

Государственная система обеспечения единства измерений

Газоанализаторы ГАНК

МЕТОДИКА ПОВЕРКИ

МП-040-2022

1. Общие положения

- 1.1 Настоящая методика поверки распространяется на газоанализаторы ГАНК (далее газоанализаторы), изготовленные ООО «НПО «Прибор» ганк», г. Москва и устанавливает методы и средства первичной и периодической поверок.
- 1.2 Настоящая методика поверки разработана в соответствии с требованиями Приказа № 2907 от 28.08.2020 «Об утверждении порядка установления и изменения интервала между поверками средств измерений, порядка установления, отмены методик поверки и внесения изменений в них, требования к методикам поверки средств измерений» и части 7 статьи 12 Федерального закона № 102-ФЗ от 26.08.2008 г. «Об обеспечении единства измерений».
- 1.3 Газоанализаторы обеспечивают прослеживаемость к с ГЭТ 154-2019 «Государственному первичному эталону единиц молярной доли, массовой доли и массовой концентрации компонентов в газовых и газоконденсатных средах» согласно государственной поверочной схемы для средств измерений содержания компонентов в газовых средах и газоконденсатных средах, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315.
- 1.4 При определении метрологических характеристик газоанализаторов используется метод прямых измерений.
- 1.5 Настоящей методикой поверки предусмотрена возможность проведения периодической поверки для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, с обязательным указанием в свидетельстве о поверке об объеме проведенной поверки. Объем проведенной поверки оформляется в соответствии с действующим законодательством.

2 Перечень операций поверки средства измерений

 При проведении поверки газоанализаторов должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер раздела (пункта) методики	Обязательное проведение операции при			
Наименование операции поверки	поверки, в соответствии с которым выполняется операция поверки	первичной поверке	периодической поверке		
Внешний осмотр средства измерений	7	Да	Да		
Подготовка к поверке и опробование средства измерений	8	Да	Да		
Проверка программного обеспечения средства измерений	9	Да	Да		
Определение метрологических характеристик и подтверждение соответствия средства измерений метрологическим требованиям	10	-	-		
Определение основной погрешности	10.1	Да	Да		

Продолжение таблииы 1

	Номер раздела (пункта) методики	Обязательное проведение операции при			
Наименование операции поверки	поверки, в соответствии с которым выполняется операция поверки	первичной периодич поверке повер			
Подтверждение соответствия средства измерений метрологическим требованиям	10.2	Да	Да		
Оформление результатов поверки	11	Да	Да		

- 2.2 Если при проведении той или иной операции получен отрицательный результат, дальнейшую поверку приостанавливают до устранения недостатков, выявленных при проведении поверки.
- 2.3 После устранения недостатков, вызвавших отрицательный результат, газоанализатор вновь предоставляют на поверку.
- 2.4 При невозможности устранения недостатков, газоанализатор признают непригодным к применению и эксплуатации по назначению. Оформляют извещение о непригодности газоанализаторов в соответствии с Порядком проведения поверки, установленным нормативно-правовыми актами в области обеспечения единства измерений.

3. Требования к условиям проведения поверки

3.1 При проведении поверки соблюдают следующие нормальные условия:

температура окружающей среды, °С

от +15 до +25

относительной влажности окружающей среды, %

от 30 до 80

атмосферное давление, кПа

от 84,0 до 104,6

мм рт. ст.

от 630 до 800

4. Требования к специалистам, осуществляющим поверку

- 4.1 К проведению поверки допускаются лица, изучившие руководство по эксплуатации на поверяемый газоанализатор, эксплуатационную документацию на средства поверки, настоящую методику поверки, знающие правила эксплуатации электроустановок, в том числе во взрывоопасных зонах, правила устройства и безопасной эксплуатации сосудов, работающих под давлением, имеющие соответствующую квалификацию и работающие в качестве поверителей в организации, аккредитованной на право проведения поверки средств физико-химических измерений.
- 4.2 Для получения результатов измерений, необходимых для поверки, допускается участие в поверке оператора, обслуживающего газоанализатор (под контролем поверителя).

5 Метрологические и технические требования к средствам поверки 5.1 При проведении поверки применяют средства, указанные в таблице 2

Таблица 2 - Сведения о средствах поверки

гаолица 2 – Сведе	ения о средствах поверки			
Номер пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки, его регистрационный номер в федеральном информационном фонде по обеспечению единства измерений	Метрологические и технические требования к средствам поверки и (или) обозначение регламентирующего их нормативного документа		
7 - 10	Измеритель влажности и температуры ИВТМ-7 М 5-Д, (рег. № 71394-18)	Диапазон измерений температуры воздуха от -45 до +60 °C, влажности от 0 до 99 %, давления от 840 до 1060 гПа		
	Комплекс газоаналитический ГНП-1, (рег.№ 68283-17)	Рабочий эталон 1 разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		
	Генераторы газовых смесей ГГС мод. ГГС-Р, ГГС-Т, ГГС-К, ГГС-03-03, (рег. № 62151-15)	Рабочий эталон 1-го разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		
	Установки динамические - рабочие эталоны 1-го разряда Микрогаз-ФМ, (рег. № 68284-17)	Рабочий эталон 1-го разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		
10	Генераторы газовых смесей - рабочие эталоны 1-го разряда Т700, 700Е, Т700U, 700ЕU, Т700H, Т703, 703E, Т703U, 702, Т750, (рег. № 58708-14)	Рабочий эталон 1-го разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		
	Источники микропотока ИМ-ГП, (рег. № 68336-17)	Рабочий эталон 1-го разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		
	Источники микропотока ИМ-РТ, (рег. № 46915-11)	Рабочий эталон 1-го разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		
	Источники микропотока ИМ-ВРЗ, (рег. № 50363-12)	Рабочий эталон 1-го разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		

Іродолжени	ие таблицы 2			
Номер пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки, его регистрационный номер в федеральном информационном фонде по обеспечению единства измерений Стандартные образцы состава газовых смесей ГСО в баллонах под давлением (Приложение А)	Метрологические и технические требования к средствам поверки и (или) обозначение регламентирующего их нормативного документа Стандартный образец 1-го и 2-го разряда по Приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315		
10	Азот газообразный в баллонах под давлением (ПНГ-азот) ПНГ - воздух в баллонах под давлением (ПНГ-воздух)	особой чистоты, ГОСТ 9293-74, марка А, ТУ 6-21-5-82.		
	Вспомогательные средст			
	Секундомер электронный Интеграл С-01, (рег.№ 44154-16)	Диапазоны измерений (от 0 до 59,99 с; от 0 до 9 ч. 59 мин. 59,99 с) $\Pi\Gamma \pm (9.6 \times 10^{-6} \times T_x + 0.01)$ с, где $T_x -$ значение измеренного интервала времени		
10	Ротаметр с местными показаниями РМ-А-0,063 ГУЗ, (рег. № 67050-17)	Верхний предел измерений 0,063 м ³ /ч; КТ 4, ГОСТ 13045-81		
	Источник питания постоянного тока GPR-76030D, (рег.№ 55898-13)	Максимальное напряжение питания 60 В, максимальная сила тока на выходе 3А		
	Редуктор баллонный БКО-25-1*	ТУ26-05-90-87		
	Вентиль точной регулировки*	РУ-150 атм. ИБЯЛ.306249.006		
	Трубка фторопластовая*	4 × 1, ТУ 6-05-2059-87		

1) Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице;

2) Все средства поверки, кроме отмеченных в таблице 2 знаком «*», должны иметь действующие свидетельства о поверке, поверочные газовые смеси в баллонах под давлением – действующие паспорта.

