СОГЛАСОВАНО

Первый заместитель генерального директора - заместитель по научной работе

ФГУП «ВНИИФТРИ»

N

«ОЯ» ОВ 2022 г

Государственная система обеспечения единства измерений

ХРОМАТОГРАФЫ ЖИДКОСТНЫЕ «МАЭСТРО КОМПАКТ»

МЕТОДИКА ПОВЕРКИ МП 651-22-061

Оглавление

Общие положения	3
1. Перечень операций поверки	3
2. Требования к условиям проведения поверки	4
3. Требования к специалистам, осуществляющим поверку	4
4. Метрологические и технические требования к средствам поверки	4
5. Требования (условия) по обеспечению безопасности проведения поверки	5
6. Внешний осмотр средства измерений	5
7. Подготовка к поверке и опробование средства измерений	5
8. Проверка программного обеспечения средства измерений	6
9. Определение метрологических характеристик	6
10. Подтверждение соответствия средства измерений метрологическим требованиям	8
11. Оформление результатов поверки	9
Приложение А	
Приложение Б	11

общие положения

Настоящая методика распространяется на хроматографы жидкостные «МАЭСТРО КОМПАКТ» (далее по тексту — хроматографы), изготавливаемые ООО «ИНТЕРЛАБ», и устанавливает методы и средства их первичной и периодической поверок.

измерений Прослеживаемость результатов при поверке хроматографов государственным первичным эталонам единиц величин реализуется путем применения образцов утвержденного типа. прослеживаемых стандартных комплексу государственных первичных эталонов единиц массовой (молярной) доли и массовой (молярной) концентрации по ГОСТ 8.735.0-2011 «Государственная поверочная схема для средств измерений содержания компонентов в жидких и твердых веществах и материалах. Основные положения»:

ГЭТ 217-2018 ГПЭ единиц массовой доли и массовой (молярной) концентрации неорганических компонентов в водных растворах на основе гравиметрического и спектрального методов;

ГЭТ 176-2019 ГПЭ единиц массовой (молярной, атомной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе кулонометрии;

ГЭТ 196-2019 ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе спектральных методов;

ГЭТ 208-2019 ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации органических компонентов в жидких и твердых веществах и материалах на основе жидкостной и газовой хромато-масс-спектрометрии с изотопным разбавлением и гравиметрии.

Метод, обеспечивающий реализацию методики поверки – косвенное измерение поверяемым средством величины, воспроизводимой стандартным образцом.

Методикой поверки не предусмотрена возможность проведения поверки отдельных измерительных каналов и (или) отдельных автономных блоков из состава средства измерений для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.

Интервал между поверками – 1год.

1. ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

1.1 При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1 – Операции поверки

Наименование операции Номер пункта Проведение операции при методики первичной периодической поверки (после ремонта) поверке 2 3 4 1 Внешний осмотр 6 да да 7.2 2 Опробование да

Продолжение таблицы 1

1	2	3	4
3 Проверка программного обеспечения	8	да	да
4 Определение метрологических характеристик	9	-	-
4.1 Определение уровня флуктуационных шумов нулевого сигнала	9.1	да	да
4.2 Определение допускаемого относительного среднего квадратического отклонения выходного сигнала	9.2	да	да
4.3 Определение предела детектирования детектора	9.3	да	да

- 1.2 Не допускается проведение поверки отдельных измерительных каналов или отдельных автономных блоков или меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.
- 1.3 При получении отрицательных результатов при проведении хотя бы одной операции, дальнейшее выполнение поверки прекращается.

2. ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

Поверка хроматографов должна проводиться при следующих условиях:

температура окружающей среды, °С

от +15 до +35;

- относительная влажность воздуха, %, не более

80:

- атмосферное давление, кПа

от 84,0 до 106,7.

3. ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

К проведению поверки допускаются поверители средств измерений в соответствии с областью аккредитации организации, аккредитованной в национальной системе аккредитации на проведение поверки средств измерений согласно законодательству Российской Федерации об аккредитации, прошедшие инструктаж по технике безопасности и изучившие настоящую методику поверки и эксплуатационную документацию.

4. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

4.1 При проведении поверки должны применяться средства, указанные в таблице 2.

