Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» ФГУП «ВНИИМ им. Д.И. Менделеева»

СОГЛАСОВАНО

Генеральный директор ФГУП «ВНИИМ им. Д.И. Менделеева»

_А.Н. Пронин

М.П.

" 15 " 11 20

_2022 г.

Государственная система обеспечения единства измерений

Анализаторы рентгеновские АР

Методика поверки

МП-242-2504-2022

Заместитель руководителя научно-исследовательского отдела государственных эталонов в области физико-химических измерений ФГУП «ВНИИМ им. Д.И. Менделеева»"

Т.Б. Соколов

Ведущий инженер

ФГУП ВНИИМ им, Д.И. Менделеева»

Т.М. Эннанова

Санкт-Петербург 2022 г.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика распространяется на анализаторы рентгеновские AP, изготавливаемые AO «ИЦ «Буревестник», г. Санкт-Петербург, и устанавливает методы и средства их первичной поверки до ввода в эксплуатацию, а также после ремонта, и периодической поверки в процессе эксплуатации.

Требования по обеспечению прослеживаемости поверяемого анализатора к государственным первичным эталонам единиц величин выполняются путем реализации на анализаторе методик измерений с применением стандартных образцов утвержденного типа, прослеживаемых к комплексу государственных первичных эталонов единиц массовой (молярной) доли и массовой (молярной) концентрации по ГОСТ 8.735.0-2011 «Государственная поверочная схема для средств измерений содержания компонентов в жидких и твердых веществах и материалах. Основные положения»:

ГЭТ 217-2018 ГПЭ единиц массовой доли и массовой (молярной) концентрации неорганических компонентов в водных растворах на основе гравиметрического и спектрального методов;

ГЭТ 176-2019 ГПЭ единиц массовой (молярной, атомной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе кулонометрии;

ГЭТ 196-2019 ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе спектральных методов;

ГЭТ 208-2019 ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации органических компонентов в жидких и твердых веществах и материалах на основе жидкостной и газовой хромато-масс-спектрометрии с изотопным разбавлением и гравиметрии.

Метод, обеспечивающий реализацию методики поверки: косвенное измерение поверяемым средством величины, воспроизводимой стандартным образцом.

Первичная поверка при выпуске из производства проводится только для тех спектрометрических каналов, которые входят в состав комплектации анализатора в соответствии с заказом. Первичная поверка после ремонта и периодическая поверка проводится только для тех спектрометрических каналов, с которыми анализатор эксплуатируется.

Допускается возможность проведения поверки анализатора для меньшего числа спектрометрических каналов (из числа входящих в его комплектацию).

Примечания:

- 1. При пользовании настоящей методикой поверки целесообразно проверить действие ссылочных документов по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего года и по соответствующим информационным указателям, опубликованным в текущем году.
- 2. Если ссылочный документ заменен (изменен), то при пользовании настоящей методикой следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

2. ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

2.1. Для поверки анализаторов рентгеновских АР должны быть выполнены операции, указанные в таблице 1.

Таблица 1- Перечень операций поверки

	Обязательность выполнения		Номер пункта методики
Наименование операции поверки	операций поверки при		поверки, в соответствии
паименование операции поверки	первичной	периодической	с которым выполняется
	поверке	поверке	операция поверки
Внешний осмотр	да	да	7
Контроль условий поверки (при подготовке к поверке и опробовании средства измерений)	да	да	8.3
Опробование (при подготовке к поверке и опробовании средства измерений)	да	да	8.4
Проверка программного обеспечения	да	да	9
Определение метрологических характеристик	да	да	10
Подтверждение соответствия средства измерений метрологическим требованиям	да	да	11

2.2 Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

3. ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающей среды, °С

от +12 до +32;

- атмосферное давление, кПа

от 84,0 до 106,7;

- относительная влажность воздуха, %, не более

75

4. ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

- 4.1. Поверка анализаторов должна проводиться юридическими лицами или индивидуальными предпринимателями, аккредитованными на право оказания услуг в области обеспечения единства измерений, в установленном действующим законодательством порядке.
- 4.2. К проведению поверки допускаются лица, допущенные к выполнению поверки по данному виду измерений, изучившие методику поверки и руководство по эксплуатации анализаторов, прошедшие инструктаж по технике безопасности в установленном порядке.

5. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

При проведении поверки должны быть применены средства, указанные в таблице 2.
Таблица 2 – Перечень средств поверки

Операции по-	Метрологические и	Перечень рекомендуемых средств поверки
верки, требую-	технические требования к	74. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12
щие применение	средствам поверки,	
средств поверки	необходимые для	
	проведения поверки	
п. 8 Подготовка	Стандартные образцы со-	ГСО 10730-2015 (СО ВРК-ПА-1), стандарт-
к поверке и	става раствора ионов ме-	ный образец состава раствора ионов метал-
опробование.	таллов, массовая концен-	лов (интервал допускаемых аттестованных
п. 10 Определе-	трация иона металла:	значений массовой концентрации иона ме-
ние метрологи-	- железо - 10,0 г/дм ³ ,	талла от $0,005$ до $15 г/дм^3$ вкл.; границы до-
ческих характе-	- цинк - 1,0 г/дм ³ ,	пускаемых значений относительной погреш-
ристик	- никель - 1,0 г/дм ³ ,	ности СО при $P=0.95$ от ± 1.1 до ± 2.1 %).
	- медь - 1,0 г/дм ³ ,	Вода дистиллированная по ГОСТ Р 58144-
	- свинец - 10,0 г/дм ³	2018.
п.8 Контроль	Средства измерений темпе-	Прибор комбинированный Testo 622 (реги-
условий поверки	ратура окружающей среды	страционный номер в Федеральном инфор-
(при подготовке	в диапазоне измерений от	мационном фонде по обеспечению единства
к поверке и	+15 до +25 °С;	измерений 53505-13) или аналогичный
опробовании)	Средства измерений отно-	
	сительной влажности воз-	9
	духа в диапазоне до 75 %;	
	Средства измерений атмо-	
	сферного давления в диапа-	

Допускается использовать при поверке другие средства измерений и стандартные образцы утвержденного типа, и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице.

6. ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1. Требования безопасности должны соответствовать правилам и нормам, изложенным в руководстве по эксплуатации анализаторов рентгеновских АР.
- 6.2. При проведении операций по поверке следует руководствоваться действующими на предприятии правилами и нормами, регламентированными инструкциями по безопасности труда для подразделений, где установлено поверяемое СИ.

7. ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1. При проведении внешнего осмотра должно быть установлено:
- соответствие внешнего вида анализатора описанию типа СИ;
- наличие знака утверждения типа в месте, указанном в описании типа СИ;
- соблюдение требований по защите анализатора от несанкционированного доступа, указанных в описании типа СИ: наличие и целостность пломб в соответствии с требованиями эксплуатационной документации;
- наличие маркировки, подтверждающей тип и идентифицирующей анализатор;

- отсутствие на наружных поверхностях анализатора повреждений и дефектов, влияющих на его работоспособность;
 - отсутствие ослаблений элементов конструкции, чистоту разъемов;
 - надежность крепления соединительных элементов, кабелей.
- 7.2. В случае обнаружения дефектов, способных оказать влияние на безопасность проведения поверки и (или) на результаты поверки они должны быть устранены до начала поверки.

8. ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ

- 8.1. Подготовку анализатора к поверке, включение соединительных устройств, выполнение операций при проведении контрольных измерений осуществляют в соответствии с правилами эксплуатации, изложенными в руководстве по эксплуатации анализаторов рентгеновских AP ТА21.1.211.126 РЭ, в руководстве пользователя анализаторов рентгеновских AP модель AP-35 ТА21.1.211.126 РП, руководстве пользователя анализаторов рентгеновских AP модель AP-31-HM ТА22.1.211.127 РП.
- 8.2. Подготовить для анализа выбранные стандартные образцы в соответствии с инструкцией по применению соответствующего комплекта стандартных образцов, требованиями руководства по эксплуатации.
- 8.3. При подготовке к поверке проверить выполнение условий пунктов 3, 4, 5, 6 настоящей методики поверки и занести в протокол поверки условия проведения поверки (температура окружающей среды, атмосферное давление, относительная влажность воздуха).
- 8.4. При опробовании проверяют исправность работы анализатора. Включить анализатор в соответствии с п. 11.1 руководством по эксплуатации TA21.1.211.126 РЭ. Прогреть анализатор в течение не менее 60 мин.
- 8.4.1. После включения анализатора рентгеновского AP модели AP-35 на панели оператора появится стартовое меню ПО «AR35» «Контроль работы анализатора». Войти в «Меню экранов аналитических».

