Акционерное общество «Приборы. Сервис. Торговля» (АО «ПриСТ»)

«ГСИ. Осциллографы-мультиметры АКИП-4125С. Методика поверки»

МП-ПР-21-2022

Москва 2022

1. ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика распространяется на осциллографы-мультиметры АКИП-4125С (далее осциллографы-мультиметры) и устанавливает методы и средства их поверки.

При проведении поверки должна быть обеспечена прослеживаемость поверяемых мультиметров к государственным первичным эталонам единиц величин:

- к ГЭТ 13-01. «ГПЭ единицы электрического напряжения» в соответствии с Государственной поверочной схемой для средств измерений постоянного электрического напряжения и электродвижущей силы, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 30 декабря 2019 года № 3457;
- к ГЭТ 89-2008. «ГПСЭ единицы электрического напряжения (вольта) в диапазоне частот $10 \div 3 \cdot 10^7$ Гц» в соответствии с Государственной поверочной схемой для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1 \cdot 10^{-1}$ до $2 \cdot 10^9$ Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 3 сентября 2021 года № 1942;
- к ГЭТ 4-91. «ГПЭ единицы силы постоянного электрического тока» в соответствии с Государственной поверочной схемой для средств измерений силы постоянного электрического тока в диапазоне $1 \cdot 10^{-16} \div 100 \text{ A}$, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 1 октября 2018 года № 2091;
- к ГЭТ 88-2014. «ГПСЭ единицы силы электрического тока в диапазоне частот 20 $1\cdot10^6$ Гц» в соответствии с Государственной поверочной схемой для средств измерений переменного электрического тока от $1\cdot10^{-8}$ до 100 А в диапазоне частот $1\cdot10^{-1}$ $1\cdot10^6$ Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 17 марта 2022 года № 668;
- к ГЭТ 14-2014. «ГПЭ единицы электрического сопротивления» в соответствии с Государственной поверочной схемой для средств измерений электрического сопротивления постоянного и переменного тока, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 30 декабря 2019 года № 3456;
- к ГЭТ 25-79. «ГПЭ единицы электрической емкости» в соответствии с общесоюзной поверочной схемой для средств измерений электрической емкости, утвержденной постановлением Государственного комитета СССР от 18 февраля 1980 года № 783;
- к ГЭТ 182-2010. «ГПСЭ единицы импульсного электрического напряжения с длительностью импульса от $4\cdot10^1$ до $1\cdot10^{-5}$ с» в соответствии с Государственной поверочной схемой для средств измерений импульсного электрического напряжения, утвержденной приказом Росстандарта от 31.12.2019 № 3463;
- к ГЭТ 1-2022. «ГПЭ единиц времени, частоты и национальной шкалы времени» в соответствии с Государственной поверочной схемой для средств измерений времени и частоты, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 26 сентября 2022 года № 2360.

Для обеспечения реализации методики поверки при определении метрологических характеристик по пунктам 9.1-9.11 применяется метод прямых измерений.

2. ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

Таблица 1

	Обязательно	Номер		
Наименование операции		поверки при	раздела	
,	первичной	периодической	(пункта)	
1 D	поверке	поверке	методики	
1. Внешний осмотр средства измерений	Да	Да	Раздел 6	
2. Подготовка к поверке и опробование	Да	Да	Раздел 7	
средства измерений				
3. Проверка программного обеспечения	Да	Да	Раздел 8	
4. Определение метрологических				
характеристик и подтверждение	Да	Да	Раздел 9	
соответствия средства измерений	Α		Таздел	
метрологическим требованиям				
5. Определение абсолютной погрешности	_			
измерения напряжения постоянного тока и	Да	Да	9.1	
установки коэффициентов отклонения				
6. Определение погрешности измерения	Да	Да	9.2	
импульсного напряжения	——————————————————————————————————————			
7. Проверка ширины полосы пропускания	Да	Да	9.3	
каналов	<u> </u>	A**		
8. Определение времени нарастания	Да	Да	9.4	
переходной характеристики				
9. Определение относительной погрешности	Да	Да	9.5	
частоты внутреннего опорного генератора			3 12.	
10. Определение абсолютной погрешности	Да	Да	9.6	
измерения напряжения постоянного тока				
11. Определение абсолютной погрешности	Да	Да	9.7	
измерения напряжения переменного тока	<u> </u>	A.,		
12. Определение абсолютной погрешности				
измерения электрического сопротивления	Да	Да	9.8	
постоянному току				
13. Определение абсолютной погрешности	Да	Да	9.9	
измерения электрической емкости			2.70	
14. Определение абсолютной погрешности				
измерения силы постоянного и переменного	Да	Да	9.10	
тока на пределах 60 мА и 600 мА				
15. Определение абсолютной погрешности	_	_		
измерения силы постоянного и переменного	Да	Да	9.11	
тока на пределах 6 А и 10А				
16. Оформление результатов поверки	Да	Да	Раздел 10	

3. ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха от +15 °C до +25 °C;
- относительная влажность от 20 % до 80 %;
- атмосферное давление от 84 до 106 кПа;
- напряжение питающей сети от 200 до 240 B;
- частота питающей сети от 47 до 63 Гц.

4. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

Таблица 2 – Средства поверки

Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
1	2	3
9.1 – 9.11	Диапазон воспроизведения напряжения постоянного тока от 0 до ± 1020 В; абсолютная погрешность от $\pm (20\cdot 10^{-6}\cdot U_k+1\ \text{мкB})$ до $\pm (11\cdot 10^{-6}\cdot U_k+2\ \text{мкB})$. Диапазон воспроизведения силы постоянного тока от 0 до $\pm 20,5$ А; абсолютная погрешность от $\pm (1000\cdot 10^{-6}\cdot I_k+750\ \text{мкA})$ до $\pm (100\cdot 10^{-6}\cdot I_k+0,25\ \text{мкA})$. Диапазон воспроизведения напряжения переменного тока от 1,0 мВ до 1020 В (в диапазоне частот от 10 Γ ц до 500 к Γ ц); абсолютная погрешность от $\pm (900\cdot 10^{-6}\cdot U_k+1600\ \text{мкB})$ до $\pm (2\cdot 10^{-3}\cdot U_k+50\ \text{мB})$. Диапазон воспроизведения силы переменного тока от 29 мкА до 20,5 А (в диапазоне частот от 10 Γ ц до 30 к Γ ц); абсолютная погрешность от $\pm (0,04\cdot 10^{-2}\cdot I_k+2\ \text{мкA})$ до $(2,5\cdot 10^{-2}\cdot I_k+5000\ \text{мкA})$. Диапазон воспроизведения электрического сопротивления постоянному току от 0 до 1100 MOм; абсолютная погрешность от $\pm (28\cdot 10^{-6}\cdot R_k+0,1\ \text{OM})$ до $(1,5\cdot 10^{-2}\cdot R_k+500\ \text{кOM})$. Диапазон воспроизведения электрической емкости от 0,19 н Φ до 110 м Φ ; абсолютная погрешность от $\pm (0,25\cdot 10^{-2}\cdot C_k+0,01\ \text{н}\Phi)$ до $(1,1\cdot 10^{-2}\cdot C_k+100\ \text{мк}\Phi)$. Диапазон напряжений от от $\pm 0,001\ \text{до}$ $\pm 130\ \text{B}$. Пределы допускаемой основной абсолютной погрешности воспроизведения напряжения $\pm (1\cdot 10^{-3}\cdot U+\ +4\cdot 10^{-5})$. Частотный диапазон от 0,05 до 600 М Γ ц. Диапазон установки значения размаха напряжения от $5\cdot 10-3\ \text{до}$ 5,5 М Γ ц. Длительность фронта не более 300 пс. Пределы допускаемой основной относительной погрешности установки частоты $\pm 2,5\cdot 10^{-6}$.	Калибратор многофункциональный Fluke 5522A с модулем SC600 (рег. № 70345-18)

Примечание:

Допускается использовать другие средства измерений утвержденного типа, поверенные и обеспечивающие соотношение погрешностей измерений не более 1/3 допускаемой погрешности определяемой метрологической характеристики СИ.

Таблица 3 – Вспомогательные средства поверки

		Перечень
Измеряемая величина	Метрологические и технические требования	рекомендуемых
нэмериемая величина	к вспомогательным средствам поверки	вспомогательных
		средств поверки
Температура окружающего воздуха, относительная влажность	Диапазон измерений температуры от 0 до $+50^{\circ}$ С. Пределы допускаемой абсолютной погрешности измерений температуры $\pm 0,25^{\circ}$ С. Диапазон измерений относительной влажности окружающего воздуха от 0 до 100%. Пределы допускаемой абсолютной погрешности измерений относительной влажности окружающего воздуха $\pm 2\%$.	Термогигрометр Fluke 1620A (рег. № 36331-07)
Атмосферное давление	Диапазон измерений атмосферного давления от 30 до 120 кПа. Пределы допускаемой абсолютной погрешности измерений атмосферного давления ± 300 Па.	Измеритель давления Testo 511 (рег. № 53431-13)
Напряжение питающей сети, частота питающей сети	Диапазон измерений переменного напряжения от 50 до 480 В. Пределы допускаемой относительной погрешности измерений переменного напряжения 0,2 %. Диапазон измерений частоты от 45 до 66 Гц. Пределы допускаемой относительной погрешности измерений частоты 0,1 %.	Прибор универсальный измерительный параметров электрической сети DMG 800 (рег. № 49072-12)

Примечание:

Допускается использовать другие средства измерений утвержденного типа, поверенные и имеющие метрологические характеристики, аналогичные указанным в данной таблице.

5. ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75. ГОСТ 12.3.019-80. ГОСТ 12.27.7-75. Требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 5.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.
- 5.3 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

6. ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 6.1 Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:
- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными:
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.
 - 6.2 При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7. ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- средства поверки и поверяемый прибор должны быть подготовлены к работе согласно руководствам по эксплуатации;
 - должен быть выполнен контроль условий проведения поверки (раздел 3);
- должен быть выполнен контроль условий по обеспечению безопасности проведения поверки (раздел 5).
- 7.2 Опробование осциллографов-мультиметров проводят путем проверки функционирования в соответствии с руководством по эксплуатации.

При отрицательном результате опробования прибор бракуется и направляется в ремонт.

8. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

Проверка идентификационных данных программного обеспечения осциллографовмультиметров осуществляется путем вывода на дисплей прибора информации о версии программного обеспечения. Вывод системной информации осуществляется по процедуре, описанной в руководстве по эксплуатации на прибор.