Таблица 2 - Средства поверки

Номер пункта	Наименование и тип (условное обозначение) основного или			
методики	вспомогательного средства поверки; обозначение нормативного			
поверки	документа, регламентирующего технические требования, и (или)			
	метрологические и основные технические характеристики средства			
	поверки			
9.1 - 9.3	ГСО 8749-2006 – стандартный образец состава раствора антрацена в			
	ацетонитриле (CO-Антр), массовая концентрация 200 мкг/см ³			
	ГСО 9915-2011 – стандартный образец состава раствора фенола в			

этаноле, массовая концентрация 1 г/дм ³
Вода 1-й степени чистоты по ГОСТ Р 52501-2005
Ортофосфорная кислота, чда по ГОСТ 6552-80
Ацетонитрил для высокоэффективной жидкостной хроматографии по
СТП ТУ СОМР3-074-06
Колба мерная 2-100-2 по ГОСТ 1770-74
Пипетка градуированная 2-0,5-2 по ГОСТ 29169-91

- 4.2 Допускается применение других средств поверки, допущенных к применению в РФ, обеспечивающих определение метрологических характеристик поверяемых хроматографов с требуемой точностью.
- 4.3 Применяемые средства поверки должны быть исправны и поверены, а стандартные образцы применяться в пределах срока годности экземпляра.

5. ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 Требования безопасности при поверке должны соответствовать требованиям, изложенным в настоящей методике поверки, руководстве по эксплуатации (РЭ) на хроматографы, а также в эксплуатационной документации на поверочное оборудование и средства измерений.
- 5.2 При работе с хроматографом следует руководствоваться «Основными правилами безопасной работы в химической лаборатории», а также соблюдать ГОСТ 12.2.091-2012 «Безопасность электрического оборудования для измерения, управления и лабораторного применения».
- 5.3 При работе с хроматографом необходимо соблюдать «Противопожарные нормы» согласно СниП 2.01.02.
- 5.4 Лица, допускаемые к работе, должны иметь соответствующую техническую квалификацию и подготовку, ежегодно проходить проверку знаний техники безопасности.

6. ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 6.1 При проведении внешнего осмотра должно быть установлено соответствие хроматографов следующим требованиям:
- отсутствие механических повреждений, чистота разъемов, состояние соединительных кабелей.
- целостность корпуса, внешних элементов, отсутствие повреждений органов управления.
- 6.2 Результаты внешнего осмотра считать положительными, если выполняются требования п. 6.1.

7. ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

7.1 Подготовка к поверке

- 7.1.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- 1) при отсутствии нормативной документации (НД) на методику выполнения измерений, занесенной в Государственный реестр:
 - подготовка колонок,
 - приготовление элюента,

- приготовление контрольных растворов по приложениям А, Б.
- 2) при наличии НД на методику выполнения измерений, занесенной в Государственный реестр:
 - подготовка колонок,
 - приготовление элюента,
 - приготовление контрольных растворов.
- 7.1.2 Подготовительные операции, включение хроматографов следует проводить в соответствии с руководством по эксплуатации на хроматографы «Хроматографы жидкостные «МАЭСТРО КОМПАКТ». Руководство по эксплуатации 26.51.53-001-14267540-2022 РЭ» (РЭ). Элюент следует тщательно взболтать.
- 7.1.3 Для получения данных, необходимых для поверки, допускается участие операторов, обслуживающих хроматограф (под контролем поверителя).

7.2 Опробование

7.2.1 Опробование хроматографа заключается в его включении, запуске ПО и проверке общего функционирования: выход на режим, соответствие окон на дисплее, отсутствие сообщений об ошибке.

8. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 Идентификация ПО осуществляется следующим образом:
- в главном окне программы в строке команд щелкнуть мышью на пункте меню «Помощь». В открывшемся окне щелкнуть мышью по строке «О программе», в результате чего откроется окно, в котором приведены идентификационное название ПО и номер версии. Копия экрана приведена на рисунке 1.

Рисунок 1 - Окно с идентификационными данными программы «Маэстри»

9. ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

9.1. Определение уровня флуктуационных шумов нулевого сигнала

- 9.1.1. При работе с фотометрическим детектором с переменной длиной волны (далее фотометрический):
- колонка длиной 150 мм и внутренним диаметром 4,6 мм, заполненная сорбентом C18, фракции 5 мкм;
- элюент 90 % раствор ацетонитрила в воде 1-й степени чистоты (взболтать перед использованием);
- расход элюента 1 см³/мин.
- 9.1.2. При работе с флуориметрическим детектором с переменной длиной волны возбуждения (далее флуориметрический):
- колонка длиной 150 мм и внутренним диаметром 4,6 мм, заполненная сорбентом C18, фракции 5 мкм;

- элюент 90 % раствор ацетонитрила в воде 1-й степени чистоты (взболтать перед использованием):
- расход элюента 1 см³/мин;
 - 9.1.3. При работе с амперометрическим детектором:
- колонка длиной 150 мм и внутренним диаметром 4,6 мм, заполненная сорбентом С18, фракции 5 мкм;
- потенциал электрода +1,3 B;
- элюент 10 % раствор ацетонитрила в ортофосфорной кислоте (pH=3).
- расход элюента 1 см³/мин.