Результаты опробования анализатора рентгеновского AP модели AP-35 считаются удовлетворительными, если ПО панели оператора ПО «AR35» загружается без сбоев, анализатор функционирует в соответствии с требованиями РЭ TA21.1.211.126 РЭ и РП TA21.1.211.126 РП.

8.4.2. После включения анализатора рентгеновского AP модели AP-31-HM включить APM, выполняется загрузка операционной системы, запустить ПО «AR31NM». На экране монитора появится окно программы с выбором учетной записи, выбрать учетную запись «OPER», появится главное окно программы «Ручной режим». Открыть экран «Скорость счета и контрастность», нажав кнопку «СС и К». Нажатием соответствующей кнопки открыть экран «Поверка».

Результаты опробования анализатора рентгеновского AP модели AP-31-HM считаются удовлетворительными, если ПО «AR31NM» загружается без сбоев, анализатор функционирует в соответствии с требованиями РЭ ТА21.1.211.126 РЭ и РП ТА22.1.211.127 РП.

9. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

9.1. Определение идентификационных данных программных обеспечений анализаторов рентгеновских АР модели АР-35.

Для вызова окна идентификации ПО необходимо на любом экране панели оператора нажать на ярлык ИЦ «Буревестник» , который находится в левом верхнем углу экрана. После чего на экране появится окно «Идентификационные данные» (рисунок 1).

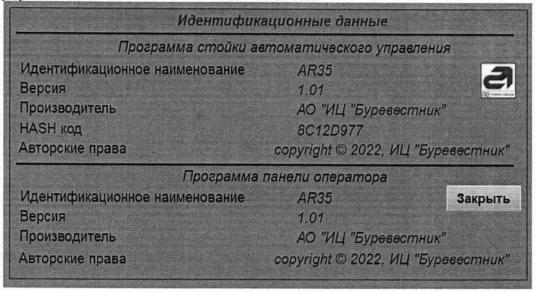


Рисунок 1. Окно «Идентификационные данные» анализаторов рентгеновских AP модели AP-35.

Информация, указанная в окне «Идентификационные данные»:

В верхней части окна указаны идентификационные данные ПО стойки автоматического управления «AR35»:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО указан в строке «Версия» (после последней цифры номера версии в формате X.XX допускаются дополнительные цифровые и/или буквенные суффиксы);
- цифровой идентификатор метрологически значимого файла ПО, рассчитанный по алгоритму CRC32, указан в строке «HASH код»;
 - в строке «Производитель:» указан изготовитель СИ;
 - в строке «Авторские права:» указан правообладатель.

В нижней части окна указаны идентификационные данные ПО панели оператора «AR35»:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО указан в строке «Версия» (после последней цифры номера версии в формате X.XX допускаются дополнительные цифровые и/или буквенные суффиксы);
 - в строке «Производитель:» указан изготовитель СИ;
 - в строке «Авторские права:» указан правообладатель.

Цифровой идентификатор программы верхнего уровня панели оператора «AR35» для версии не ниже 1.01 отсутствует для отображения.

Анализатор рентгеновский АР модели АР-35 считается выдержавшим поверку, если:

- версия ПО стойки автоматического управления «AR35» не ниже 1.00, полные версия ПО и цифровой идентификатор ПО совпадают с указанными в паспорте на поверяемый анализатор;
- версия ПО панели оператора «AR35» не ниже 1.01, полная версия ПО совпадает с указанной в паспорте на поверяемый анализатор.
- 9.2. Определение идентификационных данных программных обеспечений анализаторов рентгеновских АР модели АР-31-НМ.

Для вызова окна идентификации ПО необходимо на экране «Поверка» ПО «AR31NM» нажать на кнопку «Идентификация ПО», которая находится в правом нижнем углу экрана. После чего на экране появится окно «Идентификационные данные» (рисунок 2).

