Росстандарта от 23.07.2021 № 1436
обеспечения единого времени (СОЕВ)	Смещения шкалы времени компонентов СОЕВ АИИС КУЭ относительно национальной шкалы координированного времени UTC (SU). Предел допускаемой абсолютной погрешности привязки фронта выходного импульса 1 Гц к шкале координированного времени UTC ±1 мкс с ПО и оптический преобразователь для работы со	Радиочасы МИР РЧ-02 (рег. № 46656-11) эталон 4 разряда согласно Приказу Росстандарта от 31.07.2018 № 1621

Примечания:

- 1. Допускается применение других средств поверки с метрологическими характеристиками, обеспечивающими требуемые точности измерений (согласно таблице 2).
- 2. Все средства измерений, применяемые при поверке, должны быть утвержденного типа и иметь действующие свидетельства о поверке. Эталоны единиц величин, используемые в методиках поверки, должны быть утверждены приказом Федерального агентства по техническому регулированию и метрологии в соответствии с пунктом 6 Положения об эталонах единиц величин ,используемых в сфере государственного регулирования обеспечения единства измерений, утвержденного постановлением Правительства Российской Федерации от 23 сентября 2010 г. № 734

5 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

- 5.1 К проведению поверки АИИС КУЭ допускают работников организаций, аккредитованных в области обеспечения единства измерений на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучивших настоящую методику поверки и формуляр АИИС КУЭ, имеющих опыт работы по поверке измерительных систем. Для выполнения отдельных операций поверки допускаются работники, удовлетворяющие требованиям, приведенным в п.п. 5.2 5.5.
- 5.2 Определение погрешности часов компонентов АИИС КУЭ и отсутствия ошибок информационного обмена осуществляется работниками, имеющими опыт работы в области измерений электрических величин, изучившими вышеуказанные документы, а также руководство пользователя по работе с радиочасами МИР РЧ-02, принимающим сигналы глобальной навигационной спутниковой системы ГЛОНАСС.
- 5.3 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику измерений вторичной нагрузки измерительных трансформаторов тока.
- 5.4 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику измерений вторичной нагрузки измерительных трансформаторов напряжения.
- 5.5 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы в электроустановках выше 1000 В с группой по электробезопасности не ниже IV, второй удостоверение, подтверждающее право работы в электроустановках выше 1000 В с группой по электробезопасности не ниже III.

ВНИМАНИЕ.

При проведении поверочных и измерительных работ должны присутствовать работники объекта, на котором размещены компоненты АИИС КУЭ, имеющие опыт работы и право на подключение и отключение эталонных и поверяемых средств измерений в соответствии со схемой поверки или с методикой измерений.

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», «Правилами по охране труда при эксплуатации электроустановок», а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.
- 6.2 Эталоны, средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003-91, ГОСТ 12.2.007.3-75, ГОСТ 12.2.007.7-75.

7 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

Влияющие величины, определяющие условия проведения поверки АИИС КУЭ должны находиться в следующих диапазонах:

от 90 до 110
от 1 до 120
от 0,5 инд. до 1 емк
от 49,6 до 50,4
от -40 до +40
от +5 до +35
от +10 до + 30
от +10 до + 30
от 80,0 до 106,7
98

8 ВНЕШНИЙ ОСМОТР АИИС КУЭ

- 8.1 Проверяют целостность корпусов и отсутствие видимых повреждений средств измерений (измерительных компонентов) АИИС КУЭ, наличие поверительных пломб и клейм на измерительных компонентах.
- 8.2 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

Результаты проверки считаются положительными, если:

- не выявлено видимых повреждений измерительных компонентов, имеются пломбы и клейма на измерительных компонентах;
 - не выявлено следов коррозии и нагрева в местах подключения проводных линий;
- В случае выявления несоответствия по пунктам 8.1-8.2 поверку приостанавливают до устранения выявленных несоответствий.
- В случае невозможности устранения выявленных несоответствий по пунктам 8.1-8.2 АИИС КУЭ в части неисправных ИК бракуется.