6. Требования (условия) по обеспечению безопасности проведения поверки

- 6.1 Помещение, в котором проводят поверку, должно быть оборудовано приточно-вытяжной вентиляцией.
- 6.2 Должны выполняться требования техники безопасности для защиты персонала от поражения электрическим током согласно классу I ГОСТ 12.2.007.0-75.
- 6.3 Требования техники безопасности при эксплуатации ГС в баллонах под давлением должны соответствовать «Федеральным нормам и правилам в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением», утвержденным Госгортехнадзором России от 25.03.2014 № 116.
 - 6.4 Не допускается сбрасывать ГС в атмосферу рабочих помещений.

7. Внешний осмотр средства измерений

- 7.1 При внешнем осмотре устанавливают соответствие газоанализатора следующим требованиям:
 - соответствие комплектности, указанному в эксплуатационной документации;
- соответствие маркировки требованиям, предусмотренным эксплуатационной документацией;
 - отсутствие повреждений и дефектов, влияющих на работоспособность.
- 7.2 Газоанализатор считают выдержавшим внешний осмотр, если он соответствует указанным выше требованиям.

8. Подготовка к поверке и опробование средства измерений

- 8.1 Подготовка к поверке:
- выполнить мероприятия по обеспечению условий безопасности;
- проверить наличие паспортов и сроки годности ГС в баллонах под давлением;
- баллоны с ГС выдержать при температуре поверки не менее 24 ч.
- 8.1.1 Выдержать поверяемый газоанализатор и средства поверки при температуре поверки в течение не менее 2 ч.
- 8.1.2 Подготовить поверяемый газоанализатор и эталонные средства измерений к работе в соответствии с эксплуатационной документацией.
 - 8.2 Опробование средства измерений:
- 8.2.1. При опробовании проверяют общее функционирование газоанализатора, для чего включают газоанализатор, после чего осуществляется процедура тестирования, а после этого газоанализатор переходит в режим измерений.
 - 8.2.2 Результат опробования считают положительным, если:
 - во время тестирования отсутствуют сообщения об ошибках;
- после окончания времени прогрева газоанализатора переходят в режим измерений;
 - органы управления газоанализаторов функционируют.

9. Проверка программного обеспечения средства измерений

- 9.1 Для проверки соответствия программного обеспечения (далее ПО) выполняют следующие операции:
- проводят визуализацию идентификационных данных ПО газоанализатора путем сличения номера версии ПО, отображаемого на дисплее при включении газоанализатора;
- сравнивают полученные данные с идентификационными данными, указанными в таблипе 3.

Таблица 3 – Идентификационные данные ПО

Наименование характеристики	Значение
Идентификационное наименование ПО	ГАНК
Номер версии (идентификационный номер) ПО, не ниже	V1.0

9.2 Результат подтверждения соответствия ПО считают положительным, если идентификационные данные ПО соответствуют указанным в таблице 3.

- 10. Определение метрологических характеристик и подтверждение соответствия средства измерений метрологическим требованиям
 - 10.1 Определение основной погрешности газоанализатора
- 10.1.1 Определение основной погрешности газоанализатора проводят в следующем порядке:
- 1) Собирают схему проведения поверки, приведенную на рисунке Б.1 Приложения Б (для стационарных газоанализаторов) или схему на рисунке Б.2 Приложения Б (для переносных газоанализаторов);
- 2) Подают на вход газоанализатора через калибровочную насадку ГС (таблица А.1 Приложения А, в соответствии с определяемым компонентом) в последовательности:
- №№ 1-2-3- для определяемых компонентов и диапазонов измерений, для которых в Приложении А указаны 3 точки поверки;
- №№ 1-2-3-4- для определяемых компонентов и диапазонов измерений, для которых в Приложении А указаны 4 точки поверки.

В качестве источника ГС могут использоваться:

- баллоны с ГСО;
- баллоны с ГСО в комплекте с генератором газовых смесей, например ГГС-03-03 (для разбавления промежуточной газовой смеси);
 - генераторы газовых смесей модели Т703 (для получения ГС озона в воздухе);
- и пара ИМ-ВРЗ и источники микропотоков газов и пара ИМ-ВРЗ и источники микропотоков паров ИМ-РТ в комплекте с термодиффузионным генератором, например Микрогаз-ФМ.

Время подачи ГС не менее утроенного номинального времени установления показаний по уровню 0,9;

- 3) Зафиксировать установившиеся показания газоанализатора;
- 4) Повторяют операции по пп. 2) 3) для всех поверяемых измерительных каналов газоанализатора.

Определение основной погрешности измерения проводить путем сличения показаний значения концентрации газоанализатора, отображаемых на дисплее или считывания с аналогового выхода, с показаниями эталонного генератора или значением концентрации в паспорте на ГСО.

- 10.2 Подтверждение соответствия средства измерений метрологическим требованиям
- 10.2.1 При считывании показаний с измерительного прибора (мультиметра), подключенного к аналоговому выходу, рассчитывают значение содержания определяемого компонента (Ci) в i-ой Γ C по значению выходного токового сигнала по формуле:

$$C_{i} = \frac{C_{6} - C_{H}}{20 \text{ MA} - 4 \text{ MA}} \cdot (I_{i} - 4 \text{ MA}) + C_{H}$$
 (1),

- где I_i измеренное значение выходного токового сигнала газоанализатора при подаче i-ой ГС, мА;
 - C_8 значение концентрации определяемого компонента, соответствующее верхнему значению аналогового выхода газоанализатора, %, % НКПР, млн⁻¹ или массовая концентрация, мг/м³;
 - С_н значение концентрации определяемого компонента, соответствующее нижнему значению аналогового выхода газоанализатора, %, % НКПР, млн⁻¹ или массовая концентрация, мг/м³;
 - C_i рассчитанное значение содержания определяемого компонента в і- ГСО-ПГС, %, % НКПР, млн⁻¹ или массовая концентрация, мг/м³.

Значение основной абсолютной (Δ_i) погрешности газоанализатора рассчитывают по формуле (2):

$$\Delta_i = C_i - C_i^{\partial} \tag{2},$$

где C_i — установившиеся показания на дисплее газоанализатора в і-ой точке поверки, объемная доля, % (млн⁻¹, % НКПР) или массовая концентрация, мг/м³;

 C_i^{∂} — действительное значение содержания определяемого компонента в і-ой ГС, объемная доля, % (млн⁻¹, % НКПР) или массовая концентрация, мг/м³.

10.2.2 Значение основной приведенной (γ_i , %) погрешности газоанализатора рассчитывают по формуле (3):

$$\gamma_i = \frac{c_i - c_i^{\vartheta}}{c_{\rm R}} \cdot 100 \tag{3},$$

где C_B — верхний предел диапазона измерений газоанализатора, для которого нормирована приведенная погрешность, объемная доля, % (млн⁻¹, % НКПР) или массовая концентрация, мг/м³.

10.2.3 Значение основной относительной погрешности (δ_i , %) газоанализатора рассчитывают по формуле (4):

$$\delta_i = \frac{c_i - c_i^{\theta}}{c_i^{\theta}} \cdot 100 \tag{4},$$

10.3 Результат поверки считать положительным, если полученные значения погрешности во всех точках поверки не превышают пределов, указанных в таблицах Приложения В.

