

РСТ ФБУ «ТЕСТ-С.-ПЕТЕРБУРГ»

СОГЛАСОВАНО

Заместитель генерального директора

ФБУ «Тест-С-Петербург»

Государственная система обеспечения единства измерений

Модуль сбора и измерений МСИАЭ

Методика поверки ИБНШ.411734.001 МП

Содержание

1	Общие положения	. 3
2	Перечень операций поверки	. 3
3	Требования к условиям проведения поверки	. 4
4	Требования к специалистам, осуществляющим поверку	. 4
5	Метрологические и технические требования к средствам поверки	. 4
6	Требования (условия) по обеспечению безопасности проведения поверки	. 6
7	Внешний осмотр средства измерений	. 6
8	Подготовка к поверке и опробование средства измерений	. 6
9	Проверка программного обеспечения	.7
10	Определение сопротивления изоляции	. 7
1	1 Определение метрологических характеристик средства измерений	.7
1	2 Подтверждение соответствия средства измерений метрологическим требованиям	10
1.	3 Оформление результатов поверки	11
Π	риложение А Блок-схемы соединений средств поверки и модуля МСИАЭ	12
П	риложение Б Веб-интерфейс программы калибровки модуля МСИАЭ	13
П	риложение В Форма протокола поверки	18

1 Общие положения

Настоящая методика устанавливает методы и средства первичной и периодической поверок модуля сбора и измерений МСИАЭ (далее – модуль).

Модуль применяется в качестве рабочего средства измерений и предназначен для измерений значений импульсного электрического напряжения и напряжения постоянного тока, а также фиксации разности времени поступления входных электрических сигналов. Модуль применяется в составе специализированной системы акустико-эмиссионной диагностики «КАЭМС-ДК» совместно с широкополосными преобразователями акустической эмиссии при диагностировании состояния объекта контроля в процессе испытаний.

Настоящая методика поверки должна обеспечивать прослеживаемость к государственному первичному эталону единицы электрического напряжения (вольта) в диапазоне частот $10 \div 3 \times 10^7$ Γ ц Γ ЭТ 89-2008, государственному первичному эталону единицы ослабления электромагнитных колебаний в диапазоне частот от 0 до 178 Γ Гц Γ ЭТ 193-2011, государственному первичному эталону единицы электрического напряжения Γ ЭТ 13-01.

Метод, обеспечивающий реализацию методики поверки – прямое измерение поверяемым средством измерений величины, воспроизводимой эталоном.

В результате поверки должны быть подтверждены метрологические требования, приведенные в таблице 1.

Таблица 1 - Метрологические требования

Наименование характеристики	Значение
Циапазон частот измеряемых входных сигналов, кГц	от 10 до 1000
Циапазон измерений амплитуд входных сигналов, дБ	от 38 до 98*
Тределы допускаемой абсолютной погрешности измерений амплитуд эходных сигналов**, дБ, не более	±2
Неравномерность амплитудно-частотной характеристики***, дБ, не более	±3
Циапазон измерений разности времени поступления сигнала на заналы, мс	от 0,1 до 10,0
Тределы допускаемой абсолютной погрешности измерений разности времени поступления сигнала на каналы, мкс, не более	±2
Циапазон измерений напряжения параметрическим каналом, В	от ±0,2 до ±5,0
Тределы допускаемой абсолютной погрешности измерений напряжения параметрическим каналом, В, не более	±0,1
T	

Примечания

2 Перечень операций поверки средства измерений

При проведении поверки модуля должны быть выполнены операции, указанные в таблице 2.

^{1 *} Уровню напряжения 0 дБ соответствует пиковое значение амплитуды сигнала 100 мкВ на входе модуля.

^{2 **} На среднегеометрической частоте модуля.

^{3 ***} Относительно среднегеометрической частоты модуля.

Таблица 2 - Операции поверки

Наименование операции	Номер пункта	1 1000000000000000000000000000000000000	ть проведения ций при
	методики	первичной поверке и после ремонта	периодической поверке
1 Внешний осмотр средства измерений	7	+	+
2 Подготовка к поверке и опробование средства измерений	8	+	+
 Проверка программного обеспечения средства измерений 	9	+	+
4 Определение сопротивления изоляции	10	+	_
5 Определение метрологических характеристик средства измерений	11	+	+
6 Подтверждение соответствия средства измерений метрологическим требованиям	12	+	+
7 Оформление результатов поверки	13	+	+

3 Требования к условиям проведения поверки

При проведении поверки должны быть соблюдены следующие условия:

 температура окружающего воздуха, °С 	$(20 \pm 5);$
- относительная влажность воздуха, %	$(65 \pm 15);$
 атмосферное давление, кПа 	от 86,6 до 106,7
 напряжение питающей сети, В 	$(220 \pm 4,4);$
 частота питающей сети, Гц 	(50 ± 1) .

4 Требования к специалистам, осуществляющим поверку

К проведению поверки допускаются лица, аттестованные на право проведения поверки данного вида средств измерений, ознакомленные с устройством и принципом работы поверяемого средства измерений и средств поверки по эксплуатационной документации.