Идентификационные данные				
Наименование	Программа стойки автоматического управления			
Идентификационное	наименование AR35			
Версия	1.00			
Производитель	ИЦ "Буревестник"			
HASH код	8C12D977			
Авторские права	copyright © 2022, ИЦ "Буревестник"			
Наименование	Программа АРМ анализатора			
Идентификационное	наименование AR31NM			
Версия	1.00			
Производитель	ИЦ "Буревестник"			
HASH код	f145369358992b841981ae2d9695c570			
Авторские права	соругідht © 2022, ИЦ "Буревестник"			

Рисунок 2. Окно «Идентификационные данные» анализаторов рентгеновских АР модели АР-31-НМ.

Информация, указанная в окне «Идентификационные данные»:

В верхней части окна указаны идентификационные данные ПО стойки автоматического управления «AR35»:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО указан в строке «Версия» (после последней цифры номера версии в формате X.XX допускаются дополнительные цифровые и/или буквенные суффиксы);
- цифровой идентификатор метрологически значимого файла ПО, рассчитанный по алгоритму CRC32, указан в строке «HASH код»;
 - в строке «Производитель:» указан изготовитель СИ;
 - в строке «Авторские права:» указан правообладатель.

В нижней части окна указаны идентификационные данные ПО «AR31NM»:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО указан в строке «Версия» (после последней цифры номера версии в формате X.XX допускаются дополнительные цифровые и/или буквенные суффиксы);
- - цифровой идентификатор метрологически значимого файла ПО, рассчитанный по алгоритму SHA, указан в строке «HASH код»;
 - в строке «Производитель:» указан изготовитель СИ;
 - в строке «Авторские права:» указан правообладатель.

Анализатор рентгеновский АР модели АР-31-НМ считается выдержавшим поверку, если:

- версия ПО стойки автоматического управления «AR35» не ниже 1.00, полные версия ПО и цифровой идентификатор ПО совпадают с указанными в паспорте на поверяемый анализатор;
- версия ПО «AR31NM» не ниже 1.00, полные версия ПО и цифровой идентификатор ПО совпадают с указанными в паспорте на поверяемый анализатор.

10. ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

- 10.1. Определение чувствительности и относительного среднеквадратического отклонения (СКО) среднего значения интенсивности выходного сигнала.
- 10.1.1. Для проведения измерений по данному пункту применяют ГСО 10730-2015 (СО ВРК-ПА-1), стандартный образец состава раствора ионов металлов; воду дистиллированную по ГОСТ Р 58144-2018. Допускается использовать при поверке другие стандартные образцы утвержденного типа, удовлетворяющие метрологическим требованиям к стандартным образцам, указанным в таблице 2 МП.

Применяют ГСО 10730-2015 следующих ионов металлов налитых в специальные кюветы для жидких проб с применением пленки из ПЭТ толщиной 10 мкм:

- железо (массовая концентрация иона металла 10,0 г/дм3),
- цинк (массовая концентрация иона металла 1,0 г/дм3),
- никель (массовая концентрация иона металла 1,0 г/дм3),
- медь (массовая концентрация иона металла 1,0 г/дм3),
- свинец (массовая концентрация иона металла 10,0 г/дм3).

Кюветы для жидких проб с налитыми ГСО и водой дистиллированной устанавливают в измерительные гнезда анализатора. Дистиллированная вода по ГОСТ Р 58144-2018 применяется в качестве фонового образца для определения чувствительности.

- 10.1.2. Включить анализатор в соответствии с руководством по эксплуатации анализаторов рентгеновских АР. Процедуры при выполнении измерений должны выполняться:
 - в соответствии с п. 6.2 руководства пользователя TA21.1.211.126PП для анализаторов рентгеновских AP модели AP-35;
 - в соответствии с п. 6.4, руководства пользователя TA22.1.211.127PП для анализаторов рентгеновских AP модели AP-31-HM.

Результаты измерений отображаются на панели оператора для анализаторов модели AP-35 и на экране монитора APM для анализаторов модели A-31-HM.