11. Оформление результатов поверки

- 11.1 Результаты поверки оформляются протоколом, составленным произвольной форме.
- 11.2 При положительных результатах поверки газоанализатор признается пригодным к применению. Сведения о положительных результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке и знак поверки наносится на свидетельство о поверке в соответствии с действующим законодательством.
- 11.3 При отрицательных результатах поверки газоанализатор признается непригодным к применению. Сведения об отрицательных результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца средства измерений или лица, представившего его на поверку, выдается извещение о непригодности с указанием основных причин в соответствии с действующим законодательством.

Инженер по метрологии OOO «ПРОММАШ ТЕСТ Метрология»

Г.С. Володарская

Приложение А

(обязательное)

Технические характеристики ГС, используемых при проведении поверки

Таблица А.1 – Технические характеристики ГС, используемых при проведении поверки газоанализаторов с инфракрасным сенсором (ИК)

	Модификация	Диапазон измерений	Номин	альное значе ента в ГС, пр	ение определя веделы допус внения	Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник	
	Сенсора	•	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	ГС*
	ИКсп-СН4-100	от 0 до 4,4 % (от 0 до 100 % НКПР)	ПНГ-азот	2,2 % ±5 % отн.	4,0 % ±5 % отн.	-	1 разряд	ΓCO 10531- 2014
	ИКеп-СН4-100Т	от 0 до 4,4 % (от 0 до 100 % НКПР)	ПНГ-азот	2,2 % ±5 % отн.	4,0 % ±5 % отн.	*	1 разряд	ГСО 10531- 2014
Метан (СН4)	ИКеп-СН4-50Т	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ- воздух	1,1 % ±5 % отн.	2,1 % ±5 % отн.	-	1 разряд	ΓCO 10531- 2014
	ИКеп-СН4-50	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ- воздух	1,1 % ±5 % отн.	2,1 % ±5 % отн.	-	1 разряд	ГСО 10531- 2014
	ИКсп-СН4-100%	от 0 до 100 %	ПНГ-азот	50 % ±5 % отн.	95 % ±5 % OTH.	-	1 разряд	ГСО 10531- 2014
	ИКсп-СН4-7000	от 0 до 7000 мг/м ³	ПНГ-азот	3500 мг/м ³ ±10 % отн.	6300 мг/м ³ ±10 % отн.	-	1 разряд	ГСО 10531- 2014
Этилен (С2Н4)	ИК _{сп} -С ₂ Н ₄ -100	от 0 до 2,3 % (от 0 до 100 % НКПР)	ПНГ-азот	1,15 % ±5 % отн.	2,1 % ±5 % отн.	-	1 разряд	ГСО 10531- 2014
- I.I.O. (OZ114)	ИКсп-С2Н4-50	0 до 1,15 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,6 % ±5 % отн.	1,1 % ±5 % отн.	> -	1 разряд	ГСО 10597- 2015

Определяемый		Диапазон		альное значе ента в ГС, пр откло			Пределы допускаемой основной погрешности аттестации, разряд	Номер ГС по реестру ГСО или Источник ГС*
компонент		измерений	ГС №1	ГС №2	ГС №3	ГС №4		
	ИК _{сп} -С ₃ H ₈ - 100	0 до 1,7 % (от 0 до 100 % НКПР)	ПНГ-азот	0,85 % ±5 %	1,6 % ±5 %	-	1 разряд	ГСО 10597- 2015
	ИК _{сп} -С ₃ Н ₈ - 50Т	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,4 % ±5 % отн.	0,8 % ±5 % отн.	-	1 разряд	ГСО 10599- 2015
Пропан (С ₃ Н ₈)	ИКсп-С3Н8-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,4 % ±5 % отн.	0,8 % ±5 % отн.	-	1 разряд	ГСО 10599- 2015
	ИК _{сп} -С ₃ Н ₈ - 100 %	от 0 до 100 %	ПНГ-азот	50 % ±5 % отн.	95 % ±5 % отн.	-	1 разряд	ΓCO 10597- 2015
	ИК _{сп} -С ₃ Н ₈ - 7000	от 0 до 7000 мг/м ³	ПНГ-азот	3500 мг/м ³ ±10 % отн.	6650 мг/м ³ ±10 % отн.		1 разряд	ГСО 10597- 2015
и-бутан (С.Н.а)	ИК _{сп} -С ₄ H ₁₀ -	от 0 до 1,4 % (от 0 до 100 % НКПР)	ПНГ-азот	0,7 % ±5 % отн.	1,3 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
н-бутан (С4Н10)	ИКсп-С4Н10-50	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,35 % ±5 % отн.	0,6 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
1-бутен С ₄ Н ₈	ИК _{сп} -С ₄ Н ₈ - 100	от 0 до 1,6 % (от 0 до 100 % НКПР)	ПНГ-азот	0,8 % ±5 % отн.	1,5 % ±5 % отн.		1 разряд	ГСО 10540- 2014

Определяемый	man i man man and a second and a	Диапазон		ента в ГС, пр	ение определя веделы допуск нения	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент		измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
1-бутен С ₄ Н ₈	ИК _{сп} -С ₄ H ₈ -50	от 0 до 0,8 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,4 % ±5 % отн.	0,75 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
2-метилпропан	ИК _{сп} -i-С ₄ H ₁₀ - 100	от 0 до 1,30 % (от 0 до 100 % НКПР)	ПНГ-азот	0,65 % ±5 % отн.	1,2 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
(изобутан) і- С ₄ Н ₁₀	ИК _{сп} -i-C ₄ H ₁₀ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,32 % ±5 % отн.	0,61 %±5 % отн.	-	1 разряд	ГСО 10540- 2014
н-пентан C ₅ H ₁₂	ИК _{сп} -С ₅ H ₁₂ -100	от 0 до 1,1 % (от 0 до 100 % НКПР)	ПНГ-азот	0,55 % ±5 % отн.	1,0 % ±5 % отн.		1 разряд	ГСО 10540- 2014
H-HEHTAH CSF112	ИК _{сп} -С ₅ H ₁₂ -50	от 0 до 0,55 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,25 % ±5 % отн.	0,5 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Циклопентан	ИКсп-С5Н10-100	от 0 до 1,4 % (от 0 до 100 % НКПР)	ПНГ-азот	0,7 % ±5 % отн.	1,3 % ±5 % отн.	H al d	1 разряд	ГСО 10540- 2014
(C ₅ H ₁₀)	ИК _{сп} -С ₅ H ₁₂ -50	от 0 до 0,55 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,35 % ±5 % отн.	0,6 % ±5 %% отн.	-	1 разряд	ГСО 10540- 2014

Определяемый	Определяемый Модификация компонент сенсора	Диапазон		ента в ГС, пр	ение определь еделы допус нения	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент		измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
ИКсп-С6Н14-100	ИКсп-С6Н14-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	ПНГ-азот	0,5 % ±5 % отн.	0,95 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
н-гексан С ₆ Н ₁₄	ИК _{сп} -С ₆ Н ₁₄ -50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,25 % ±5 % отн.	0,47 % ±5 % отн.		1 разряд	ГСО 10540- 2014
Циклогексан	ИКсп-С6Н12-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	ПНГ-азот	0,5 % ±5 % отн.	0,95 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
C ₆ H ₁₂	ИКсп-С6Н12-50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,25 % ±5 % отн.	0,47 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Draw C. H.	ИКсп-С2Н6-100	от 0 до 2,4 % (от 0 до 100 % НКПР)	ПНГ-азот	1,2 % ±5 % отн.	2,3 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Этан С2Н6	ИКсп-С2Н6-50	от 0 до 1,2 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,6 % ±5 % отн.	1,1 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Метанол (СН ₃ ОН)	ИК _{сп} -СН ₃ ОН- 50	от 0 до 3,0 % (от 0 до 50 % НКПР)	ПНГ-азот	1,5 % ±5 % отн.	2,85 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014