5 Метрологические и технические требования к средствам поверки

При проведении поверки должны применяться средства измерений, указанные в таблице 3. Таблица 3 — Требования к средствам поверки

Операции поверки, требующие применения средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
1	2	3
Разд. 8 Контроль условий поверки (при подготовке к поверке и опробовании средства измерений)	Средства измерений температуры окружающей среды в диапазоне измерений от 15 °C до 25 °C с абсолютной погрешностью не более ±1 °C Средства измерений относительной влажности воздуха в диапазоне от 50 % до 80 % с погрешностью не более ±2 % Средства измерений атмосферного давления в диапа-	нированные Testo 622, per. № 53505-13
	зоне от 96 до 104 кПа с абсолютной погрешностью не более ±0,5 кПа	1

Продолжение таблицы 3

1	2	3
Разд. 8 Контроль условий поверки (при подготовке к поверке и опробовании средства измерений)	ностью не более ±1 %	Мультиметры цифровые HIOKI DT4282, рег. № 52141-12
Разд. 10 Определение сопротивления изоляции	Измеритель сопротивления изоляции (на испытательное напряжение не ниже 2,5 кВ) в диапазоне измерения сопротивления от 500 Ом до 5 МОм с относительной погрешностью не более ±1 %	HIOKI IR4057-20,
Разд. 11 Определение метрологических характеристик	Генераторы (2 шт.) сигналов синусоидальной формы в диапазоне частот от 10 до 1000 кГц с погрешностью установки не более $\pm 2 \cdot 10^{-3}$ %, амплитудой выходного сигнала от 10 мВ до 10 В ($U_{\text{пик-пик}}$) с погрешностью установки не более ± 1 %, неравномерностью АЧХ (в диапазоне до 5 МГц) не более $\pm 0,3$ дБ обеспечивающие пакетный режим работы с числом периодов не менее 10 и периодом повторения не менее 1 с	налов произвольной формы 33220A,
		Генератор сигналов низкочастотный Г3-112/1 (с усилителем), рег. № 6703-78
	Вольтметр с диапазоном измеряемых напряжений от 0 до 750 В с погрешностью измерения напряжения синусоидального сигнала в диапазоне частот до 100 кГц не более ±1 %	цифровые
	Источник питания постоянного тока с диапазоном установки выходного напряжения от минус 5 до 5 В с погрешностью установки не более ±0,4 В и диапазоном установки выходного тока от 20 до 60 мА с погрешностью установки не более ±2 мА	ния постоянного тока и постоянно-
	Аттенюатор ступенчатый со ступенями затухания от 0 до 139 дБ, погрешностью не более $\pm (0,2+0,01\cdot A)$ и диапазоном частот от 0 до 1 ГГц	

Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице 3.

Применяемые средства измерений должны иметь действующие свидетельства о поверке.

6 Требования (условия) по обеспечению безопасности проведения поверки

6.1 При проведении поверки должны быть соблюдены правила техники безопасности согласно «Правилам устройства электроустановок», утвержденным Минэнерго России, «Правилам технической эксплуатации электроустановок потребителей» (ПТЭ), а также «Правилам техники безопасности при эксплуатации электроустановок потребителей», утвержденными Госэнергонадзором России.

7 Внешний осмотр средства измерений

- 7.1 При внешнем осмотре должно быть установлено соответствие модуля следующим требованиям:
 - наличие маркировки;
- отсутствие явных механических повреждений корпуса, соединительных кабелей и разъемов;
 - чистота контактов разъемов;
- отсутствие отсоединившихся или слабо закрепленных элементов внутри модуля (определить на слух при наклонах модуля и визуально).
- 7.2 В случае несоответствия модуля хотя бы одному из требований, приведенных в п. 7.1, выполняются мероприятия по устранению установленных недостатков.

8 Подготовка к поверке и опробование средства измерений

- 8.1 Перед проведением операций поверки необходимо:
- а) перед включением выдержать модуль в условиях, указанных в разделе 3 настоящей методики, не менее 4 часов;
 - б) подготовить средства поверки в соответствии с их эксплуатационной документацией;
 - в) выполнить контроль условий поверки.
 - 8.2 При опробовании необходимо выполнить следующие операции:
 - а) заземлить средства поверки и модуль;
 - б) подключить модуль к питающей сети;
- в) подключить кабелем Ethernet персональный настольный компьютер или ноутбук с программой-браузером типа Firefox (далее – калибровочный ПК) к верхнему разъему Ethernet модуля;
 - г) подать питание на модуль и калибровочный ПК;
 - д) прогреть модуль в течение 5 минут;
- e) на калибровочном ПК запустить программу-браузер и ввести сетевой адрес URL модуля (http://10.0.1.xx: 40080), указанный на его корпусе;
- ж) после появления в браузере окна программы «Калибровка» ввести следующие параметры настройки:
 - Режим калибровки = «Амплитуда»;
 - Канал = 1;
 - Канал 2 = 1;
 - Усиление, дБ = 0;
 - Порог, дБ = 0;
 - Усреднять через = 10;
 - Интервал опроса, мс = 500.

Активировать кнопки «Настроить» и «Старт», как указано в приложении Б.

Появление листинга сигналов в окне программы «Калибровка» является показателем готовности модуля к поверке.

Нажать кнопку «Стоп» в окне программы «Калибровка».

9 Проверка программного обеспечения средства измерений

- 9.1 Перед определением метрологических характеристик должна быть проведена проверка идентификационных данных программного обеспечения (далее ПО). Эта операция проводится методом проверки версии ПО и цифрового идентификатора ПО, которые отображаются в окне программы «Калибровка», как указано в приложении Б.
- 9.2 При несанкционированном вмешательстве в ПО не будет соответствия идентификационным данным, указанным в документации на модуль. В случае несоответствия поверку необходимо прекратить.