9 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ АИИС КУЭ

- 9.1 Перед проведением поверки выполняют следующие подготовительные работы:
- проводят технические и организационные мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководством по эксплуатации применяемого оборудования;
- средства поверки выдерживают в условиях и в течение времени, установленных в их эксплуатационных документах.
 - 9.2 Для проведения поверки представляют следующую документацию:
 - формуляр;
 - описание типа АИИС КУЭ;
- свидетельств о поверке средств измерений (измерительных компонентов), входящих в ИК и свидетельство о предыдущей поверке системы (при периодической и внеочередной поверке);
- паспорта-протоколы на ИК, рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за межповерочный интервал (только при периодической поверке).

Проверяют правильность расположения и монтажа измерительных компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии, правильность прокладки проводных линий по проектной документации на АИИС КУЭ.

В случае выявления несоответствия по пунктам 9.1.-9.2 поверку приостанавливают до

устранения выявленных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 9.1-9.2 АИИС КУЭ в части неисправных ИК бракуется.

9.3. Проверка соответствия измерительных компонентов АИИС КУЭ

- 9.3.1. Проверяют соответствие типов и заводских номеров компонентов, входящих в состав ИК АИИС КУЭ, типам и заводским номерам указанным в описании типа или Паспортеформуляре АИИС КУЭ.
- 9.3.2. Проверяют наличие свидетельств о поверке и срок их действия для всех измерительных компонентов АИИС КУЭ: измерительных трансформаторов тока и напряжения, счетчиков электрической энергии, УСПД, УСВ. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов по методикам поверки, утвержденным при утверждении их типа.

В случае выявления несоответствия по пунктам 9.3.1-9.3.2 поверку приостанавливают до устранения выявленных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 9.3.1-9.3.2 АИИС КУЭ в части неисправных ИК бракуется.

9.4. Проверка счетчиков электрической энергии

9.4.1. Проверяют наличие и сохранность пломб на счетчиках и испытательной коробке. Проверяют наличие оригиналов актов, подтверждающих правильность подключения счетчиков к цепям тока и напряжения, в частности, правильность чередования фаз.

При отсутствии таких актов или нарушении (отсутствии пломб) проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения-схемам, приведенным в паспорте на счетчик.

- 9.4.2. Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- 9.4.3. Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Оптический преобразователь подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.
- 9.4.4. Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально.

Результаты проверки считаются положительными, если:

- подтверждена правильность подключения счетчиков к цепям тока и напряжения, а также последовательность чередования фаз;
- все сегменты индикаторов счетчиков работают, отсутствуют коды ошибок или предупреждений;
- при опросе счетчика по оптическому порту с помощью переносного компьютера получен отчет, содержащий данные, зарегистрированные счетчиком;
 - календарная дата в счетчике соответствует текущей календарной дате;
- в памяти счетчика имеются получасовые значения приращений активной и реактивной электроэнергии за выбранный период времени.

В случае выявления несоответствия по пунктам 9.4.1-9.4.4 поверку приостанавливают до устранения выявленных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 9.4.1-9.4.4 АИИС КУЭ в части неисправных ИК бракуется.

9.5. Проверка функционирования УСПД

- 9.5.1. Проверяют наличие и сохранность пломб на УСПД. При отсутствии или нарушении пломб проверяют правильность подсоединения УСПД.
- 9.5.2. Проверяют правильность функционирования УСПД в соответствии с эксплуатационной документацией с помощью тестового программного обеспечения, поставляемого в комплекте с УСПД.

Проверка считается успешной, если все подсоединенные к УСПД счетчики опрошены и нет сообщений об ошибках.

- 9.5.3. Проверяют программную защиту УСПД от несанкционированного доступа в соответствии с эксплуатационным документом на УСПД.
- 9.5.4. Проверяют правильность значений коэффициентов трансформации измерительных трансформаторов тока и напряжения, хранящихся в памяти процессора УСПД.

При обнаружении несоответствий по п. 9.5 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.6. Проверка функционирования центрального компьютера (сервера ИВК) АИИС КУЭ

9.6.1. Проводят опрос текущих показаний всех счетчиков электроэнергии.

Проверку считают успешной, если все счетчики опрошены и нет сообщений об ошибках, а также получен отчет, содержащий данные, зарегистрированные счетчиком.