Определяемый Модификация компонент сенсора	Модификация	Диапазон		ента в ГС, пр	ение определ еделы допус нения		Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник ГС*
	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	
Бензол С ₆ Н ₆	ИКсп-С6Н6-100	от 0 до 1,2 % (от 0 до 100 % НКПР)	ПНГ-азот	0,6 % ±5 % отн.	1,1 %±5 % отн.	-	1 разряд	ГСО 10540- 2014
BCH30/1 C6116	ИКсп-С6Н6-50	от 0 до 0,6 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,3 % ±5 % отн.	0,57 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Пропилен	ИКсп-С3Н6-100	от 0 до 2,0 % (от 0 до 100 % НКПР)	ПНГ-азот	1,0 % ±5 % отн.	1,9 % ±5 % отн.	π.	1 разряд	ГСО 10540- 2014
(пропен) С₃Н ₆	ИКеп-С ₃ Н ₆ -50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,5 % ±5 % отн.	0,95 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Этанол С2Н₃ОН	ИК _{сп} -С ₂ Н ₅ ОН- 50	от 0 до 1,55 % (от 0 до 50 % НКПР)	ПНГ-азот	0,75 % ±5 % отн.	1,45 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
6.11	ИК _{сп} -С ₇ H ₁₆ -100	от 0 до 0,85% (от 0 до 100 % НКПР)	ПНГ-азот	0,425 % ±5 % отн.	0,8 % ±5 % отн.	4 .7	1 разряд	ГСО 10540- 2014
н-гептан С7Н16	ИКсп-С7Н16-50	от 0 до 0,425 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,21 % ±5 % отн.	0,4 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014

продолжение тао. Определяемый	Модификация	Диапазон		ента в ГС, пр	ение определ ределы допус		Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
Оксид этилена	ИК _{сп} -С ₂ Н ₄ О- 100	от 0 до 2,6 % (от 0 до 100 % НКПР)	ПНГ-азот	1,3 % ±5 % отн.	2,5 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
C ₂ H ₄ O	ИКсп-С2Н4О-50	от 0 до 1,3 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,65 % ±5 % отн.	1,2 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Диоксид	ИКсп-СО2-2,5	от 0 до 2,5 %	ПНГ-азот	0,475 % ±5 % отн.	1,25 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
углерода СО2	ИК _{сп} - CO ₂ -50	от 0 до 5,0 %	ПНГ-азот	0,65 % ±5 % отн.	1,2 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
2-пропанон (ацетон) С ₃ Н ₆ О	ИК _{сп} -С ₃ Н ₆ О-50	от 0 до 1,25 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,625 % ±5 % отн.	1,2 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
2-метилпропен	ИК _{сп} -i-С ₄ Н ₈ - 100	от 0 до 1,6 % (от 0 до 100 % НКПР)	ПНГ-азот	0,8 % ±5 % отн.	1,5 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
(изобутилен) і- С ₄ Н ₈	ИК _{сп} -i-С ₄ H ₈ -50	от 0 до 0,8 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,4 % ±5 % отн.	0,75 % ±5 % отн.	 .	1 разряд	ГСО 10540- 2014
2-метил-1,3- бутадиен	ИК _{сп} -С ₅ H ₈ -100	от 0 до 1,7 % (от 0 до 100 % НКПР)	ПНГ-азот	0,85 % ±5 % отн.	1,5 % ±5 % отн.	4	1 разряд	ГСО 10540- 2014
(изопрен) С₅Н8	ИК _{сп} -С ₅ Н ₈ -50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,425 % ±5 % отн.	0,80 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014

Определяемый	Модификация	Диапазон		ента в ГС, пр	ение определ оеделы допус онения	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	компонент сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
Ацетилен С2Н2	ИК _{еп} -С ₂ H ₂ -100	от 0 до 2,30 % (от 0 до 100 % НКПР)	ПНГ-азот	1,15 % ±5 % отн.	2,1 % ±5 % отн.		1 разряд	ГСО 10540- 2014
rigerilleri Ozriz	ИК _{сп} -С ₂ H ₂ -50	от 0 до 1,15 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,57 % ±5 % отн.	1,0 % ±5 % отн.		1 разряд	ГСО 10540- 2014
Акрилонитрил C_3H_3N	ИК _{сп} -С ₃ H ₃ N-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,7 % ±5 % отн.	1,3 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
Метилбензол	ИК _{сп} -С ₇ Н ₈ -100	от 0 до 1,0 % (от 0 до 100 % НКПР)	ПНГ-азот	0,5 % ±5 % отн.	0,95 % ±5 % отн.		1 разряд	ГСО 10528- 2014
(толуол) С7Н8	ИКсп-С7Н8-50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,25 % ±5 % отн.	0,475 % ±5 % отн.	-	1 разряд	ГСО 10528- 2014
Этилбензол	ИК _{сп} -С ₈ H ₁₀ - 37,5Т	от 0 до 0,3 % (от 0 до 37,5 % НКПР)	ПНГ- воздух	0,15 % ±5 % отн.	0,285 % ±5 % отн.	-	I разряд	ГСО 10528- 2014
C ₈ H ₁₀	ИКсп- С8Н10-50	от 0 до 0,4 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,2 % ±5 % отн.	3,8 % ±5 % отн.	-	1 разряд	ГСО 10528- 2014
н-октан С ₈ Н ₁₈	ИКсп-С8Н18-50	от 0 до 0,4 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,2 % ±5 % отн.	3,8 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014

продолжение тао.	THE PLAN							
Определяемый		Диапазон		альное значе ента в ГС, пр откло	еделы допус		Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник ГС*
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	
Этилацетат $(C_4H_8O_2)$	ИКсп-С4Н8О2-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,5 % ±5 % отн.	0,95 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
Бутилацетат	ИК _{сп} -С ₆ H ₁₂ O ₂ - 25T	от 0 до 0,3 % (от 0 до 25 % НКПР)	ПНГ- воздух	0,15 % ±5 % отн.	0,285 % ±5 % отн.	14	1 разряд	ГСО 10534- 2014
$C_6H_{12}O_2$	ИК _{сп} -С ₆ H ₁₂ O ₂ - 50	от 0 до 0,6 % (от 0 до 50 % НКПР	ПНГ- воздух	0,3 % ±5 % отн.	0,57 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
1,3-бутадиен (дивинил) С ₄ Н ₆	ИКсп-С4Н6-50	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,35 % ±5 % отн.	0,66 % ±5 % отн.	÷	1 разряд	ГСО 10540- 2014
1,2-дихлорэтан С ₂ H ₄ Cl ₂	ИК _{сп} -С ₂ H ₄ Cl ₂ - 50	от 0 до 3,1 % (от 0 до 50 % НКПР)	ПНГ- воздух	1,55 % ±5 % отн.	2,9 % ±5 % отн.	-	1 разряд	ГСО 10549- 2014
Диметилсульф ид C ₂ H ₆ S	ИК _{сп} -С ₂ Н ₆ S-50	от 0 до 1,1 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,55 % ±5 % отн.	1,0 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
1-гексен С ₆ Н ₁₂	ИКсп-С6Н12-50	от 0 до 0,6 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,3 % ±5 % отн.	0,57 % ±5 % отн.	<u> </u>	1 разряд	ГСО 10540- 2014
2-бутанол (втор-бутанол) sЭX-С ₄ Н ₉ ОН	ИК _{сп} -sЭX- C ₄ H ₉ OH-31,2T	от 0 до 0,5 % (от 0 до 31,2 % НКПР)	ПНГ- воздух	0,25 % ±5 % отн.	0,475 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014