10 Определение сопротивления изоляции

- 10.1 При первичной поверке необходимо определить электрическое сопротивление изоляции модуля, для чего следует выполнить следующие операции:
 - подключить мегомметр к контакту кабеля сетевого питания и корпусу модуля;
- снять показания величины сопротивления изоляции с мегомметра, результаты измерений занести в протокол.

Полученное значение сопротивления изоляции должно быть не менее 10 МОм. При отрицательном результате поверку необходимо прекратить, модуль передать в соответствующие службы для выполнения мероприятий по устранению обнаруженного недостатка. При невозможности его устранения модуль признается непригодным к поверке, и выдается извещение о непригодности с указанием причин.

11 Определение метрологических характеристик средства измерений

11.1 Проверка диапазона и определение абсолютной погрешности измерений амплитуды входных сигналов

- 11.1.1 Для проверки диапазона и определения абсолютной погрешности измерений амплитуды входных сигналов для значения напряжения на входе модуля $U_{\rm BX} = 98$ дБ использовать схему поверки, приведенную на рисунке A1 в приложении A.
- 11.1.2 На вход канала №1 модуля подать от генератора сигнал U_{вх}, имеющий следующие выходные параметры:
 - форма сигнала: синусоидальная;
- амплитуда выходного сигнала: (5617 \pm 60) мВ, что соответствует уровню 98 дБ. Значение амплитуды контролировать с помощью мультиметра;
 - частота сигнала: (100 \pm 1) кГц (среднегеометрическая частота F_{cz} модуля).
- 11.1.3 Запустить программу «Калибровка» в соответствии с приложением Б со следующими параметрами:
 - Режим калибровки = «Амплитуда»;
 - Канал = 1:
 - Канал 2 = 1:
 - Усиление, дБ = 0;
 - Порог, дБ = 55;
 - Усреднять через = 10;
 - Интервал опроса, мс = 500.
- 11.1.4 Произвести не менее десяти отсчетов измерений выходного напряжения U_{изм} (в дБ) с дисплея калибровочного ПК. Вычислить среднее арифметическое полученных значений, результат вычисления занести в протокол.
- 11.1.5 Для проверки диапазона и определения абсолютной погрешности измерений амплитуды входных сигналов для остальных значений напряжения на входе модуля использовать схему поверки, приведенную на рисунке A2 в приложении A.

- 11.1.6 На вход канала № 1 модуля подать от генератора сигнал $U_{\text{вх}}$, имеющий следующие выходные параметры:
 - форма сигнала: синусоидальная;
 - выходной импеданс: 50 Ом;
 - амплитуда выходного сигнала: (2808 ± 30) мВ, что соответствует уровню 92 дБ;
 - частота сигнала: 100 кГц (среднегеометрическая частота F_{сг} модуля).
- 11.1.7 Установить вносимое значение затухания аттенюатора $D_{\text{внос}}$, усиление и порог дискриминации программы «Калибровка» в соответствии со значениями, приведенными в таблице 3. Для каждого из значений вносимого затухания повторить действия по п. 11.1.4.

Таблица 4 — Настройки при определении диапазона и абсолютной погрешности измерения амплитуды входных сигналов

Параметр					Вели	чина				
<i>U</i> _{вх} , дБ	38	44	50	56	62	68	74	80	86	92
<i>D</i> _{внос} , дБ	54	48	42	36	30	24	18	12	6	0
Усиление, дБ	30	30	30	30	0	0	0	0	0	0
Порог, дБ	25	25	25	25	55	55	55	55	55	55

11.1.8 Операции по пп. 11.1.2-11.1.7 применить ко всем к приемным каналам модуля.

11.2 Определение неравномерности амплитудно-частотной характеристики

- 11.2.1 Для определения неравномерности амплитудно-частотной характеристики использовать схему поверки, приведенную на рисунке А2 приложения А.
- 11.2.2 На вход канала № 1 модуля подать от генератора сигнал, имеющий следующие выходные параметры:
 - форма сигнала: синусоидальная;
 - амплитуда выходного сигнала: $(1,0 \pm 0,2)$ В.
- 11.2.3 Запустить программу «Калибровка» в соответствии с приложением Б со следующими параметрами:
 - Режим калибровки = «Амплитуда»;
 - Канал = 1;
 - Канал 2 = 1;
 - Усиление, дБ = 0;
 - Порог, дБ = 60;
 - Усреднять через = 10;
 - Интервал опроса, мс = 500.
- 11.2.4 Последовательно задать от генератора сигнал в частотном диапазоне от 10 до 1000 кГц с шагом $^{1}/_{3}$ -октавного ряда. На каждой частоте і произвести не менее десяти отсчетов измерений выходного напряжения (в дБ) с дисплея калибровочного ПК и вычислить среднее арифметическое полученных значений $U_{i,Ne1}$. Результаты вычислений занести в протокол.
- 11.2.5 Определение неравномерности амплитудно-частотной характеристики по пп. 11.2.2—11.2.4 провести для всех k приемных каналов модуля.