Результат считается положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Таблина 4

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	отсутствует	
Номер версии (идентификационный номер ПО)	не ниже 1.1.20	

9. ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ И ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

Периодическая поверка осциллографов-мультиметров, в случае их использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца, оформленного в произвольной форме.

Перед проверкой метрологических характеристик осциллографов-мультиметров необходимо произвести самокалибровку. Для этого необходимо войти в меню "Утилиты" (кнопка Utility), перейти на страницу 2 меню "Утилиты" (нажать F5 один раз до появления страницы 2/3), нажать кнопку F2 (Уст. порта). Далее действовать по указаниям, всплывающим на экране прибора.

9.1 Определение абсолютной погрешности измерения напряжения постоянного тока и установки коэффициентов отклонения

Определение абсолютной погрешности измерения напряжения постоянного тока и установки коэффициентов отклонения проводить при помощи калибратора многофункционального Fluke 5522A с модулем SC600 (далее – калибратор) методом прямых измерений.

9.1.1 Подключить калибратор к входу канала осциллографа-мультиметра согласно рисунку 1.

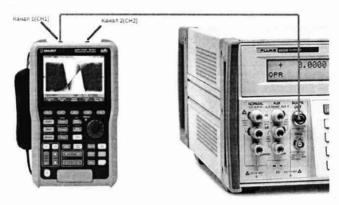


Рисунок 1 - Схема соединения приборов при определении погрешности измерения напряжения постоянного тока и коэффициентов отклонения, определении погрешности измерения импульсного напряжения, проверке ширины полосы пропускания каналов

- 9.1.2 Выполнить сброс на начальные установки осциллографа.
- 9.1.3 Выбрать для измерений канал 1 (СН1) осциллографа-мультиметра.
- 9.1.4 Выполнить на поверяемом осциллографе-мультиметре следующие настройки в соответствии с руководством по эксплуатации:
 - настройки канала: связь по входу DC, ограничение полосы пропускания включено;
 - делитель x1:
 - коэффициент развертки: 1 мс/дел;
 - коэффициент отклонения: устанавливать из таблицы 5.
- 9.1.5 Перевести калибратор многофункциональный Fluke 5522A в режим воспроизведения напряжения постоянного тока на нагрузке 1 МОм.
- 9.1.6 Подать напряжение с калибратора на вход канала 1 (CH1) осциллографамультиметра согласно таблице 5. При этом второй канал должен быть отключен.
- 9.1.7 Произвести измерения входного напряжения постоянного тока в автоматическом режиме измерения осциллографа. Для этого войти в меню измерений осциллографа, выбрать режим измерения среднего значения напряжения (Mean), дождаться завершения 16 усреднений, считать измеренное среднее значение. Зафиксировать значение U_{изм+}.
- 9.1.8 Провести измерения напряжения отрицательной полярности. Зафиксировать значение $U_{\text{изм-}}$.
- 9.1.9 Провести измерения по п.п. 9.1.6-9.1.8 для остальных положений переключателя «В/дел» поверяемого осциллографа-мультиметра согласно таблице 5.

- 9.1.10 Провести измерения по п.п. 9.1.1-9.1.9 для канала 2 (CH2) осциллографамультиметра. При этом первый канал должен быть отключен.
- 9.1.11 Определить абсолютную погрешность установки коэффициента отклонения по формуле (1):

$$\Delta K_o = (U_{\text{изм+}} - U_{\text{изм-}})/X$$
 (1), где

 $U_{\text{изм}^+}$ – значение напряжения положительной полярности, измеренное поверяемым осциллографом-мультиметром, B;

 $U_{\text{изм-}}$ – значение напряжения отрицательной полярности, измеренное поверяемым осциллографом-мультиметром, B;

X – число установленных делений измеряемого напряжения (2,6 для 100 В/дел, 5,2 для 50 В/дел, 6 для остальных).

Таблица 5

Установленный коэффициент	Значение напряжения постоянного тока,	Значение напряжения постоянного тока, измеренное	значений на	пускаемые пределы чений напряжения/ фициента отклонения	
отклонения	установленное на калибраторе	осциллографом- мультиметром	Нижний предел	Верхний предел	
1	2	3	2	4	
	+6 мВ		+4,36 мВ	+7,64 мВ	
2 мВ/дел	-6 мВ		-7,64 мВ	-4,36 мВ	
			4,800 В/дел	5,200 мВ/дел	
	+15 мВ		+13,00 мВ	+17,00 мВ	
5 мВ/дел	-15 мВ	×	-17,00 мВ	-13,00 мВ	
			4,800 В/дел	5,200 мВ/дел	
	+30 мВ		+27,30 мВ	+32,70 мВ	
10 мВ/дел	-30 мВ		-32,70 мВ	-27,30 мВ	
			9,60 мВ/дел	10,40 мВ/дел	
	+60 мВ		+55,60 мВ	+64,40 мВ	
20 мВ/дел	-60 мВ		-64,40 мВ	-55,60 мВ	
			19,40 мВ/дел	20,60 мВ/дел	
	+150 мВ		+140,50 мВ	+159,50 мВ	
50 мВ/дел	-150 мВ		-159,50 мВ	-140,50 мВ	
			48,50 мВ/дел	51,50 мВ/дел	
	+300 мВ		+282,0 мВ	+318,0 мВ	
100 мВ/дел	-300 мВ		-318,0 мВ	-282,0 мВ	
			97,0 мВ/дел	103,0 мВ/дел	
200 мВ/дел	+600 мВ		+565 мВ	+623 мВ	
	-600 мВ		-635 мВ	-565 мВ	
			194 мВ/дел	206 мВ/дел	
	+1,5 B		+1,414 B	+1,586 B	
0,5 В/дел	-1,5 B		-1,586 B	-1,414 B	
			485 мВ/дел	515 мВ/дел	