Определяемый	Модификация	фикация Диапазон		ента в ГС, пр	ение определь веделы допус нения		Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
Винилхлорид С ₂ Н ₃ СІ	ИК _{сп} -С ₂ H ₃ Cl-50	от 0 до 1,8 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,9 % ±5 % отн.	1,71 % ±5 % отн.	-	1 разряд	ГСО 10540- 2014
Циклопропан	ИКсп-С3Н6-100	от 0 до 2,4 % (от 0 до 100 % НКПР)	ПНГ-азот	1,2 % ±5 % отн.	2,3 % ±5 % отн.	,	1 разряд	ГСО 10540- 2014
C ₃ H ₆	ИК _{сп} -С ₃ H ₆ -50	от 0 до 1,2 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,6 % ±5 % отн.	1,1 % ±5 % отн.	*	1 разряд	ГСО 10540- 2014
Диметиловый эфир С ₂ Н ₆ О	ИК _{сп} -С ₂ Н ₆ О-50	от 0 до 1,35 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,67 % ±5 % отн.	1,3 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
Диэтиловый эфир С ₄ Н ₁₀ О	ИКсп-С4Н10О-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,425 % ±5 % отн.	0,8 % ±5 % отн.		1 разряд	ГСО 10534- 2014
Оксид пропилена С ₃ Н ₆ О	ИК _{сп} -С ₃ H ₆ O-50	от 0 до 0,95 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,475 % ±5 % отн.	0,9 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
Хлорбензол С ₆ Н₅СІ	ИК _{сп} -С ₆ H ₅ Cl- 38,4T	от 0 до 0,5 % (от 0 до 38,4 % НКПР)	ПНГ- воздух	0,25 % ±5 % отн.	0,475 % ±5 % отн.	-	1 разряд	ГСО 10549- 2014
2-бутанон (метилэтилкето н) С ₄ Н ₈ О	ИКсп-С4Н8О-50	от 0 до 0,75 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,375 % ±5 % отн.	0,71 %±5 % отн.	-	1 разряд	ГСО 10534- 2014

продолжение тао.	лицы А.т							
Определяемый	Модификация	Диапазон			ение определя еделы допус нения		Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
2-метил- 2-пропанол (трет-бутанол) tert-C ₄ H ₉ OH	ИК _{сп} -tert- C ₄ H ₉ OH-50	от 0 до 1,15 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,57 % ±5 % отн.	1,0 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
2 -метокси- 2 -метилпропан (метилтретбути ловый эфир) tert- $C_5H_{12}O$	ИК _{сп} -tert- C ₅ H ₁₂ O-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,4 % ±5 % отн.	0,76 % ±5 % отн.	-	1 разряд	ГСО 10534- 2014
1,4- диметилбензол (п-ксилол) р- С ₈ Н ₁₀	ИК _{сп} -р-С ₈ H ₁₀ - 22,2T	от 0 до 0,2 % (от 0 до 22,2 % НКПР)	ПНГ- воздух	0,1 % ±5 % отн.	0,19 % ±5 % отн.	~	1 разряд	ГСО 10528- 2014
1,2-ди- метилбензол (о- ксилол) о-С ₈ H ₁₀	ИК _{сп} -о-С ₈ H ₁₀ - 20T	от 0 до 0,2 % (от 0 до 20 % НКПР)	ПНГ- воздух	0,1 % ±5 % отн.	0,19 % ±5 % отн.	-	1 разряд	ГСО 10528- 2014
2-пропанол (изопропанол) i-С ₃ H ₇ OH	ИК _{сп} -i-С ₃ H ₇ OH- 50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,5 % ±5 % отн.	0,95 % ±5 % отн.	;-	1 разряд	ГСО 10534- 2014
Октен С ₈ Н ₁₆	ИК _{сп} -С ₈ H ₁₆ - 33,3Т	от 0 до 0,3 % (от 0 до 33,3 % НКПР)	ПНГ- воздух	0,15 % ±5 % отн.	0,285 % ±5 % отн.	-	1 разряд	ΓCO 10540- 2014
2-метилбутан (изопентан) i-С ₅ Н ₁₂	ИК _{сп} -i-С ₅ H ₁₂ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)	ПНГ- воздух	0, 325% ±5 % отн.	0,6 % ±5 % отн.	-	1 разряд	ΓCO 10540- 2014

Продолжение тао	лицы А.1		Hover	HORE HOS SHOW	BUHA OFFICE	geMore	Прачания	
Определяемый	Модификац	Диапазон		ента в ГС, пр	ение определ ределы допус рнения		Пределы допускаемо й основной	Номер ГС по
компонент	ия сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешност и аттестации, разряд	реестру ГСО или Источник ГС*
Метантиол (метилмеркаптан) СН₃SН	ИК _{сп} - СН₃SH-50	от 0 до 2,05 % (от 0 до 50 % НКПР)	ПНГ- воздух	1 % ±5 % отн.	1,9 % ±5 % отн.	-	1 разряд	ГСО 10540-2014
Этантиол (этилмеркаптан) С ₂ Н₅SH	ИК _{сп} - С ₂ H ₅ SH-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,7 % ±5 % отн.	1,3 % ±5 % отн.	-	1 разряд	ГСО 10540-2014
Ацетонитрил С ₂ H ₃ N	ИК _{сп} -С ₂ Н ₃ N- 50	от 0 до 1,5 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,75 % ±5 % отн.	1,4 % ±5 % отн.	-	1 разряд	ГСО 10534-2014
Диметилди- сульфид С₂Н ₆ S₂	ИК _{сп} - С ₂ H ₆ S ₂ -50	от 0 до 0,55 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,275 % ±5 % отн.	0,522 % ±5 % отн.	ā.	1 разряд	ГСО 10537-2014
Бензин	ИК _{сп} -СН- ПН-50	от 0 до 50 % НКПР	ПНГ- воздух	25±5 % НКПР	45±5 % НКПР	-	1 разряд	Комплект газоаналитически й ГНП-1 рег.№68283-17
Дизельное топливо	ИК _{сп} -СН- ПН-50	от 0 до 50 % НКПР	ПНГ- воздух	25±5 % НКПР	45±5 % НКПР	3 	1 разряд	Комплект газоаналитически й ГНП-1 рег.№68283-17
Керосин	ИК _{сп} -СН- ПН-50	от 0 до 50 % НКПР	ПНГ- воздух	25±5 % НКПР	45±5 % НКПР	-	1 разряд	Комплект газоаналитически й ГНП-1 рег.№68283-17