Примечание: Допускается использовать колонки других типоразмеров и маркировок, не ухудшающие измеряемые величины. При этом допускается изменение параметров проведения измерений (элюент, расход элюентов, температура колонок). Также допускается использовать вместо колонки рестриктор (отрезок капилляра длиной 1 метр).

9.1.4.Определить уровни шумов ΔX согласно п. 3.9 РЭ на «Хроматографы жидкостные «МАЭСТРО КОМПАКТ». За уровень флуктуационных шумов нулевого сигнала принимается значение амплитуды повторяющихся колебаний нулевого сигнала с периодом не более 10 с.

Продолжительность измерений шума нулевого сигнала составляет не менее 10 минут.

- 9.2 Определение допускаемого относительного среднего квадратического отклонения выходного сигнала
- 9.2.1 значения допускаемого среднего определения относительного квадратического отклонения (ОСКО) выходного сигнала хроматографы должны быть подвергнуты технологической наработке. Для этого ввести не менее трех раз контрольное вещество, указанное в таблице 3, для насыщения колонки, а затем произвести десять вводов контрольного вещества объемом 20 мм³ с регистрацией времени удерживания (далее — t_i) и площади пика (далее — S_i) контрольного вещества.
- 9.2.2 Значения ОСКО выходных сигналов рассчитать по пикам контрольных веществ согласно по формулам (1) и (3) соответственно:

$$OCKO_{t} = \frac{100}{\bar{t}} \sqrt{\frac{\sum_{i=1}^{n} (t_{i} - \bar{t})^{2}}{n-1}},$$
(1)

$$\bar{t} = \sum_{i=1}^{n} t_i / n, \tag{2}$$

$$\bar{t} = \sum_{i=1}^{n} t_i / n,$$

$$OCKO_S = \frac{100}{\bar{S}} \sqrt{\frac{\sum_{i=1}^{n} (S_i - \bar{S})^2}{n-1}},$$
(2)

$$\overline{S} = \sum_{i=1}^{n} S_i / n, \tag{4}$$

где t_i,S_i- i-ое значение результатов измерений по времени удерживания и площади пика соответственно; \overline{t} , \overline{S} - среднее арифметическое значение результатов измерений по времени удерживания и площади пика соответственно; п-количество измерений.

9.3 Определение предела детектирования

9.3.1 В соответствии с руководством по эксплуатации установить рабочие параметры хроматографа в зависимости от типа детектора. В инжектор хроматографа шприцом или с помощью автодозатора ввести контрольное вещество, указанное в таблице 3, до насыщения колонки. Провести ввод контрольного вещества с регистрацией площади

пиков, после чего провести регистрацию хроматограммы. Наименование и концентрация контрольного вещества, соответствующая поверяемому детектору, указана в таблице 3.

Таблица 3 – Условия регистрации ОСКО выходного сигнала и предела детектирования

Детектор	Контрольное вещество, концентрация, г/см ³	Характеристики	Параметры колонки	Элюент	Расход элюента, см ³ /мин
Фотомет- рический	Антрацен, 2×10 ⁻⁴	Длина волны – 275нм	Длина 150 мм, внутренний диаметр 4,6 мм, сорбент С18 (фракция 5 мкм)		I
Флуоримет- рический	Антрацен, 1×10-6	длина волны возбуждения — 365 нм длина волны излучения — 230 - 700 нм		90 % раствор ацетонитрила в воде 1-й степени чистоты (взболтать перед использованием)	
Амперомет- рический	Фенол, 1×10-6	потенциал электрода +1,3 В		раство ацетонитр ортофосф	элюент – 10 % раствор ацетонитрила в ортофосфорной кислоте (рН=3)

- 9.3.2 Измерить уровень шума, необходимый для расчета предела детектирования
- 9.3.3 Измерить выходной сигнал площадь пика контрольного вещества, выраженный в соответствующих для каждого детектора единицах.
 - 9.3.4 Вычислить предел детектирования Стіп по формуле (5):

$$C_{\min} = \frac{2 \cdot \Delta X \cdot m}{S \cdot U},$$
 (5)

где ΔX - измеренная величина уровня флуктуационных шумов для фотометрического детектора, мБ; для флуориметрического детектора, мВ; для амперометрического детектора нА; m - масса введенного контрольного вещества, г; S - площадь пика для фотометрического, мБ·с; для флуориметрического, мВ·с; для амперометрического детектора нА·с; U - расход элюента, см³/с.