Продолжение таблицы 5

Установленный коэффициент	Значение значение напряжения постоянного тока, измеренное отклонения установленное калибраторе значение напряжения постоянного тока, измеренное осциллографом-мультиметром	постоянного тока,	Допускаемые пределы значений напряжения/ коэффициента отклонения	
		Нижний предел	Верхний предел	
	+3,0 B		+2,829 B	+3,171 B
1 В/дел	-3,0 B		-3,171 B	-2,829 B
			0,970 В/дел	1,030 В/дел
	+6,0 B		+5,659 B	+6,341 B
2 В/дел	-6,0 B		-6,341 B	-5,659 B
			1,940 В/дел	2,060 В/дел
	+15,0 B		+14,149 B	+15,581 B
5 В/дел	-15,0 B		-15,581 B	-14,149 B
			4,850 В/дел	5,150 В/дел
	+30,0 B		+28,299 B	+31,701 B
10 В/дел	-30,0 B		-31,701 B	-28,299 B
			9,700 В/дел	10,300 В/дел
	+60,0 B		+56,559 B	+63,401 B
20 В/дел	-60,0 B		-63,401 B	-56,559 B
			19,400 В/дел	20,600 В/дел
	+130,0 B		+122,099 B	+137,901 B
50 В/дел	-130,0 B		-137,901 B	-122,099 B
			48,500 В/дел	51,500 В/дел
	+130,0 B		+118,099 B	+141,901 B
100 В/дел	-130,0 B		-141,901 B	-118,099 B
			97,000 В/дел	103,000 В/дел

Результаты поверки считать положительными, если погрешности измерения напряжения постоянного тока и установки коэффициентов отклонения не превышают допускаемых пределов, приведенных в таблице 5.

9.2 Определение погрешности измерения импульсного напряжения

Определение погрешности измерения импульсного напряжения проводить при помощи калибратора многофункционального Fluke 5522A с модулем SC600 методом прямых измерений.

- 9.2.1 Подключить калибратор к входу канала 1 (СН1) осциллографа-мультиметра согласно рисунку 1. Второй канал должен быть выключен.
 - 9.2.2 Выполнить следующие установки на осциллографе-мультиметре:
 - канал 1: включен, связь входа: DC;
 - ограничение полосы пропускания: 20 МГц;
 - коэффициент развертки 5 мкс/дел;
 - тип синхронизации: Фронт;
 - режим измерения: Amplitude (амплитудное значение), статистика измерений: включена;
 - коэффициент отклонения: устанавливается из таблицы 6.

- 9.2.3 Установить калибратор в режим источника импульсного напряжения частотой 1 кГц.
- 9.2.4 Провести измерения импульсного напряжения при установках, приведенных в таблице 6. Для получения результата измерения произвести считывание среднего значения результата измерения при числе измерений не менее 50. Записать измеренные значения в таблицу 6.
- 9.2.5 Повторить измерения по п.п. 9.2.1 9.2.4 для канала 2 (CH2) осциллографамультиметра. Первый канал должен быть выключен.

Результаты поверки считать положительными, если измеренные значения импульсного напряжения не превышают допускаемых пределов, приведенных в таблице 6.

Таблица 6

Установленный коэффициент отклонения Значение напряжения, установленное на калибраторе Значение напряжения, измеренное осциллографоммультиметром	A company of the same		Допускаемые пределы измерения напряжения	
	Нижний предел	Верхний предел		
5 мВ/дел	30 мВ		27,40 мВ	32,60 мВ
10 мВ/дел	60 мВ		56,60 мВ	63,40 мВ
20 мВ/дел	120 мВ		114,20 мВ	125,80 мВ
50 мВ/дел	300 мВ	10.000.00	287,0 мВ	313,0 мВ
100 мВ/дел	600 мВ		575 мВ	625 мВ
200 мВ/дел	1,2 B		1,151 B	1,249 B
500 мВ/дел	3 B		2,879 B	3,121 B
1 В/дел	6 B		5,759 B	6,241 B
2 В/дел	12 B		11,519 B	12,481 B
5 В/дел	30 B		28,799 B	31,201 B
10 В/дел	60 B		57,599 B	62,401 B
20 В/дел	120 B		115,199 B	124,801 B
50 В/дел	120 B		107,999 B	132,001 B
100 В/дел	130 B		105,999 B	154,001 B

9.3 Проверка ширины полосы пропускания каналов

Проверку ширины полосы пропускания осциллографа-мультиметра проводить при помощи калибратора многофункционального Fluke 5522A с модулем SC600 методом прямых измерений.