11.3 Проверка диапазона и определение абсолютной погрешности измерений разности времени поступления сигнала на каналы

- 11.3.1 Для проверки диапазона и определения абсолютной погрешности измерений разности времени поступления сигнала на каналы собрать схему поверки, приведенную на рисунке А3 приложения А.
 - 11.3.2 Установить на генераторах 33220А следующие значения:
 - форма сигнала: синусоидальная;
 - тип сигнала: пачка;

- число периодов в пачке: 10;
- частота следования пачки: 1 Гц;
- амплитуда выходного сигнала: 2 В;
- частота сигнала: 100 кГц (среднегеометрическая частота F_{cr} модуля).

Триггером запуска для канала генератора 2 установить внешний источник.

- 11.3.3 Запустить программу «Калибровка» в соответствии с приложением Б со следующими параметрами:
 - Режим калибровки = «Задержки»;
 - Канал = 1;
 - Канал 2 = 2;
 - Усиление, дБ = 0;
 - Порог, дБ = 60;
 - Усреднять через = 10;
 - Интервал опроса, мс = 500.
- 11.3.4 Зарегистрировать не менее десяти сигналов в каналах № 1 и № 2 и определить среднее значение измеренной разности времени прихода сигнала на каналы №1 и № 2 т_{изм 1-2}. Результат измерения занести в протокол.
- 11.3.5 Вычислить разность $\Delta \tau_{PB\Pi}$ между величиной длительности импульса $\tau_{3aд}$, установленной на генераторе, и значением разности времени прихода $\tau_{H3M~1-2}$, измеренной в модуле, $\Delta \tau_{PB\Pi~1-2} = |\tau_{3aд} \tau_{H3M~1-2}|$. Результат вычисления занести в протокол.
- 11.3.6 Последовательно установить задержку триггера генератора 2, равной $\tau_{3ад} = 1$ мс; $\tau_{3ал} = 2,5$ мс; $\tau_{3ад} = 5$ мс; $\tau_{3ад} = 7,5$ мс; $\tau_{3ад} = 10$ мс, и повторить действия по п. 11.3.4 и п. 11.3.5.
- 11.3.7 Повторить измерения разности времени прихода сигнала относительно канала №1 т_{изм 1-к} и вычисления $\Delta \tau_{PB\Pi 1-k}$ по пп. 11.3.4—11,3.6 для всех к приемных каналов модуля.

11.4 Проверка диапазона и определение абсолютной погрешности измерений напряжения параметрическим каналом

- 11.4.1 Для проверки диапазона и определения абсолютной погрешности измерений напряжения параметрическим каналом использовать схему поверки, приведенную на рисунке А4 приложения А.
- 11.4.2 На первый вход параметрического канала модуля подать от источника питания постоянного тока сигнал, имеющий следующие выходные параметры:
- амплитуда выходного сигнала: (минус 5,00 ± 0,02) В, значение амплитуды контролировать с помощью мультиметра;
 - ток выходного сигнала: (40,0 ± 1,0) мА.
- 11.4.3 Запустить программу «Калибровка» в соответствии с приложением Б со следующими параметрами:
 - Режим калибровки = «Давление»;
 - Канал = 1;
 - Канал 2 = 1;
 - Усиление, дБ = 0;
 - Порог, дБ = 65;
 - Усреднять через = 10;
 - Интервал опроса, мс = 1000.
- 11.4.4 Произвести не менее десяти отсчетов измерений напряжения $U_{\text{изм}}$ (в вольтах) с дисплея калибровочного ПК. Вычислить среднее арифметическое полученных значений, результат вычисления занести в протокол.
- 11.4.5 Последовательно установить амплитуду выходного напряжения $U_{3aд}$ источника питания в диапазоне от $U_{3aд}$ = минус 5,0 B до $U_{3aд}$ = 5,0 B с шагом, равным 1,0 B, а также точки минус 0,2 B и 0,2 B и повторить действия по п. 11.4.4.
- 11.4.6 Определение погрешности измерения напряжений по пп. 11.4.2–11.4.5 провести для второго входа параметрического канала. Для этого подать напряжение от источника пита-

ния постоянного тока на параметрический вход № 2 и запустить программу «Калибровка» со следующими параметрами:

- Режим калибровки = «Давление»;
- Канал = 2;
- Канал 2 = 2;
- Усиление, дБ = 0;
- Порог, дБ = 65;
- Усреднять через = 10;
- Интервал опроса, мс = 1000.

12 Подтверждение соответствия средства измерений метрологическим требованиям

12.1 Проверка диапазона и определение абсолютной погрешности измерений амплитуды входных сигналов

12.1.1 Абсолютная погрешность измерений амплитуд входных сигналов на среднегеометрической частоте для каждого из k каналов модуля определяется по формуле

$$\Delta U_k = U_{u_{3M}} - U_{ex} \tag{1}$$

- 12.1.2 За величину абсолютной погрешности измерения амплитуды входных сигналов принимается значение ΔU , соответствующее максимальной по модулю величине погрешности ΔU_k из всех приемных каналов модуля.
- 12.1.3 Результат поверки считается положительным, если полученное значение абсолютной погрешности измерения амплитуды входных сигналов ΔU находится в пределах ± 2 дБ, а диапазон измерений составляет от 38 до 98 дБ.