- 9.6.2. Проверяют глубину хранения измерительной информации в центральном компьютере (сервере ИВК) АИИС КУЭ.
- глубина хранения измерительной информации в центральном компьютере (сервере ИВК) АИИС КУЭ соответствует указанной в эксплуатационной документации АИИС КУЭ.
- 9.6.3. Проверяют защиту программного обеспечения на компьютере (сервере ИВК) АИИС КУЭ от несанкционированного доступа. Для этого запускают на выполнение программу сбора данных и в поле «пароль» вводят неправильный код.

Проверку считают успешной, если при вводе неправильного пароля программа не разрешает продолжать работу.

9.6.4. Проверяют работу аппаратных ключей. Выключают компьютер и снимают аппаратную защиту (отсоединяют ключ от порта компьютера). Включают сервер, загружают операционную систему и запускают программу.

Проверку считают успешной, если получено сообщение об отсутствии «ключа защиты».

9.6.5. Проверяют правильность коэффициентов трансформации измерительных трансформаторов тока и напряжения.

Проверку считают успешной, если коэффициенты трансформации измерительных трансформаторов тока и напряжения соответствуют паспортным.

В случае выявления несоответствия по пунктам 9.6.1-9.6.5 поверку приостанавливают до устранения выявленных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 9.6.1-9.6.5 АИИС КУЭ в части неисправных ИК бракуется.

9.7. Проверка функционирования вспомогательных устройств

9.7.1. Проверка функционирования модемов

Проверяют функционирование модемов, используя коммуникационные возможности специальных программ из состава ПО АИИС КУЭ, определяемой согласно руководству пользователя ПО.

Проверку считают успешной, если:

 были установлены коммутируемые соединения и по установленным соединениям успешно прошел опрос счетчиков. Допускается автономная проверка модемов с использованием тестового программного обеспечения.

9.7.2. Проверка функционирования адаптеров интерфейса

Используя кабель RS232 подключают к адаптерам переносной компьютер с программным обеспечением.

Проверку считают успешной, если:

- удалось опросить все счетчики, подключенные к данному адаптеру.

В случае выявления несоответствия по пунктам 9.7.1-9.7.2 поверку приостанавливают до устранения выявленных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 9.7.1-9.7.2 АИИС КУЭ в части неисправных ИК бракуется.

9.8. Проверка нагрузки на вторичные цепи измерительных трансформаторов тока

- 9.8.1. Проверяют наличие документов, подтверждающих правильность подключения вторичных обмоток ТТ. При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.
- 9.8.2. Измеряют мощность нагрузки вторичных цепей ТТ, которая должна находиться в диапазоне, указанном в ГОСТ 7746-2001 (ГОСТ 7746-2015) или в описании типа средств измерений на конкретный тип ТТ.

Измерение мощности нагрузки вторичных цепей ТТ проводят в соответствии с документом МИ 3196-2018 «Государственная система обеспечения единства измерений. Методика измерений мощности нагрузки трансформаторов тока в условиях эксплуатации».

При отклонении мощности нагрузки вторичных цепях TT от заданного значения, процедуру поверки приостанавливают до устранения данных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 9.8.1-9.8.2 АИИС КУЭ в части неисправных ИК бракуется.

Примечания

1 Допускается измерения мощности нагрузки вторичных цепей ТТ не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего межповерочного интервала АИИС КУЭ.

Результаты поверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для TT.

- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам TT.
- 3 Допускается проведение измерений в соответствии с другими аттестованными методиками измерений.

При обнаружении несоответствий по п. 9.8. АИИС КУЭ в части неисправных ИК бракуется.

9.9. Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения

9.9.1. Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи ТН и счетчиков.

Проверяют наличие документов, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушения (отсутствия) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.

9.9.2. При проверке нагрузки вторичных цепей ТН необходимо убедиться в том, что напряжение при нагруженной вторичной обмотке составляет не более 10 % от U ном.

Измеряют мощность нагрузки вторичных цепей ТН, которая должна находиться в диапазоне, указанном в ГОСТ 1983-2001 (ГОСТ 1983-2015) или в описании типа средств измерений на конкретный тип ТН.

Измерение мощности нагрузки вторичных цепей ТН проводят в соответствии с документом МИ 3195-2018 «Государственная система обеспечения единства измерений. Методика измерений мощности нагрузки измерительных трансформаторов напряжения в условиях эксплуатации», аттестованном в установленном порядке и зарегистрированном в Федеральном информационном фонде по обеспечению единства измерений.