- 9.3.1 Подключить калибратор к входу канала 1 (СН1) осциллографа-мультиметра согласно рисунку 1.
- 9.3.2 Выполнить на осциллографе-мультиметре сброс на заводские настройки и произвести следующие установки:
 - канал 1: включен, связь входа DC;
 - коэффициент отклонения осциллографа-мультиметра: K_o = 2 мВ/дел;
 - коэффициент развертки: 5 мкс/дел;
 - полоса пропускания: полная.

- 9.3.3 Установить на выходе калибратора синусоидальный сигнал частотой 50 кГц, размах сигнала от 4 до 6 делений по вертикали. Измерить размах сигнала U_{on} при помощи автоматических измерений осциллографа-мультиметра: Amplitude (Амплитуда). Для получения результата измерения произвести считывание максимального значения результата измерения при числе измерений не менее 50.
- 9.3.4 Установить на выходе калибратора сигнал с частотой, соответствующей верхней граничной частоте полосы пропускания поверяемого осциллографа-мультиметра.
- 9.3.5 Установить на поверяемом осциллографе-мультиметре величину коэффициента развертки, соответствующую частоте.
- 9.3.6 Записать измеренный осциллографом-мультиметром размах сигнала при частоте, соответствующей верхнему пределу полосы пропускания поверяемого осциллографамультиметра.
- 9.3.7 Повторить измерения по п.п. 9.3.3-9.3.6 для значений коэффициентов отклонения, устанавливаемых из ряда: 5, 10, 20, 50, 100, 200, 500 мВ/дел, 1 В/дел.
- 9.3.8 Провести измерения по п.п. 9.3.1 9.3.7 для канала 2 (CH2) осциллографамультиметра. Первый канал должен быть выключен.

Результаты поверки считать положительными, если измеренное значение амплитуды сигнала при частоте, соответствующей верхней граничной частоты полосы пропускания (указано в таблице 7) поверяемого осциллографа-мультиметра, не менее $0,708 \cdot U_{on}$, что соответствует уровню -3 дБ.

Таблица 7

Модификации осциллографа-мультиметра	Полоса пропускания по уровню -3 дБ, МГц	
АКИП-4125/1С	100	
АКИП-4125/2С	200	

9.4 Определение времени нарастания переходной характеристики

Определение времени нарастания переходной характеристики (ПХ) проводить при помощи калибратора многофункционального Fluke 5522A с модулем SC600 методом прямых измерений.

- 9.4.1 Подключить калибратор к входу канала 1 (CH1) осциллографа-мультиметра с использованием нагрузки 50 Ом согласно рисунку 2. Второй канал должен быть выключен.
 - 9.4.2 Выполнить следующие установки на осциллографе-мультиметре:
 - канал 1: включен, связь входа: DC;
 - полоса пропускания: Full (Полная);
 - тип синхронизации: Edge (Фронт);
- значение коэффициента развертки: минимальное, при котором наблюдается фронт импульса;
 - режим измерения: Rise Time (Время нарастания), статистика измерений включена;
 - коэффициент отклонения $K_0 = 5 \text{ мВ/дел.}$
 - 9.4.3 Выполнить следующие установки на калибраторе:
 - режим: SCOPE EDGE;
 - выходное сопротивление 50 Ом;
- 9.4.4 Установить амплитуду импульса на экране осциллографа-мультиметра не менее 6 делений по вертикали. Произвести считывание среднего значения результата измерения времени нарастания.

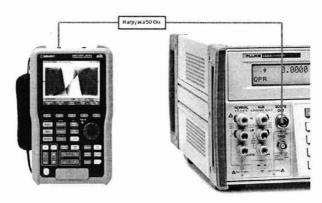


Рисунок 2 — Схема соединения приборов при определении времени нарастания переходной характеристики и определении относительной погрешности частоты внутреннего опорного генератора.

- 9.4.5 Повторить измерения по п.п. 9.4.1 9.4.5 для коэффициентов отклонения, устанавливаемых из ряда: 5, 10, 20, 50, 100, 200, 500 мВ/дел, 1 В/дел.
- 9.4.6 Повторить измерения по п.п. 9.4.1-9.4.5 для канала 2 (CH2) осциллографамультиметра. Первый канал должен быть выключен.

Результаты поверки считать положительными, если значения времени нарастания переходной характеристики не превышают значений, приведенных в таблице 8.

Таблица 8

Модификации осциллографов-мультиметров	Допускаемое значение времени нарастания ПХ, нс, не более
АКИП-4125/1С	3,5
АКИП-4125/2С	1,7

9.5 Определение относительной погрешности частоты внутреннего опорного генератора

Определение относительной погрешности частоты внутреннего опорного генератора проводить методом стробоскопического преобразования при помощи калибратора многофункционального Fluke 5522A с модулем SC600.

- 9.5.1 Подключить калибратор к входу канала 1 (СН1) осциллографа-мультиметра согласно рисунку 2.
 - 9.5.2 Выполнить следующие установки осциллографа-мультиметра:
 - канал 1 Включен, связь входа DC;
 - полоса пропускания Full (Полная);
 - тип синхронизации Edge (Фронт);
 - режим измерения Frequency (Частота), статистика измерений включена;
 - коэффициент отклонения 100 мВ/дел.
- 9.5.3 Подать на вход осциллографа-мультиметра синусоидальный сигнал с калибратора, частотой $f_{\text{тест}}=10,008$ МГц. Размах сигнала с калибратора установить не менее 6 делений по вертикальной шкале осциллографа-мультиметра.
- 9.5.4 В меню осциллографа-мультиметра «Сбор информации» установить минимальное значение длины памяти.