Подготовить анализатор в соответствии с руководством по эксплуатации анализатора. Условия измерений:

- режим работы рентгеновской трубки: напряжение 40 кВ, ток 40 мА;
- на окне трубки должен быть установлен фильтр из алюминия A99 (ГОСТ 618), толщиной 0,6 мм (из комплекта прибора);
- максимум амплитудного распределения выведен на середину диапазона амплитудного анализатора;
- значение нижнего порога обеспечивает дискриминацию шумов, а ширина окна выделение не менее чем 95 % интегрального счета импульсов.
- 10.1.3. Выполняют по 10 измерений интенсивности для каждого стандартного образца (в соответствующем спектрометрическом канале) $I_i^{\rm KO}$ и для дистиллированной воды $I_i^{\rm \Phi O}$ с экспозицией 50 с. На панели оператора для анализаторов модели AP-35 и на экране монитора APM для анализаторов модели A-31-HM интенсивности (соответствуют скоростям счета) стандартного образца $I_i^{\rm KO}$ и дистиллированной воды $I_i^{\rm \Phi O}$ отображаются в столбцах с наименованием J_i и J_f соответственно.

Средние арифметические значения интенсивностей для соответствующего определяемого элемента (соответствующего стандартного образца) I_{cp}^{KO} и дистиллированной воды (фоновый образец) $I_{cp}^{\Phi O}$ для каждого спектрометрического канала отображаются в строке с названием «Сред. J_i , имп/с».

10.1.4. Значение чувствительности θ , рассчитанное в соответствии с формулой (1), для каждого спектрометрического канала отображается в строке с названием «Среднее θ ».

$$\theta = \frac{I_{\rm cp}^{\rm KO} - I_{\rm cp}^{\Phi O}}{C^{\rm KO}},\tag{1}$$

где C^{KO} – аттестованное значение массовой концентрации контролируемого элемента в соответствующем ГСО, г/дм³.

Чувствительность θ для каждого спектрометрического канала, рассчитанная по формуле (1), и отображаемая в строке с названием «Среднее θ », выражается в $(\Gamma/дм^3)^{-1}$.

- 10.1.5. Значение относительного СКО среднего значения интенсивности S_I , рассчитанное в соответствии с формулой (2), для каждого спектрометрического канала отображается:
- в строке с названием «Отн. СКО S, %» на панели оператора для анализаторов модели АР- 35,
- в строке с названием «Погрешность, %» на экране монитора APM для анализаторов модели AP-31-HM.

$$S_I = \frac{\sqrt{\frac{\sum_{i=1}^{n} (I_i^{KO} - I_{cp}^{KO})^2}{n(n-1)}}}{\frac{I_{cp}^{KO}}{I_{cp}}} \times 100 \%$$
 (2)

где n – число единичных измерений интенсивности, равное 10.

Относительное СКО среднего значения интенсивности S_I для каждого спектрометрического канала, рассчитанное по формуле (2), и отображаемое в строке с названием «Отн. СКО S, %» (для анализаторов модели AP-35) либо в строке с названием «Погрешность, %» (для анализаторов модели AP-31-HM), выражается в %.

11. ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТ-РОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

11.1. Критерием соответствия для принятия поверителем решения о пригодности анализатора является соответствие результатов измерений для каждого поверяемого спектрометрического канала Описанию типа анализаторов рентгеновских AP; метрологические характеристики приведены в таблице 3

Таблица 3 – Пределы допускаемых значений чувствительности и относительного СКО среднего значения интенсивности выходного сигнала анализаторов рентгеновских AP

Элемент, аналитическая линия	Массовая кон- центрация, г/дм ³	Чувствительность θ , $(г/дм^3)^{-1}$ не менее	Относительное СКО среднего значения интенсивности S_l , %, не более	
Железо (FeKα)	10	100	1,5	
Цинк (ZnKα)	1 400		1,5	
Никель (ΝίΚα)	1	400	1,5	
Медь (СиКα)	1	1000	1,5	
Свинец (Рь Св)	10	1000	1,5	
Рассеянное излучение (дистиллированная вода)	-	-	0,5	

12. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1. Данные, полученные при поверке, оформляются в форме протокола в соответствии с требованиями, установленными в организации, проводящей поверку.
- 12.2. Сведения о результатах поверки СИ передают в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком проведения поверки средств измерений, предусмотренным действующим законодательством Российской Федерации.
- 12.3. При положительных результатах поверки по заявлению заказчика оформляют свидетельство о поверке, подтверждающее соответствие анализатора метрологическим требованиям к средству измерений. Знак поверки наносится на свидетельство о поверке в случае его оформления и (или) в паспорт.
- 12.4. При отрицательных результатах поверки анализатор к применению не допускают, по заявлению заказчика выдают извещение о непригодности с указанием причин в соответствии с действующим законодательством Российской Федерации.