12.2 Определение неравномерности амплитудно-частотной характеристики

12.2.1 Вычисление неравномерности АЧХ проводят по формуле

$$\Delta K = U_i - U_{c2},\tag{2}$$

где ΔК - неравномерность АЧХ, дБ;

U_і - амплитуда сигнала на і-ой частоте, дБ;

 U_{cr} – амплитуда сигнала на среднегеометрической частоте 100 к Γ ц, д δ .

- 12.2.2 Результат поверки считается положительным, если полученное значение неравномерности АЧХ Δ К находится в пределах ±3 дБ.
- 12.3 Проверка диапазона и определение абсолютной погрешности измерений напряжения параметрическим каналом
- 12.3.1 Абсолютную погрешность измерения напряжений параметрическим каналом модуля определяют по формуле

$$\Delta U_{\Pi K} = U_{H3M} - U_{3aB}, \tag{3}$$

За величину абсолютной погрешности измерения напряжений принимается максимальное по модулю значение $\Delta U_{\Pi K \text{make}}$.

12.3.2 Результат поверки считается положительным, если полученное значение абсолютной погрешности измерения напряжений параметрическим каналом $\Delta U_{n\kappa}$ находится в пределах $\pm 0,1$ B, а диапазон измерений составляет от $\pm 0,2$ до ± 5 B.

- 12.4 Проверка диапазона и определение абсолютной погрешности измерений разности времени поступления сигнала на каналы
- 12.4.1 В качестве оценки погрешности определения разности времени прихода сигнала на каналы принимается максимальное по модулю значение $\Delta \tau_{PB\Pi\ 1-k\ make}$ из всех пар приемных каналов модуля.
- 12.4.2 Результат поверки считается положительным, если $\Delta \tau_{PB\Pi}$ _{1-k макс} находится в пределах ± 2 мкс, а диапазон измерений составляет от 0,1 до 10 мс.

13 Оформление результатов поверки

- 13.1 Результаты поверки модуля оформляют в виде протокола, форма которого приведена в приложении В.
- 13.2 Модуль, прошедший поверку с положительным результатом, признается годным и допускается к применению.
 - 13.3 При отрицательных результатах поверки модуль признается негодным.
- 13.4 Сведения о результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца модуля или лица, представившего его на поверку, выдается свидетельство о поверке средства измерений (при положительном результате поверки) или извещение о непригодности средства измерений (при отрицательном результате поверки).

Инженер по метрологии II категории отдела № 433

Ю. Н. Сафонов

Приложение A (обязательное)

Блок-схемы соединений средств поверки и модуля МСИАЭ

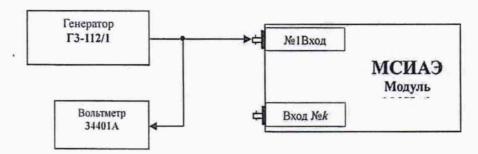


Рисунок A1 — Схема подключения приборов для определения диапазона и абсолютной погрешности измерения амплитуды входных сигналов для значения напряжения на входе модуля МСИАЭ $U_{\text{вx}} = 98 \text{ дБ}$

Рисунок A2 — Схема подключения приборов для определения неравномерности амплитудно-частотной характеристики в рабочем частотном диапазоне, определения диапазона и абсолютной погрешности измерения амплитуды входных сигналов

Рисунок A3 — Схема подключения приборов для проверки диапазона и определения абсолютной погрешности измерений разности времени поступления сигнала на каналы

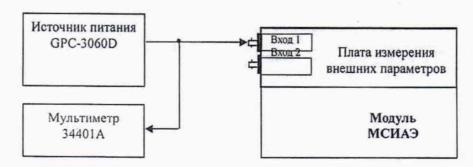


Рисунок A4 – Схема подключения приборов для определения погрешности измерения напряжений параметрическим каналом

Приложение Б (справочное)

Веб-интерфейс программы калибровки модуля

Встроенное ПО модуля содержит программу калибровки WEBCALIB с веб-интерфейсом, доступным по сети Ethernet. Эта программа активируется при включении модуля в автономном режиме работы.

При включении питания модуль в течение 4-х минут устанавливает подключение к серверу, который должен находиться в модуле анализа по сетевому адресу 10.0.1.100. В случае успешного соединения модуль переключается в нормальный режим дистанционной работы и функционирует совместно с ПО модуля анализа.

Если соединение с сервером модуля анализа неуспешно, например, при отсутствии подключения модуля к сети Ethernet, то модуль переключается в режим автономной работы, и активируется программа WEBCALIB, которая ожидает запросов на порт 40080 по протоколу HTTP по сети Ethernet.

На рисунке Б.1 показана схема подключения модуля в автономном режиме работы. Ноутбук с любой ОС и программой-браузером подключен к модулю по сети Ethernet. Статический сетевой адрес этого ноутбука должен быть предварительно установлен на значение 10.0.1.21. Поскольку соединение с модулем анализа отсутствует, то модуль через 4 минуты после включения переходит в автономный режим, и оператор, используя программу-браузер, выполняет HTTP-соединение с узлом 10.0.1.хх: 40080 (сетевой адрес модуля МСИАЭ, указанный на его корпусе), активирует встроенную программу WEBCALIB, после чего выполняет поверку модуля через WEB-интерфейс программы калибровки.