- 9.5.5 Установить коэффициент развертки осциллографа-мультиметра для отображения сигнала частотой $F_{\text{строб}} = 8$ к Γ ц, полученного в результате стробоскопического преобразования.
- 9.5.6 Произвести считывание среднего значения результата измерения частоты при числе статистки измерений не менее 50.

Результаты поверки считать положительными, если измеренное значение частоты $F_{\text{строб}}$ не превышает (8000 ± 250) Γ ц.

9.6 Определение абсолютной погрешности измерения напряжения постоянного тока

Определение абсолютной погрешности измерения напряжения постоянного тока проводить при помощи калибратора многофункционального Fluke 5522A методом прямых измерений.

- 9.6.1 На осциллографе-мультиметре установить режим измерения напряжения постоянного тока согласно РЭ.
 - 9.6.2 Подключить осциллограф-мультиметр к калибратору согласно рисунку 3.



Рисунок 3 — Схема соединения приборов при определении погрешности измерения напряжения постоянного и переменного тока, электрического сопротивления постоянному току, электрической емкости

9.6.3 На калибраторе установить поочередно значения напряжения постоянного тока в соответствии с таблицей 9. Зафиксировать показания осциллографа-мультиметра и занести их в таблицу 9.

Таблица 9 - Определение абсолютной погрешности измерения напряжения постоянного тока

Значения, установленные на калибраторе	Предел измерения осциллографа-мультиметра	Измеренное значение	Нижний предел допускаемых значений	Верхний предел допускаемых значений
+6,00 мВ			+ 5,79 мВ	+6,21 мВ
+15,00 мВ	60 D		+14,70 мВ	+15,30 мВ
+30,00 мВ	60 мВ		+29,55 мВ	+30,45 мВ
+57,00 мВ			+56,28 мВ	+57,72 мВ

Продолжение таблицы 9

Значения, установленные на калибраторе	Предел измерения осциллографа- мультиметра	Измеренное значение	Нижний предел допускаемых значений	Верхний предел допускаемых значений
+60,0 мВ			+ 58,9 мВ	+61,1 мВ
-150,0 мВ	(00 - D		+ 148,0 мВ	+152 мВ
-300,0 мВ	600 мВ		+ 296,5 мВ	+303,5 мВ
-570,0 мВ			+ 563,8 мВ	+576,2 мВ
+ 0,600 B			+ 0,589 B	+ 0,611 B
+1,500 B	6 B		+ 1,480 B	+ 1,520 B
+3,000 B			+ 2,965 B	+ 3,035 B
+5,700 B			+5,638 B	+5,762 B
+6,00 B			+ 5,89 B	+ 6,11 B
+15,00 B	(0 D		+ 14,80 B	+ 15,20 B
+30,00 B	60 B		+ 29,65 B	+ 30,35 B
+57,00 B			+56,38 B	+ 57,62 B
+60,0 B			+ 58,9 B	+ 61,1 B
+150,0 B	600 B		+ 148,0 B	+ 152,0 B
+300,0 B			+ 296,5 B	+ 303,5 B
+570,0 B			+ 563,8 B	+ 576,2 B

Результаты поверки считать положительными, если показания осциллографамультиметра находятся в пределах, приведенных в таблице 9.

9.7 Определение абсолютной погрешности измерения напряжения переменного тока

Определение абсолютной погрешности измерения напряжения переменного тока проводить при помощи калибратора многофункционального Fluke 5522A методом прямых измерений.

- 9.7.1 На осциллографе-мультиметре установить режим измерения напряжения переменного тока согласно РЭ.
 - 9.7.2 Подключить осциллограф-мультиметр к калибратору согласно рисунку 3.
- 9.7.3 На калибраторе установить поочередно значения напряжения переменного тока в соответствии с таблицей 10. Зафиксировать показания осциллографа-мультиметра и занести их в таблицу 10.

Таблица 10 – Определение абсолютной погрешности измерения напряжения переменного тока

Значения, установленные на калибраторе	Частота напряжения	Измеренное значение	Нижний предел допускаемых значений	Верхний предел допускаемых значений
		Предел 60 мВ		
6,00 мВ	45 Гц		5,79 мВ	6,21 мВ
6,00 мВ	400 кГц		5,79 мВ	6,21 мВ
15,00 мВ	45 Гц		14,70 мВ	15,30 мВ
15,00 мВ	400 кГц		14,70 мВ	15,30 мВ