9.3.5 Массу т, введенного контрольного вещества, г рассчитать по формуле (6):

$$m = C_0 \cdot V_{\sigma} \,, \tag{6}$$

где Co - концентрация контрольного вещества в растворе, r/cm^3 ; Vg - объем вводимого контрольного вещества, cm^3 .

10. ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

- 10.1 Результаты поверки по п. 7.2 настоящей методики в части опробования хроматографа считать положительными, если не возникает сообщений об обнаруженных ошибках. В противном случае результаты поверки считать отрицательными.
- 10.2 Результаты проверки ПО согласно разделу 8 настоящей методики считать положительными, если версия программного обеспечения «Маэстри» 1.1.00 и выше. В противном случае результаты поверки считать отрицательными.
- 10.3 Результаты поверки по п. 9.1 считать положительными, если полученные значения уровня флуктуационных шумов нулевого сигнала соответствуют Таблице 4. В противном случае результаты поверки считать отрицательными.

Таблица 4 – Допустимые значения уровня флуктуационных шумов для «МАЭСТРО КОМПАКТ»

Детекторы	Уровень флуктуационных шумов нулевого сигнала, ΔX , не более		
Фотометрический детектор	5,0·10 ⁻⁴ Б		
Флуориметрический детектор	5,0·10 ⁻⁴ B		
Амперометрический	5,0·10 ⁻¹⁰ A		

10.4. Результаты поверки по п. 9.2 считать положительными, если значения ОСКО выходных сигналов для «МАЭСТРО КОМПАКТ» не превышают значений, указанных в таблице 5. В противном случае результаты поверки считать отрицательными.

Таблица 5 – Допустимые значения ОСКО выходного сигнала «МАЭСТРО КОМПАКТ»

Характеристика отклонения выходного сигнала	Допускаемое значение ОСКО, %
По времени удерживания	2,0
По площади пиков	5,0

10.5. Результаты поверки по п. 9.3 считать положительными, если значения пределов детектирования для «МАЭСТРО КОМПАКТ» не более, указанных в Таблице 6. В противном случае результаты поверки считать отрицательными.

Таблица 6 – Лопустимые значения пределов детектирования «МАЭСТРО КОМПАКТ»

Детектор	Предел детектирования, Cmin, г/см ³
Фотометрический	5,0×10 ⁻⁷
Флуориметрический детектор	5,0×10 ⁻⁸
Амперометрический	1,0×10 ⁻⁸

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 Результаты поверки оформить протоколом произвольной формы.
- 11.2 При положительных результатах поверки хроматограф признается годным, при отрицательных результатах поверки хроматограф бракуется и к дальнейшей эксплуатации не допускается.
- 11.3 Результаты поверки хроматографа подтверждаются сведениями о результатах поверки средств измерений, включенными в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца анализатора или лица, представившего его на поверку, на анализатор выдается свидетельство о поверке (при положительных результатах поверки) или извещение о непригодности к применению (при отрицательных результатах поверки).

Начальник лаборатории № 670 ФГУП «ВНИИФТРИ»

Зам. начальника лаборатории № 670 ФГУП «ВНИИФТРИ»

ПРИЛОЖЕНИЕ А

МЕТОДИКА ПРИГОТОВЛЕНИЯ КОНТРОЛЬНОГО РАСТВОРА АНТРАЦЕНА

- А.1 Для приготовления контрольного раствора применяют следующее оборудование и реактивы:
 - Колбы мерные 2-го класса точности с притёртой пробкой по ГОСТ 1770-74.
 - Пипетки градуированные 2-го класса точности по ГОСТ 29169-91.
 - Раствор антрацена в ацетонитриле (200 мкг/см³) ГСО 8749-2006.
- Ацетонитрил для высокоэффективной жидкостной хроматографии по СТП ТУ COMP3-074-06.
- А.2 Приготовление контрольного раствора с использованием жидких стандартных образцов.
- А.2.1 При помощи градуированной пипетки переносят 0,5 см³ стандартного образца в мерную колбу с притертой пробкой вместимостью 100 см³, добавляют до метки ацетонитрил и перемешивают.
- A.2.2 Действительное значение массовой концентрации контрольного раствора (C_1 , мкг/см³) для п.A.2.1.вычисляют по формуле (A.1):

$$C_1 = C_0 \frac{1}{200} \tag{A.1}$$

где C_0 - действительное (паспортное) значение массовой концентрации контрольного вещества в стандартном образце, мкг/см³.