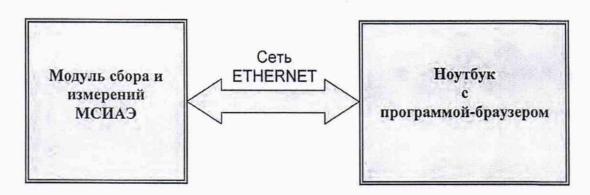


Рисунок Б.1 – Схема подключения модуля в автономном режиме

На рисунке Б.2 показан внешний вид WEB-интерфейса программы WEBCALIB. Оператор может задавать режим калибровки, номера калибруемых каналов, усиление и порог дискриминации, а также управлять процессом регистрации данных. После выполнения каждого этапа калибровки имеется возможность сохранить данные на калибровочном ПК. После первого подключения к модулю сбора следует выполнить процедуру инициализации работы программы калибровки, активировав кнопку «Начать калибровку» двойным щелчком (double-click).

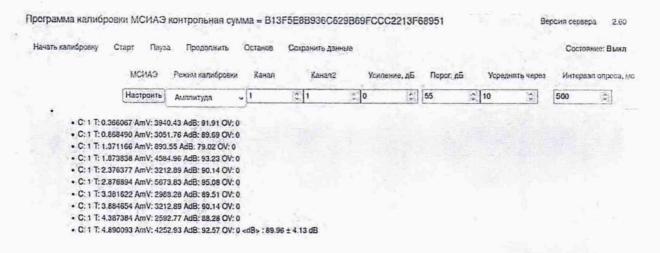


Рисунок Б.2 – Внешний вид WEB-интерфейса программы WEBCALIB

Верхняя строка окна программы калибровки содержит идентификационные данные программы – контрольную сумму программы и номер версии встроенного сервера. При проведении поверки модуля эти данные следует сверить с данными, указанными в формуляре на АЭ-аппаратуру¹.

Во второй сверху строке окна программы находятся основные элементы меню управления процессом калибровки:

- «Начать калибровку» инициализация работы программы калибровки;
- «Старт» запуск процесса сбора данных;
- «Пауза» временный останов процесса сбора данных;
- «Продолжить» продолжение процесса сбора данных;
- «Останов» прекращение процесса сбора данных;
- «Сохранить данные» загрузка накопленных данных в компьютер и сохранение их в дисковый файл.

Третья сверху строка окна программы содержит надписи к элементам настройки программы, находящимся в четвертой строке:

- «МСИАЭ Настроить» кнопка отправки выбранных параметров настройки в модуль;
- «Режим калибровки» элемент выбора нужного режима сбора данных и отображения результатов;
- «Канал» элемент выбора калибруемого канала;
- «Канал2» элемент выбора второго калибруемого канала (используется в режиме измерения задержек между двумя каналами);
- «Усиление, дБ» элемент выбора программного усиления модуля;
- «Порог, дБ» элемент выбора порога амплитудной дискриминации модуля;
- «Усреднять через» элемент выбора количества усредняемых замеров;
- «Интервал опроса, мс» элемент выбора интервала опроса модуля.

Под элементами настройки находится окно отображения регистрируемых данных, содержимое которого зависит от выбранного режима калибровки.

Как показано на рисунке Б.3, в режиме «Амплитуда» отображаются следующие сведения:

- C: nn номер канала, принявшего данные;
- Т: nn.nnn время срабатывания канала с точностью до микросекунды;
- AmV: nn.nn пиковая амплитуда данного сигнала в милливольтах;
- AdB: nn.nn пиковая амплитуда данного сигнала в децибелах;

¹Идентификационные данные, показанные на рисунке, не являются официальными.

- OV: n индикатор выхода амплитуды данного сигнала за пределы динамического диапазона;
- <дБ>: nn.nn усредненная пиковая амплитуда заданного числа последних принятых сигналов;
- ±nn.nn среднеквадратичное отклонение измерения амплитуды заданного числа последних принятых сигналов.

```
C: 1.T: 8.906918 AmV: 3007.81 AdB: 89.57 OV: 0
C: 1.T: 9.927437 AmV: 1108.40 AdB: 80.89 OV: 0 <dB>: 87.63 ± 3.11 dB
C: 1.T: 10.950995 AmV: 5444.34 AdB: 94.72 OV: 0
C: 1.T: 11.974066 AmV: 3251.95 AdB: 90.24 OV: 0
C: 1.T: 12.994464 AmV: 1499.02 AdB: 83.52 OV: 0
C: 1.T: 14.016655 AmV: 2612.30 AdB: 83.52 OV: 0
C: 1.T: 15.038308 AmV: 3959.96 AdB: 91.95 OV: 0
C: 1.T: 15.038308 AmV: 3959.96 AdB: 91.95 OV: 0
C: 1.T: 16.058592 AmV: 9272.46 AdB: 99.34 OV: 0
C: 1.T: 17.074620 AmV: 1464.84 AdB: 83.32 OV: 0
C: 1.T: 18.094008 AmV: 1840.82 AdB: 85.30 OV: 0
C: 1.T: 19.119466 AmV: 3100.59 AdB: 89.33 OV: 0
C: 1.T: 12.1151103 AmV: 4047.85 AdB: 92.14 OV: 0 <dB>: 89.87 ± 4.79 dB
C: 1.T: 21.151103 AmV: 1533.20 AdB: 83.71 OV: 0
```

Рисунок Б.3 – Внешний вид окна отображения результатов в режиме «Амплитуда» WEB-интерфейса программы WEBCALIB

Для выполнения калибровки в этом режиме оператору следует записать отображаемую усредненную амплитуду <дБ> и соответствующее среднеквадратичное отклонение. Прочие параметры показывают корректность выполнения процедуры опроса. Например, параметр OV должен быть равен 0. Отличное от 0 значение параметра OV свидетельствует о некорректной настройке усиления или приеме не регламентированного сигнала с генератора.