Определяемый	Модификация	Диапазон		ента в ГС, пр	ение определ веделы допус нения		Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
Уайт-спирит	ИК _{сп} -СН-ПН- 50	от 0 до 50 % НКПР	ПНГ-азот	25±10 % НКПР	45±10 % НКПР		1 разряд	Комплект газоаналитичес кий ГНП-1 рег.№68283-17
Сумма	ИК _{сп} -С ₂ С ₁₀ СН ₄ - 100	от 0 до 4,4 % (от 0 до 100 % НКПР)	ПНГ-азот	2,2 % ±5 % отн.	4,0 % ±5 % отн.	-	1 разряд	ГСО 10597- 2015
углеводородов СН (С2-С10) (по	ИК _{сп} -С ₂ С ₁₀ СН ₄ - 50	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ- воздух	1,1 % ±5 % отн.	2,1 % ±5 % отн.	-	1 разряд	ГСО 10599- 2015
метану)	ИК _{сп} - С ₂ С ₁₀ СН ₄ -3000	от 0 до 3000 мг/м ³	ПНГ-азот	1500 мг/м ³ ±10 % отн.	2700 мг/м ³ ±10 % отн.	-	1 разряд	ГСО 10597- 2015
Сумма	ИК _{сп} - C ₂ C ₁₀ C ₃ H ₈ -100	от 0 до 1,7 % (от 0 до 100 % НКПР)	ПНГ-азот	0,85 % ±5 % oth.	1,6 % ±5 % отн.	-	1 разряд	ГСО 10597- 2015
углеводородов СН (С ₂ -С ₁₀) (по пропану)	ИК _{сп} - C ₂ C ₁₀ C ₃ H ₈ -50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ- воздух	0,4 % ±5 % отн.	0,8 % ±5 % отн.	-	1 разряд	ГСО 10599- 2015
nponany)	ИК _{сп} - С ₂ С ₁₀ С ₃ Н ₈ - 3000	от 0 до 3000 мг/м ³	ПНГ-азот	1500 мг/м ³ ±10 % отн.	2700 мг/м ³ ±10 % отн.	=	1 разряд	ГСО 10597- 2015

Таблица А.2 – Технические характеристики ГС, используемых при проведении поверки газоанализаторов с термокаталитическим

сенсором (ТК)

Определяемый	Модификация	Диапазон	Номинально компонента п	ое значение оп в ГС, пределы , отклонения	Пределы допускаемой основной	Номер ГС по реестру ГСО		
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
	TK _{cn} -CH ₄ -50T	от 0 до 2,2 %		1,1 % ±5 %	2,1 % ±5 %			
Метан СН4	ТКсп -СН4-50	(от 0 до 50 % НКПР)	ПНГ-воздух	отн.	отн.	1 разряд	ГСО 10599-2015	
	ТКсп-СН4-7000	от 0 до 7000 мг/м ³	ПНГ-воздух	3500 мг/м ³ ±10 % отн.	6300 мг/м ³ ±10% отн.	1 разряд	ГСО 10599-2015	
	TK _{en} -C ₂ H ₄ -50T	0 до 1,15 %		0,6 % ±5 %	1,1 % ±5 %			
Этилен С ₂ Н ₄	TK _{en} -C ₂ H ₄ -50	(от 0 до 50 % НКПР)	ПНГ-воздух	O,O 76 ±3 76 OTH.	0TH.	1 разряд	ГСО 10597-2015	
	TK _{cn} -C ₃ H ₈ -50T	от 0 до 0,85 %		0.4.0/ 1.5.0/	0.00/ 15.0/			
Пропан С ₃ Н ₈	TK _{cn} -C ₃ H ₈ -50	(от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % отн.	0,8 % ±5 % отн.	1 разряд	ГСО 10599-2015	
	ТКсп- С3Н8-7000	от 0 до 7000 мг/м ³	ПНГ-воздух	3500 мг/м ³ ±10 % отн.	6300 мг/м ³ ±10 % отн.	1 разряд	ГСО 10599-2015	
	ТКсп -С4Н10-50Т	от 0 до 0,7 %		0.25.0/ 15.0/	0.60/ 150/			
н-бутан С ₄ Н ₁₀	ТКсп -С4Н10-50	(от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±5 % отн.	0,6 % ±5 % отн.	1 разряд	ГСО 10540-2014	
a 118- 129-129	ТКсп -С4Н8-50Т	от 0 до 0,8 %		0.4.9/ 1.5.9/	0.75.0/ 15.0/			
1-бутен С ₄ Н ₈	ТКеп-С4Н8-50	(от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % отн.	0,75 % ±5 % отн.	1 разряд	ГСО 10540-2014	
2-метилпропан (изобутан) i- С ₄ H ₁₀	ТК _{сп} -i-С ₄ H ₁₀ - 50Т ТК _{сп} -i-С ₄ H ₁₀ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,32 % ±5 % OTH.	0,61 % ±5 % отн.	1 разряд	ГСО 10540-2014	

продолжение таол	ицы л.2							
Определяемый	Модификация	Диапазон		ое значение оп в ГС, пределы , отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
н-пентан С ₅ Н ₁₂	TKen -C5H12-50T	от 0 до 0,55 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,25 % ±5 % отн.	0,5 % ±5 % oth.	1 разряд	ГСО 10540-2014	
	TK _{cn} -C ₅ H ₁₂ -50							
Цикло-	ТКеп -С5Н10-50Т	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±5 % oth.	0,6 % ±5 %% отн.	1 разряд	ГСО 10540-2014	
пентан С ₅ Н ₁₀	TK _{cn} - C ₅ H ₁₀ -50	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±10 % отн.	0,63 % ±10 % отн.	1 разряд	ГСО 10540-2014	
н-гексан С ₆ Н ₁₄	ТК _{сп} -C ₆ H ₁₄ -50Т ТК _{сп} -C ₆ H ₁₄ -50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,25 % ±5 % отн.	0,47 % ±5 % oth.	1 разряд	ГСО 10540-2014	
Циклогексан С ₆ H ₁₂	ТК _{сп} -C ₆ H ₁₂ -50Т ТК _{сп} -C ₆ H ₁₂ -50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,25 % ±5 % oth.	0,47 % ±5 % oth.	1 разряд	ГСО 10540-2014	
Этан С2Н6	ТК _{сп} -C ₂ H ₆ -50Т ТК _{сп} -C ₂ H ₆ -50	от 0 до 1,2 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,6 % ±5 % отн.	1,1 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Метанол СН₃ОН	ТК _{сп} -CH ₃ OH- 50Т ТК _{сп} -CH ₃ OH-50	от 0 до 3,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,5 % ±5 % OTH.	2,85 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Бензол С ₆ Н ₆	ТК _{сп} -C ₆ H ₆ -50Т ТК _{сп} -C ₆ H ₆ -50	от 0 до 0,6 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,3 % ±5 % отн.	0,57 % ±5 % отн.	1 разряд	ГСО 10540-2014	

Определяемый	Модификация	Диапазон	Номинально компонента	ое значение оп в ГС, пределы отклонения	ределяемого допускаемого	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
Пропилен	ТКеп -С3Н6-50Т	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,5 % ±5 % oth.	0,95 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(пропен) С ₃ Н ₆	ТКсп -С3Н6-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,5 % ±5 % отн.	0,95 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Этанол С ₂ Н ₅ ОН	ТК _{сп} -C ₂ H ₅ OH- 50Т ТК _{сп} -C ₂ H ₅ OH-50	от 0 до 1,55 % (от 0 до 50 % НКПР)	ПНГ-азот	0,75 % ±5 % отн.	1,45 % ±5 % отн.	1 разряд	ГСО 10534-2014	
н-гептан С7Н16	ТК _{сп} -C ₇ H ₁₆ -50Т ТК _{сп} -C ₇ H ₁₆ -50	от 0 до 0,425 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,21 % ±5 % отн.	0,4 % ±5 % oth.	1 разряд	ГСО 10540-2014	
Оксид этилена С ₂ Н ₄ О	ТК _{сп} -C ₂ H ₄ O-50Т ТК _{сп} -C ₂ H ₄ O-50	от 0 до 1,3 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,65 % ±5 % oth.	1,2 % ±5 % отн.	1 разряд	ГСО 10540-2014	
2-пропанон (ацетон) С ₃ H ₆ O	ТК _{сп} -C ₃ H ₆ O-50Т ТК _{сп} -C ₃ H ₆ O-50	от 0 до 1,25 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,625 % ±5 % отн.	1,2 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Водород Н2	ТК _{сп} -H ₂ -50Т ТК _{сп} -H ₂ -50	от 0 до 2,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,625 % ±5 % отн.	1,2 % ±5 % отн.	1 разряд	ГСО 10540-2014	
2-метилпропен (изобутилен) i-C ₄ H ₈	TK _{сп} -i-C ₄ H ₈ -50T TK _{сп} -i-C ₄ H ₈ -50	от 0 до 0,8 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % отн.	0,75 % ±5 % OTH.	1 разряд	ГСО 10540-2014	