Продолжение таблицы 10

Частота напряжения 45 Гц	Измеренное значение	Нижний предел допускаемых	Верхний предел допускаемых
напряжения 45 Гц		допускаемых	лопускаемых
45 Гц			TOTAL
		значений	значений
		29,55 мВ	30,45 мВ
400 кГц		29,55 мВ	30,45 мВ
45 Гц		56,28 мВ	57,72 мВ
400 кГц			57,72 мВ
	Предел 600 мВ		
45 Гц		58,9 мВ	61.1 мВ
400 кГц	B	58,9 мВ	61.1 мВ
45 Гц		148,0 мВ	152,0 мВ
400 кГц		148,0 мВ	152,0 мВ
45 Гц		296,5 мВ	303,5 мВ
400 кГц		296,5 мВ	303,5 мВ
45 Гц		563,8 мВ	576.2 мВ
400 кГц		563,8 мВ	576.2 мВ
,	Предел 6 В		
45 Гц		0,589 B	0,611 B
		0,589 B	0,611 B
			1,520 B
			1,520 B
			3,035 B
			3,035 B
			5,762 B
			5,762 B
	Предел 60 В		
45 Ги	7.6	5.89 B	6,11 B
			6,11 B
	*		15,20 B
			15,20 B
DESIGNATION DESIGNATION			30,35 B
			30,35 B
			57,62 B
			57,62 B
	Предел 600 В		,
45 Γπ			61,1 B
			61,1 B
			152,0 B
			152,0 B
			303,5 B
			303,5 B
			576,2 B
			576,2 B
	400 κΓц 45 Γц 400 κΓц 45 Γц 400 κΓц 45 Γц 400 κΓц 45 Γц	Предел 600 мВ 45 Гц 400 кГц 45 Гц	Time

Результаты поверки считать положительными, если показания осциллографамультиметра находятся в пределах, приведенных в таблице 10.

9.8 Определение абсолютной погрешности измерения электрического сопротивления постоянному току

Определение абсолютной погрешности измерения электрического сопротивления постоянному току проводить при помощи калибратора многофункционального Fluke 5522A методом прямых измерений.

- 9.8.1 На осциллографе-мультиметре установить режим измерения сопротивления постоянному току согласно РЭ.
 - 9.8.2 Подключить осциллограф-мультиметр к калибратору согласно рисунку 3.
- 9.8.3 На калибраторе установить поочередно значения сопротивления постоянному току в соответствии с таблицей 11. Зафиксировать показания осциллографа-мультиметра и занести их в таблицу 11.

Таблица 11 – Определение абсолютной погрешности измерения сопротивления постоянному

TO	KV	
10	K V	

Значения	Показания	Нижний предел	Верхний предел
сопротивления	осциллографа-	допускаемых	допускаемых
калибратора	мультиметра	значений	значений
	Предел	600 Ом	
60,0 Ом		58,9 Ом	61,1 Ом
570,0 Ом		563,8 Ом	576,2 Ом
	Преде.	л 6 кОм	
0,600 кОм		0,589 кОм	0,611 кОм
5,700 кОм		5,638 кОм	5,762 кОм
	Предел	60 кОм	
6,00 кОм		5,9 кОм 6,1 кО	
57,00 кОм		56,4 кОм	57,4 кОм
	Предел	600 кОм	
60,00 кОм		58,9 кОм 61,1 кО	
570,0 кОм		563,8 кОм	576,2 кОм
	Предел	I 6 МОм	
0,600 МОм		0,589 МОм	
5,700 МОм		5,638 МОм	5,762 МОм
1	Предел	60 МОм	
6,00 МОм		5,71 МОм	6,29 МОм
57,00 МОм		54,67 МОм 59,33 МОм	

Результаты поверки считать положительными, если показания осциллографамультиметра находятся в пределах, приведенных в таблице 11.

9.9 Определение абсолютной погрешности измерения электрической емкости

Определение абсолютной погрешности измерения электрической емкости проводить при помощи калибратора многофункционального Fluke 5522A методом прямых измерений.

- 9.9.1 На осциллографе-мультиметре установить режим измерения емкости согласно РЭ.
 - 9.9.2 Подключить осциллограф-мультиметр к калибратору согласно рисунку 3.
- 9.9.3 На калибраторе установить поочередно значения емкости в соответствии с таблицей 12. Зафиксировать показания осциллографа-мультиметра и занести их в таблицу 12.

Таблица 12 - Определение абсолютной погрешности измерения электрической емкости

Значения емкости	Показания	Нижний предел	Верхний предел
калибратора	осциллографа-	допускаемых	допускаемых
калиоратора	мультиметра	значений	значений
	Преде	ел 40 нФ	
6,00 нФ		5,20 нФ	6,80 нФ
38,00 нФ		35,60 нФ	40,40 нФ
	Преде	л 400 нФ	
42,0 нФ		39,4 нФ	44,6 нФ
380,0 нФ		360,5 нФ	399,5 нФ
	Преде	ел 4 мкФ	
0,420 мкФ		0,294 мкФ 0,446 мкг	
3,800 мкФ		3,605 мкФ 3,995 мк	
	Предел	і 40 мкФ ¹⁾	
4,20 мкФ		3,94 мкФ 4,46 мкФ	
38,00 мкФ		36,05мкФ 39,95 м	
	Предел	400 мкФ ¹⁾	
42,0 мкФ		39,4 мкФ 44,6 мкФ	
380,0 мкФ		360,5 мкФ 399,	

 $^{1)}$ На пределах 40 мкФ и 400 мкФ для стабильности показаний при измерении потребуется не менее 30 секунд.

Результаты поверки считать положительными, если показания осциллографамультиметра находятся в пределах, приведенных в таблице 12.

9.10 Определение абсолютной погрешности измерения силы постоянного и переменного тока на пределах 60 мА и 600 мА

Определение абсолютной погрешности измерения силы постоянного и переменного тока на пределах 60 мА и 600 мА проводить при помощи калибратора многофункционального Fluke 5522A и токового шунта 600mA методом прямых измерений.