Как показано на рисунке Б.4, в режиме «Задержки» отображаются следующие сведения:

- С1: nn номер канала, принявшего данные первым;
- Т: nn.nnn время срабатывания канала с точностью до микросекунды;
- С2: nn номер канала, принявшего данные вторым;
- dT: nn.nn разность времен прихода между каналами в микросекундах;
- <dT>: nn.nn усредненная разность времен прихода между каналами заданного числа последних принятых сигналов;
- ±nn.nn среднеквадратичное отклонение измерения разности времен прихода между каналами заданного числа последних принятых сигналов.

```
• C1: 1 T: 0.292878 C2: 3 dT: 1122 us
• C1: 3 T: 0.796217 C2: 1 dT: 2359 us
• C1: 1 T: 1.301273 C2: 3 dT: 2895 us
• C1: 1 T: 1.808801 C2: 3 dT: 1545 us
• C1: 3 T: 2.313322 C2: 1 dT: 1222 us
• C1: 3 T: 2.817370 C2: 1 dT: 1222 us
• C1: 3 T: 2.817370 C2: 1 dT: 1507 us
• C1: 1 T: 3.321756 C2: 3 dT: 1445 us
• C1: 3 T: 3.826211 C2: 1 dT: 2748 us
• C1: 1 T: 4.840389 C2: 3 dT: 2804 us
• C1: 1 T: 4.840389 C2: 3 dT: 2780 us <dT>: 2042,70 ± 697.16 us
• C1: 1 T: 5.348019 C2: 3 dT: 1182 us
```

Рисунок Б.4 – Внешний вид окна отображения результатов в режиме «Задержки» WEB-интерфейса программы WebCalib

Как показано на рисунке Б.5, в режиме «Давление» отображаются следующие сведения:

- Т: nn.nnn время срабатывания параметрического канала с точностью до микросекунды;
- Рх: n.nn показания калибруемого входа параметрического канала (x=1 или x=2);
- <P>: nn.nn усредненное значение показаний;

- ±nn.nn среднеквадратичное отклонение показаний.
 - T: 0.598039 P1: 1.07
 T: 1.101910 P1: 1.05
 T: 1.606191 P1: 1.05
 T: 2.110170 P1: 1.05
 T: 2.613983 P1: 1.08
 T: 3.118057 P1: 1.10
 T: 3.622022 P1: 1.02
 T: 4.125964 P1: 1.05
 T: 4.530111 P1: 1.07
 T: 5.134179 P1: 1.03 <P>: 1.05 ± 0.03 V
 T: 5.637968 P1: 1.10

Рисунок Б.5 – Внешний вид окна отображения результатов в режиме «Давление» WEB-интерфейса программы WEBCALIB

Отображаемые на экране данные в процессе сбора пополняются новыми, причем по достижении низа окна происходит его автоматическая прокрутка, так что видны последние поступившие данные. Оператор может приостановить обновление данных, нажав элемент «Пауза» в меню управления, и продолжить вывод данных, нажав элемент «Продолжить» в меню управления.

При нажатии элемента «Стоп» в меню управления процесс поступления новых данных прекращается. Однако ранее принятые данные остаются на экране, и оператор может их просматривать.

Внимание! При нажатии элемента «Старт» в меню управления начинается процесс поступления новых данных с полным стиранием ранее поступивших данных.

Для длительного сохранения зарегистрированных данных оператор может запросить их с модуля МСИАЭ и сохранить в файл на диске калибровочного ПК. Для этого следует нажать элемент «Сохранить данные» в меню управления.

При нажатии элемента меню «Сохранить данные» на экране программы появляется окно диалога сохранения результатов (рисунок Б.б), в котором оператор должен выбрать вариант открытия файла данных с именем «data.txt» в текстовом редакторе или его сохранения без просмотра. Во втором случае указанный файл будет сохранен в папке «Загрузки», в которую попадают файлы, загружаемые из интернета программой-браузером. При сохранении следующих файлов они будут автоматически переименованы в «data(n).txt», где n – порядковый номер файла.

Для визуального качественного представления формы регистрируемых импульсов предназначен режим «Осциллограф». При переключении программы калибровки в этот режим на панели отображения результатов появляется графическое окно, содержащее осциллограмму регистрируемого импульса (рисунок Б.7).

По оси X графика осциллограммы приведено время в микросекундах в интервале от 0 до 512 мкс, а по оси Y – амплитуда сигнала в данный момент времени в вольтах.

Надпись графика содержит номер канала, принявшего сигнал, и время регистрации в секундах с точностью до микросекунд.

	Открытие «data.txt»
вы собираетесь	открыть:
data.txt	
	я: Текстовый документ (939 байт) 7.0.0.1:40080
(ак Firefox след	дует обработать этот файл?
Открыть в	Текстовый редактор (по умолчанию)
○ Со <u>х</u> ранить с	файл
□ В <u>ы</u> полнять	автоматически для всех файлов данного типа.
□ В <u>ы</u> полнять	автоматически для всех фаилов данного типа.