Определяемый	Модификация	Диапазон	Номинально компонента в	ое значение опр в ГС, пределы д отклонения	Пределы допускаемой основной	Номер ГС по реестру ГСО		
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
2-метил-1,3- бутадиен	ТКсп -С5Н8-50Т	от 0 до 0,85 % (от 0 до	ПНГ-воздух	0,425 % ±5	0,80 % ±5 %	1 разряд	ГСО 10540-2014	
(изопрен) С ₅ Н ₈	ТК _{еп} -С ₅ H ₈ -50	50 % НКПР)		% отн.	отн.	Facility		
Ацетилен С ₂ Н ₂	ТКсп -С2Н2-50Т	от 0 до 1,15 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,57 % ±5 % отн.	1,0 % ±5 % отн.	1 разряд	ГСО 10540-2014	
	TK _{cn} - C ₂ H ₂ -50	от 0 до 1,15 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,57 % ±10 % oth.	1,03 % ±10 % отн.	1 разряд	ГСО 10540-2014	
Акрипонитрил	ТК _{сп} -С ₃ H ₃ N-50Т	от 0 до 1,4 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,7 % ±5 % отн.	1,3 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Акрилонитрил С₃Н₃N	ТК _{сп} - С ₃ Н ₃ N-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,7 % ±10 % отн.	1,26 % ±10 % отн.	1 разряд	ГСО 10534-2014	

гродолжение таол	ицы л.г							
Определяемый	Модификация	Диапазон		ое значение оправодительной отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник ГС*	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд		
Метилбензол	ТКсп -С7Н8-50Т	от 0 до 0,5 %		0,25 % ±5 %	0,475 % ±5			
(толуол) С7Н8	TK _{cn} -C ₇ H ₈ -50	(от 0 до 50 % НКПР)	ПНГ-воздух	отн.	% отн.	1 разряд	ГСО 10528-2014	
Этилбензол C_8H_{10}	TK _{cn} - C ₈ H ₁₀ - 37,5T	от 0 до 0,3 % (от 0 до 37,5 % НКПР)	ПНГ-воздух	0,15 % ±5 % отн.	0,27 % ±5 % oth.	1 разряд	ГСО 10540-2014	
C.II	TK _{cπ} -C ₈ H ₁₈ -50T	от 0 до 0,4 %		0,2 % ±5 %	3,8 % ±5 %		and the same of th	
н-октан С ₈ Н ₁₈	TK _{cn} -C ₈ H ₁₈ -50	(от 0 до 50 % НКПР)	ПНГ-воздух	отн.	отн.	1 разряд	ГСО 10540-2014	
Этилацетат	ТК _{сп} -С ₄ H ₈ O ₂ - 50Т	от 0 до 1,0 % (от 0 до 50 %	ПНГ-воздух	0,5 % ±5 %	0,95 % ±5 %	1 разряд	ГСО 10534-2014	
$(C_4H_8O_2)$	ТКсп -С4Н8О2-50	НКПР)		отн.	отн.	. paspag	100100012011	
Метилацетат	ТК _{сп} -С ₃ H ₆ O ₂ - 50Т	от 0 до 1,55 % (от 0 до	ПНГ-воздух	0,77 % ±5 %	1,47 % ±5 %	1 /	EGG 10524 2014	
$C_3H_6O_2$	ТКсп -С3Н6О2-50	50 % НКПР)	тин -воздух	отн.	отн.	1 разряд	ГСО 10534-2014	
Бутилацетат	ТК _{еп} -С ₆ H ₁₂ O ₂ - 25Т	от 0 до 0,3 % (от 0 до 25 % НКПР)	ПНГ-воздух	0,15 % ±5 % отн.	0,27 % ±5 % отн.	1 разряд	ГСО 10534-2014	
C ₆ H ₁₂ O ₂	TK _{en} -C ₃ H ₆ O ₂ - 50T	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±5 % отн.	0,66 % ±5 % oth.	1 разряд	ГСО 10534-2014	

Продолжение табл	ицы А.2							
Определяемый	Модификация	Диапазон		ре значение оп ГС, пределы отклонения	ределяемого допускаемого	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	енсора измерений		ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
1,3-бутадиен (дивинил) С ₄ Н ₆	ТК _{сп} -C ₄ H ₆ -50Т ТК _{сп} -C ₄ H ₆ -50	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±5 % отн.	0,66 % ±5 % oth.	1 разряд	ГСО 10540-2014	
1,2-дихлорэтан С ₂ H ₄ Cl ₂	ТК _{сп} -C ₂ H ₄ Cl ₂ - 50Т ТК _{сп} -C ₂ H ₄ Cl ₂ -50	от 0 до 3,1 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,55 % ±5 % отн.	2,9 % ±5 % отн.	1 разряд	ГСО 10549-2014	
Диметил- сульфид С ₂ Н ₆ S	TK _{cn} - C ₂ H ₆ S-50T TK _{cn} - C ₂ H ₆ S-50	от 0 до 1,1 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,55 % ±5 % отн.	1,0 % ±5 % oth.	1 разряд	ГСО 10540-2014	
1-гексен С ₆ Н ₁₂	ТК _{сп} -C ₆ H ₁₂ -50Т ТК _{сп} -C ₆ H ₁₂ -50	от 0 до 0,6 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,3 % ±5 % oth.	0,57 % ±5 % OTH.	1 разряд	ГСО 10540-2014	
2-бутанол (втор- бутанол) sЭX- C ₄ H ₉ OH	TK _{cn} -sЭX- C ₄ H ₉ OH-31,2T	от 0 до 0,5 % (от 0 до 31,2 % НКПР)	ПНГ-воздух	0,25 % ±5 % отн.	0,475 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Винилхлорид С₂Н₃СІ	ТК _{сп} -C ₂ H ₃ Cl- 50Т	от 0 до 1,8 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,9 % ±5 % отн.	1,71 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Циклопропан С ₃ Н ₆	ТК _{сп} -C ₃ H ₆ -50Т ТК _{сп} -C ₃ H ₆ -50	от 0 до 1,2 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,6 % ±5 % oth.	1,1 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Диметиловый эфир С₂Н ₆ О	TK _{cn} -C ₂ H ₆ O-50T TK _{cn} -C ₂ H ₆ O-50	от 0 до 1,35 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,67 % ±5 % отн.	1,3 % ±5 % oth.	1 разряд	ГСО 10534-2014	