При отклонении мощности нагрузки вторичной цепи ТН от заданного значения, процедуру поверки приостанавливают до устранения данных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 9.9.1-9.9.2 АИИС КУЭ в части неисправных ИК бракуется.

Примечания

1 Допускается измерения мощности нагрузки вторичных цепей ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего межповерочного интервала АИИС КУЭ.

Результаты поверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТН.

- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТН.
- 3 Допускается проведение измерений в соответствии с другими аттестованными методиками измерений.

При обнаружении несоответствий по п. 9.9. АИИС КУЭ в части неисправных ИК бракуется.

9.10 Проверка падения напряжения в линии связи счетчика с измерительным трансформатором напряжения

Измерение падения напряжения Uл в линии связи для каждой фазы проводят в соответствии с МИ 3598-18 «Государственная система обеспечения единства измерений. Методика измерения потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации», аттестованном в установленном порядке и зарегистрированном в Федеральном информационном фонде по обеспечению единства измерений.

Падение напряжения не должно превышать 0,25 % номинального вторичного напряжения трансформатора напряжения.

При превышении значения падения напряжения в линии связи счетчика с ТН более 0,25%, процедуру поверки приостанавливают до устранения данных несоответствий.

В случае невозможности устранения выявленных несоответствий по пункту 9.10. АИИС КУЭ в части неисправных ИК бракуется.

Примечания

- 1 Допускается измерение падения напряжения в линии связи счетчика с ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего интервала между поверками АИИС КУЭ, и если в измерительный канал не вносились изменения, не зафиксированные в соответствующем паспорте-протоколе.
- 2 Допускается падение напряжения в линии соединения счетчика с TH определять расчетным путем, если известны параметры линии связи и сила электрического тока, протекающего через линию связи.
- 3. Допускается проведение измерений в соответствии с другими аттестованными методиками измерений.

Результаты проверки считаются положительными, если:

 измеренное значение падения напряжения в линии соединения счетчика с ТН не превышает 0,25 % номинального вторичного напряжения трансформатора напряжения или подтверждается выполнение указанного выше условия в паспорте-протоколе.

При обнаружении несоответствий по п. 9.10 АИИС КУЭ в части неисправных ИК бракуется.

9.11. Проверка системы обеспечения единого времени (СОЕВ)

9.11.1. Определение абсолютной погрешности смещения шкалы времени компонентов СОЕВ АИИС КУЭ относительно национальной шкалы координированного времени РФ UTC (SU).

Включают радиочасы МИР РЧ-02, принимающие сигналы глобальной навигационной спутниковой системы ГЛОНАСС, и сверяют показания радиочасов МИР РЧ-02 с показаниями часов счетчиков и сервера ИВК.

Результат проверки считается положительным, если предел абсолютной погрешности синхронизации компонентов СОЕВ АИИС КУЭ к шкале координированного времени UTC (SU) не превышает \pm 5 с.

9.11.2. Проверка работы СОЕВ

Проверить правильность работы СОЕВ, определяя по журналу событий расхождение времени корректирующего и корректируемого компонента в момент, предшествующий коррекции.

Результат проверки считается положительным, если расхождение времени корректирующего и корректируемого компонента в момент, предшествующий коррекции не превышает значения в описании типа.

При обнаружении несоответствий по п. 9.11.1. и 9.11.2 АИИС КУЭ в части неисправных ИК бракуется.

9.12 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального компьютера (сервера).

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

- 9.12.1. На центральном компьютере (сервере ИВК) системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом за полные предшествующие дню поверки сутки, по всем ИК. Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента системы.
- 9.12.2. Распечатывают журнал событий счетчика и сервера и отмечают моменты нарушения связи между измерительными компонентами системы. Проверяют сохранность измерительной информации в памяти центральных компьютерах (серверах) системы на тех интервалах времени, в течение которого была нарушена связь.
- 9.12.3 Распечатывают на сервере ИВК профиль нагрузки за полные сутки, предшествующие дню поверки. Используя переносной компьютер, считывают через оптопорт профиль нагрузки за те же сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального компьютера (сервера) не должно превышать две единицы младшего разряда учтенного значения.