А.3 Погрешность действительного значения концентрации контрольного раствора рассчитывают с учётом процедуры их приготовления по формуле (А.2):

$$\Delta c = 4.4 \sqrt{5.76 \cdot 10^{-6} + \left(\frac{\delta}{4}\right)^2 + \left(\frac{\Delta c_A}{c_A}\right)^2}$$
 (A.2)

Где δ - предел обнаружения антрацена в воде 1-ой степени очистки по ГОСТ Р 52501-2005, мкг/см 3 ; с_A-аттестованное значение концентрации компонента в ГСО, мкг/см 3 ; Δ с_A - абсолютная погрешность аттестованного значения ГСО, мкг/см 3 .

А.3.1 Характеристики СИ, используемых для приготовления контрольных растворов

Наименование СИ	Наименование НТД на СИ	Измеряемая величина	Значение измеряемой величины	Пределы допускаемой абсолютной погрешности
Колба мерная 2-100-2	ГОСТ 1770-74	Объем, V2	100 см ³	$\Delta V_2 = \pm 0.12 \text{ cm}^3$
Пипетка 2-0,5-2	ГОСТ 29169-91	Объем, V ₁	0,5 см ³	$\Delta V_1 \pm 0,01 \text{ cm}^3$

A.3.2 При использовании средств измерений и стандартных образцов и реактивов, указанных в п.А.1. настоящего приложения, относительная погрешность контрольного раствора, приготовленного по данной методике, находится в пределах $\pm 5\%$

ПРИЛОЖЕНИЕ Б

МЕТОДИКА ПРИГОТОВЛЕНИЯ КОНТРОЛЬНОГО РАСТВОРА ФЕНОЛА

- Б.1 Для приготовления контрольного раствора применяют следующее оборудование и реактивы:
 - Колбы мерные 2-го класса точности с притёртой пробкой по ГОСТ 1770-74.
 - Пипетки градуированные 2-го класса точности по ГОСТ 29169-91.
 - Раствор фенола в этаноле, массовая концентрация 1 г/дм³ ГСО 9915-2011.
- Ацетонитрил для высокоэффективной жидкостной хроматографии по СТП ТУ COMP3-074-06.
 - Вода 1-ой степени очистки по ГОСТ Р 52501-2005.
 - Ортофосфорная кислота, чда по ГОСТ 6552-80
- Б.2 Приготовление контрольного раствора с использованием жидких стандартных образцов.
- Б.2.1 При помощи градуированной пипетки переносят 0,1см³ стандартного образца в мерную колбу с притертой пробкой вместимостью 100 см³, добавляют до метки элюент и перемешивают.
- Б.2.2 Действительное значение массовой концентрации контрольного раствора $(C_1, \text{мкг/см}^3)$ вычисляют по формуле (Б.1):

$$C_1 = C_0 \frac{1}{1000} \tag{5.1}$$

где C_0 - действительное (паспортное) значение массовой концентрации контрольного вещества в стандартном образце, мкг/см 3 .

Б.3 Погрешность действительного значения концентрации контрольного раствора рассчитывают с учётом процедуры их приготовления по формуле (В.2):

$$\Delta c = 4.4 \sqrt{5.76 \cdot 10^{-6} + \left(\frac{\delta}{4}\right)^2 + \left(\frac{\Delta c_A}{c_A}\right)^2}$$
 (5.2)

Где δ - предел обнаружения антрацена в воде 1-ой степени очистки по ГОСТ Р 52501-2005, мкг/см³; с_A-аттестованное значение концентрации компонента в ГСО, мкг/см³; Δ c_A - абсолютная погрешность аттестованного значения ГСО, мкг/см³.

Б.3.1 Характеристики СИ, используемых для приготовления контрольных растворов

Наименование СИ	Наименование НТД на СИ	Измеряемая величина	Значение измеряемой величины	Пределы допускаемой абсолютной погрешности
Колба мерная 2-100-2	ГОСТ 1770-74	Объем, V2	100 см ³	$\Delta V_2 = \pm 0.12 \text{ cm}^3$
Пипетка 2-0,5-2	ГОСТ 29169-91	Объем, V ₁	0,5 см ³	$\Delta V_1 \pm 0,01 \text{ см}^3$

Б.3.2 При использовании средств измерений и стандартных образцов и реактивов, указанных в п.Б.1. настоящего приложения, относительная погрешность контрольного раствора, приготовленного по данной методике, находится в пределах $\pm 5\%$