- 9.10.1 На осциллографе-мультиметре установить поочередно режим измерений силы постоянного тока и переменного тока согласно РЭ.
 - 9.10.2 Подключить осциллограф-мультиметр к калибратору согласно рисунку 4.
- 9.10.3 На калибраторе установить поочередно значения силы постоянного и переменного тока в соответствии с таблицами 13 14. Зафиксировать показания осциллографамультиметра и занести их в соответствующую таблицу.



Рисунок 4 — Схема соединения приборов при определении погрешности измерения силы постоянного и переменного тока на пределах 60 и 600 мА

Таблица 13 – Определение абсолютной погрешности измерения силы постоянного тока

Значения, установленные на калибраторе	Предел измерения	Измеренное значение	Нижний предел допускаемых значений	Верхний предел допускаемых значений
+6,00 мА	(0.1		+5,66 мА	+6,34 мА
+57,00 MA	60 мА		+54,62 мА	+59,38 мА
+60,00 MA	600		+56,6 мА	+63,4 мА
+570,00 MA	600 мА		+546,2 мА	+593,8 мА

Таблица 14 – Определение абсолютной погрешности измерения силы переменного тока

Значения, установленные на калибраторе	Частота переменного тока	Измеренное значение	Нижний предел допускаемых значений	Верхний предел допускаемых значений
		Предел 60 мА	**	
6,00 мА	45 Гц		5,66 мА	6,34 мА
6,00 мА	400 Гц		5,66 мА	6,34 мА
57,00 мА	45 Гц		54,62 мА	59,38 мА
57,00 мА	400 Гц		54,62 мА	59,38 мА
		Предел 600 мА		
60,00 мА	45 Гц		56,6 мА	63,4 мА
60,00 мА	400 Гц		56,6 мА	63,4 мА
570,00 мА	45 Гц		546,2 мА	593,8 мА
570,00 мА	400 Гц		546,2 мА	593,8 мА

Результаты поверки считать положительными, если показания осциллографамультиметра находятся в пределах, приведенных в таблицах 13 — 14.

9.11 Определение абсолютной погрешности измерения силы постоянного и переменного тока на пределах 6 A и 10 A

Определение абсолютной погрешности измерения силы постоянного и переменного тока проводить при помощи калибратора многофункционального Fluke 5522A и токового шунта 10A методом прямых измерений.

- 9.11.1 На осциллографе-мультиметре установить поочередно режим измерений силы постоянного тока и переменного тока согласно РЭ.
 - 9.11.2 Подключить осциллограф-мультиметр к калибратору согласно рисунку 5.
- 9.11.3 На калибраторе установить поочередно значения силы постоянного тока и переменного тока в соответствии с таблицами 14 15. Измерения должны проводиться не дольше 10 секунд, пауза между очередными замерами не менее 15 минут для охлаждения токового шунта 10 А. Зафиксировать показания осциллографа-мультиметра и занести их в соответствующую таблицу.

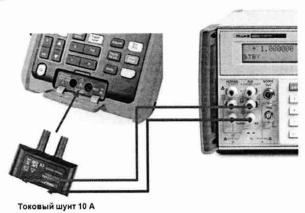


Рисунок 5 – Схема соединения приборов при определении погрешности измерения силы постоянного и переменного тока на пределах 6 A и 10 A

Таблица 14 - Определение абсолютной погрешности измерения силы постоянного тока

Значения, установленные на калибраторе	Предел измерения	Измеренное значение	Нижний предел допускаемых значений	Верхний предел допускаемых значений
+6,000 A	6 A		+4,745 A	+5,255 A
+10,00 A	10 A		+9,30 A	+10,30 A

Таблица 15 - Определение абсолютной погрешности измерения силы переменного тока

Значения, установленные на калибраторе	Частота переменного тока	Измеренное значение	Нижний предел допускаемых значений	Верхний предел допускаемых значений
		Предел 6 А		
5,00 A	45 Гц		4,745 A	5,255 A
5,00 A	400 Гц		4,700 A	5,300 A
		Предел 10 А		
9,8 A	45 Гц	•	9,26 A	10,34 A
9,8 A	400 Гц		9,26 A	10,34 A

Результаты поверки считать положительными, если показания осциллографамультиметра находятся в пределах, приведенных в таблицах 14-15.

Осциллографы-мультиметры считают соответствующими метрологическим требованиям при положительных результатах поверки, установленных в п.п. 9.1 – 9.11.

10. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 10.1 Результаты поверки подтверждаются сведениями о результатах поверки средств измерений, включенными в Федеральный информационный фонд по обеспечению единства измерений.
- 10.2 При положительных результатах поверки по заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке и (или) наносится знак поверки на средство измерений.
- 10.3 При отрицательных результатах поверки (когда не подтверждается соответствие средств измерений метрологическим требованиям) по заявлению владельца средства измерений или лица, представившего его на поверку, выдается извещение о непригодности.
- 10.4 Протоколы поверки оформляются в соответствии с требованиями, установленными в организации, проводившей поверку.

Начальник отдела испытаний АО «ПриСТ»

Инженер по метрологии

О.В. Котельник

Г.Д. Шпагин