При обнаружении несоответствий по п. 9.12.1 - 9.12.3 АИИС КУЭ в части неисправных ИК бракуется.

10. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

10.1 Проводят проверку соответствия заявленных идентификационных данных программного обеспечения, указанных в описании типа и эксплуатационной документации:

наименование программного обеспечения;

идентификационное наименование программного обеспечения;

номер версии (идентификационный номер) программного обеспечения;

цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода);

алгоритм вычисления цифрового идентификатора программного обеспечения в соответствии с Р 50.2.077-2014 "ГСИ. Испытания средств измерений в целях утверждения типа.

Проверка защиты программного обеспечения" и ГОСТ Р 8.654-2015 "ГСИ. Требования к программному обеспечению средств измерений. Основные положения".

10.2 Проверка идентификации программного обеспечения АИИС КУЭ

Убедиться, что идентификационное наименование и номер версии программного обеспечения соответствуют заявленным в описании типа.

Результат проверки считать положительным, если:

идентификационное наименование и номер версии программного обеспечения соответствует заявленному в описании типа.

10.3 Проверка цифрового идентификатора программного обеспечения

На выделенных модулях ПО проверить цифровой идентификатор и алгоритм вычисления цифрового идентификатора.

Проверка цифрового идентификатора программного обеспечения проводится на сервере, где установлено ПО.

Запустить менеджер файлов, позволяющий производить хеширование файлов или специализированное ПО, предоставляемое разработчиком.

В менеджере файлов, необходимо открыть каталог и выделить файлы, указанные в описании типа на АИИС КУЭ.

Далее запустив соответствующую программу, из состава ПО АИИС КУЭ, просчитать хэш. По результатам формируются файлы, содержащие код алгоритмов вычисления цифрового идентификатора в текстовом формате. Наименование файлов алгоритма вычисления цифрового идентификатора должно строго соответствует наименованию файлов, для которого проводилось хеширование.

Результаты проверки считаются положительными, если:

идентификационное наименование и номер версии программного обеспечения соответствует заявленному в описании типа;

цифровой идентификатор соответствует указанному в описании типа АИИС КУЭ;

В случае выявления несоответствия по пунктам 10.1-10.3 поверку приостанавливают до устранения выявленных несоответствий.

В случае невозможности устранения выявленных несоответствий по пунктам 10.1-10.3 АИИС КУЭ в части неисправных ИК бракуется.

11.ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК АИИС КУЭ

11.1 Рассчитывают границы интервала допускаемой относительной погрешности ИК в рабочих условиях ($\pm \delta$), %, при доверительной вероятности, равной 0,95 по формуле:

Гле

$$\delta_{W} = \pm 1, 1 \cdot \sqrt{\delta_{I}^{2} + \delta_{U}^{2} + \delta_{Q}^{2} + \delta n^{2} + \delta c.o.^{2} + \sum_{j=1}^{l} \delta_{CJ}^{2}}$$

δ і - токовая погрешность ТТ, %;

δ и - погрешность напряжения ТН, %;

- δ Q погрешность трансформаторной схемы подключения счетчика за счет угловых погрешностей TT и TH, %;
 - δ Л погрешность из-за потери напряжения в линии соединения счетчика с TH, %;
 - δ С.О основная относительная погрешность счетчика, %;
 - δ сj дополнительная погрешность счетчика от j-й влияющей величины.

При отсутствии в ИК каких-либо измерительных компонентов, соответствующие значения погрешностей в формуле не используются.

- 11.2 Определение пределов абсолютной погрешности синхронизации компонентов СОЕВ АИИС КУЭ к национальной шкале координированного времени РФ UTC (SU).
- 11.2.1 Рассчитывают пределов абсолютной погрешности смещения шкалы времени СОЕВ АИИС КУЭ к национальной шкале координированного времени РФ UTC (SU), используя данные, полученные в результате проверки по п. 9.11 по формуле:

 $\Delta t = t_3 - t_{K_i}$

гле

тэ -показания часов МИР РЧ-02, чч:мм:сс;

tк_і – показания часов і-го компонента АИИС КУЭ, чч:мм:сс;

Результат проверки считается положительным, если пределы абсолютной погрешности синхронизации компонентов СОЕВ АИИС КУЭ к национальной шкале координированного времени РФ UTC (SU) не превышают ± 5 с.