Рисунок Б.6 – Внешний вид окна диалога сохранения результатов WEB-интерфейса программы WEBCALIB

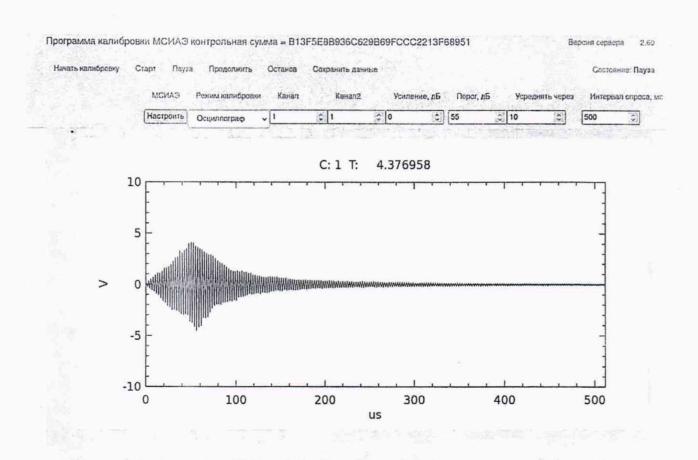


Рисунок Б.7 — Внешний вид окна отображения осциллограммы импульса WEB-интерфейса программы WEBCALIB

Режим «Осциллограф» позволяет визуально представить принимаемый сигнал и оценить его качество, установить наличие посторонних помех или выход за амплитудный диапазон.

Приложение В (рекомендуемое)

Форма протокола поверки

Протокол поверки № от
тип СИ, модификация
1 Заводской номер
2 Принадлежит
3 Наименование производителя
4 Дата выпуска (рег. номер типа СИ в ФИФ ОЕИ)
5 Вид поверки (первичная, периодическая) нужное подчеркнуть
6 Условия поверки
7 Средства поверки
8 Наименование документа, на основании которого выполнена поверка
9 Результаты проведения поверки Внешний осмотр: соответствует/не соответствует требованиям разд. 7 МП. Опробование: соответствует/не соответствует требованиям разд. 8 МП. Подтверждение соответствия программного обеспечения: соответствует/не соответствует требованиям разд. 9 МП.
Определение метрологических характеристик средства измерений и подтверждение

Определение метрологических характеристик средства измерений и подтверждение соответствия СИ метрологическим требованиям:

Проверка диапазона и определение абсолютной погрешности измерений амплитуды входных сигналов

		-		Амплит	гуда изме		сигнала U	пъм. дБ			
38	44	50	56	62	68	74	80	86	92	98	ΔU _{і макс,} (дБ)
								1	1		
	38	38 44	38 44 50	38 44 50 56			U _{вх} , дБ	U _{вх} , дБ		U _{ax} , дБ	U _{вх} , дБ

Вывод:

Определение неравномерности амплитудно-частотной характеристики

N ₂							A	мпли	туда	измер	ренно	го сиг	нала I	Jico, A	Б						.W
канала	Частота входного сигнала, кГц														ΔK _{мак} (дБ)						
капала	10	12,5	16	20	25	31,5	40	63	80	100	125	160	200	250	315	400	500	630	800	1000	(ДВ)
1																					
2																					
***													318114								
24																					
						Нера	вном	иерн	юст	ь АЧ	ΧΔ	K = 1	Jicp-	- U ₁₀₀) кГц =	дБ					

Вывод:

Проверка диапазона и определение абсолютной погрешности измерений напряжения параметрическим каналом

U _{ax}				Деся	ть измер	ений U _ю	_{м.} (B)				Uicp
U _{sx} (B)	1	2	3	4	5	6	7	8	9	10	(B)
-5,0											
-4,0											
-3,0											
-2,0											
-1,0											
-0,2											Levil, v
0,2									1		
1,0							hi .				
2,0											
3,0	1										
4,0											
5,0											
				Погрешн	ость ΔЦ	$J_{\Pi K} = U_{ax}$	- U 113M =	В			

Вывод:

Проверка диапазона и определение абсолютной погрешности измерений разности времени поступления сигнала на каналы

№кан/ №кан	τ _{зал} =100 мкс	$\Delta \tau_{PB\Pi}$ _{1-k} , MKC	τ _{зад} =1000 ΜΚС	Δτ _{PBΠ} 1-k, MKC	τ _{зал} =2500 мкс	Δτ _{PBΠ}	т _{зал} =5000 мкс	Δτ _{PBΠ} 1-k, MKC	т _{зад} =7500 мкс	Δτ _{PBΠ} 1-k, MKC	т _{зад} =10000 мкс	$\Delta \tau_{PB\Pi}$ 1-k, MKC
1-2												
1-3											- 1	
1		1										
1-24	le La casa de											
					Δτι	РВП 1-к ма	акс = мкс					

$\Delta \tau_{PB\Pi 1-k \text{ make}} = \text{mke}$
Вывод:
Определение электрического сопротивления изоляции
Полученное значение сопротивления изоляции составляет:
Вывод:
На основании результатов поверки СИ признано пригодным (непригодным) к применению.
Сведения о результатах поверки переданы в ФИФ ОЕИ.
Выдано № от
ФИО и полица, пороружана

ФИО и подпись поверителя