В случае выявления несоответствий по пунктам 11.1, 11.2 АИИС КУЭ в части неисправных ИК бракуется.

12 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

В процессе выполнения поверки специалист производит расчет погрешностей в соответствии с формулами, приведенными в настоящей методике. Конечные результаты расчетов должны быть представлены с соблюдением правил округления и обязательным указанием единиц измерений, вычисленной физической величины. Результаты считают удовлетворительными, если полученные (рассчитанные) значения погрешностей не превышают значений, приведенных в описании типа.

13 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

13.1 На основании положительных результатов по пунктам раздела 9 выписывают свидетельство о поверке АИИС КУЭ по форме и содержанию, удовлетворяющее требованиям Приказа Минпромторга России от 31.07.2020 № 2510 (Приложение №3) «Об утверждении Порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

В приложении к свидетельству указывают перечень и состав ИК с указанием

наименований, типов в соответствии со свидетельством об утверждении типа, заводских номеров средств измерений (измерительных компонентов), входящих в состав каждого ИК (для счетчиков электрической энергии, трансформаторов тока и напряжения указывают условное обозначение модификации и варианта исполнения в соответствии о свидетельством об утверждении типа СИ), прошедших поверку и пригодных к применению, также указывают наименования, типы и заводские номера УСПД (при наличии) и устройства синхронизации времени, отражают требования по защите АИИС КУЭ от несанкционированного вмешательства и их результаты.

Знак поверки наносится на свидетельство о поверке путем нанесения оттиска поверительного клейма. Знак поверки наносятся на средства измерений, которые по результатам поверки соответствуют метрологическим требованиям, и конструкция которых предусматривает возможность нанесения знаков поверки.

- 13.2 В случае, если отдельные ИК были забракованы по пунктам раздела 9, АИИС КУЭ признается непригодной к дальнейшей эксплуатации, в части ИК не прошедших с положительным результатом поверку и на нее выдают извещение о непригодности по форме и содержанию, удовлетворяющее требованиям Приказа Минпромторга России от 31.07.2020 № 2510 «Об утверждении Порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке», с указанием причин непригодности. В приложении к извещению о непригодности указывают перечень и состав ИК с указанием наименований, типов в соответствии со свидетельством об утверждении типа, заводских номеров средств измерений (измерительных компонентов), входящих в состав каждого ИК (для счетчиков электрической энергии, трансформаторов тока и напряжения указывают условное обозначение модификации и варианта исполнения в соответствии со свидетельством об утверждении типа СИ, также указывают наименования, типы и заводские номера УСПД (при наличии), устройства синхронизации времени), не соответствующих метрологическим требованиям, установленным в описании типа.
 - 13.3 Протокол поверки оформляется в произвольной форме.
- 13.4 Сведения о результатах поверки средств измерений в целях подтверждения поверки должны быть переданы в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком создания и ведения Федерального информационного фонда по обеспечению единства измерений, передачи сведений в него и внесения изменений в данные сведения, предоставления содержащихся в нем документов и сведений, предусмотренным частью 3 статьи 20 Федерального закона N 102-Ф3, аккредитованным на поверку лицом, проводившим поверку, в сроки, согласованные с лицом, представляющим средства измерений в поверку, но не превышающие 20 рабочих дней (для средств измерений, применяемых в качестве эталонов единиц величин) и 40 рабочих дней (для остальных средств измерений) с даты проведения поверки средств измерений.
- 13.5 При проведении поверки средств измерений в сокращенном объеме в соответствии с пунктом 18 Приказа Минпромторга России от 31.07.2020 № 2510 (только для применяемых величин или поддиапазонов измерений) или для применяемых отдельных измерительных каналов и (или) отдельных автономных блоков из состава средств измерений информация об объеме проведенной поверки передается в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком создания и ведения Федерального информационного фонда по обеспечению единства измерений, передачи сведений в него и внесения изменений в данные сведения, предоставления содержащихся в нем документов и сведений, предусмотренным частью 3 статьи 20 Федерального закона N 102-Ф3.

Разработчик:

Главный специалист ООО «Энерготестконтроль»

Плещук П.Д. «03» ноября 2022 г