продолжение таол	ицы л.2							
Определяемый	Модификация	Диапазон	Номинально компонента в	ое значение ог з ГС, пределы отклонения	ределяемого допускаемого	Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник ГС*	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд		
Диэтиловый	TK _{en} -C ₄ H ₁₀ O-50T	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,425 % ±5 % отн.	0,8 % ±5 % oth.	1 разряд	ГСО 10534-2014	
эфир С ₄ Н ₁₀ О	ТКеп -С4Н10О-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,42 % ±10 % отн.	0,76 % ±10 % отн.	1 разряд	ГСО 10534-2014	
Оксид пропилена	TK _{cn} -C ₃ H ₆ O-50T	от 0 до 0,95 % (от 0 до	ПНГ-воздух	0,475 % ±5 % отн.	0,9 % ±5 % oth.	1 разряд	ГСО 10534-2014	
C ₃ H ₆ O	TK _{en} -C ₃ H ₆ O-50	50 % НКПР)		76 OTH.	отн.			
Хлорбензол С ₆ Н₅СІ	TK _{cn} -C ₆ H ₅ Cl- 38,4T	от 0 до 0,5 % (от 0 до 38,4 % НКПР)	ПНГ-воздух	0,25 % ±5 % отн.	0,475 % ±5 % отн.	1 разряд	ГСО 10549-2014	
2-бутанон (метилэти- лкетон) С ₄ Н ₈ О	TK _{cn} -C ₄ H ₈ O-50T TK _{cn} -C ₄ H ₈ O-50	от 0 до 0,75 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,375 % ±5 % отн.	0,71 % ±5 % отн.	1 разряд	ГСО 10534-2014	
2-метил- 2-пропанол (трет-бутанол) tert-C ₄ H ₉ OH	TK _{cn} -tert- C ₄ H ₉ OH-50T TK _{cn} -tert- C ₄ H ₉ OH-50	от 0 до 1,15 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,57 % ±5 % отн.	1,0 % ±5 % отн.	1 разряд	ГСО 10534-2014	
2-метокси- 2-метилпропан (метилтретбутил овый эфир) tert- С₅Н ₁₂ О	TK _{cn} -tert- C ₅ H ₁₂ O-50T TK _{cn} -tert- C ₅ H ₁₂ O-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % отн.	0,76 % ±5 % отн.	1 разряд	ГСО 10534-2014	

Окончание таблицы А.1

Определяемый	Модификация	Диапазон		ента в ГС, пр	ение определ ределы допус нения		Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
Дихлордифтор метан CCl₂F₂(R12)	ИКсп-R12-100	от 0 до 100 млн ⁻¹	ПНГ-азот	50 млн ⁻¹ % ±5 % отн.	95 млн ⁻¹ % ±5 % отн.	-	1 разряд	ГСО 10549- 2014

^{* –} Источником ГС может являться баллон ГСО с использованием генератора ГГС-03-03, генераторы газовых смесей - модели Т703 (для получения ГС озона в воздухе), источники микропотоков газов и паров (ИМ-ГП), источники микропотоков газов и пара ИМ-ВРЗ и источники микропотоков паров ИМ-РТ в комплекте с термодиффузионным генератором, например – Микрогаз-ФМ

Определяемый	ицы А.2 Модификация	Диапазон	Номинально компонента в	е значение оп ГС, пределы отклонения	ределяемого допускаемого	Пределы допускаемой основной	Номер ГС по реестру ГСО		
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*		
1,4- диметилбензол (п-ксилол) р- С ₈ Н ₁₀	ТК _{сп} -р-С ₈ H ₁₀ - 22,2Т	от 0 до 0,2 % (от 0 до 22,2 % НКПР)	ПНГ-воздух	0,1 % ±5 % отн.	0,19 % ±5 % отн.	1 разряд	ГСО 10528-2014		
1,2- диметилбензол (о-ксилол) о- С ₈ Н ₁₀	TK _{cn} -o- C ₈ H ₁₀ -20T	от 0 до 0,2 % (от 0 до 20 % НКПР)	ПНГ-воздух	0,1 % ±5 % отн.	0,19 % ±5 % отн.	1 разряд	ГСО 10528-2014		
2-пропанол (изопропанол) i-C ₃ H ₇ OH	TK _{cn} -i-C ₃ H ₇ OH- 50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,5 % ±5 % отн.	0,95 % ±5 % oth.	1 разряд	ГСО 10534-2014		
Аммиак NH ₃	TK _{cn} -NH ₃ -50T TK _{cn} -NH ₃ -50	от 0 до 7,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	3,75 % ±5 % отн.	7,1 % ±5 % отн.	1 разряд	ГСО 10546-2014		
Октен С ₈ Н ₁₆	TK _{en} -C ₈ H ₁₆ -33,3T	от 0 до 0,3 % (от 0 до 33,3 % НКПР)	ПНГ-воздух	0,15 % ±5 % отн.	0,285 % ±5 % отн.	1 разряд	ГСО 10540-2014		
2-метилбутан (изопентан) i-C ₅ H ₁₂	TK _{cn} -i-C ₅ H ₁₂ -50T TK _{cn} -i-C ₅ H ₁₂ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)	ПНГ-воздух	0, 325% ±5 % отн.	0,6 % ±5 % отн.	1 разряд	ГСО 10540-2014		

Окончание таблицы А.2

Определяемый	Модификация	Диапазон		е значение оп ГС, пределы отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*
Метантиол (метил- меркаптан) СН₃SН	TK _{cn} -CH ₃ SH-50	от 0 до 2,05 % (от 0 до 50 % НКПР)	ПНГ-воздух	1 % ±5 % отн.	1,9 % ±5 % отн.	1 разряд	ГСО 10540-2014
Этантиол (этилмеркаптан) C_2H_5SH	TK _{cn} -C ₂ H ₅ SH-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,7 % ±5 % OTH.	1,3 % ±5 % отн.	1 разряд	ГСО 10540-2014
Ацетонитрил C_2H_3N	TK _{cn} -C ₂ H ₃ N-50	от 0 до 1,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,75 % ±5 % отн.	1,4 % ±5 % отн.	1 разряд	ГСО 10534-2014
Диметил- дисульфид $C_2H_6S_2$	TK _{cn} -C ₂ H ₆ S ₂ -50	от 0 до 0,55 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,275 % ±5 % отн.	0,522 % ±5 % отн.	1 разряд	ГСО 10537-2014
Сумма	TK _{cn} - C ₂ C ₁₀ CH ₄ - 3000	от 0 до 3000 мг/м ³	ПНГ-воздух	1500 мг/м ³ ±5 % отн.	2700 мг/м ³ ±5 % отн.	1 разряд	ГСО 10599-2015
углеводородов СН (С2-С10) (по метану)	TK _{cn} -C ₂ C ₁₀ CH ₄ - 50T TK _{cn} -C ₂ C ₁₀ CH ₄ - 50	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,1 % ±5 % отн.	2,1 % ±5 % отн.	1 разряд	ГСО 10599-2015

Окончание таблицы А.2

Определяемый компонент	Модификация	ификация Диапазон компонент		е значение оп ГС, пределы , отклонения	ределяемого допускаемого	Пределы допускаемой основной	Номер ГС по реестру ГСО
	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*
Сумма	TK _{en} - C ₂ C ₁₀ C ₃ H ₈ - 3000	от 0 до 3000 мг/м ³	ПНГ-воздух	1500 мг/м ³ ±5 % отн.	2700 мг/м ³ ±5 % отн.	1 разряд	ГСО 10599-2015
углеводородов СН (С2-С10) (по пропану)	TK _{cn} -C ₂ C ₁₀ C ₃ H ₈ - 50T TK _{cn} -C ₂ C ₁₀ C ₃ H ₈ - 50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % отн.	0,8 % ±5 % отн.	1 разряд	ГСО 10599-2013
Бензин ⁴⁾⁵⁾	ТКсп-СН-ПН-50	от 0 до 50 % НКПР	ПНГ-воздух	25±10 % НКПР	45±10 % НКПР	1 разряд	Комплект газоаналитичес ий ГНП-1 рег.№68283-17
Дизельное топливо ⁴⁾⁶⁾	ТКеп-СН-ПН-50	от 0 до 50 % НКПР	ПНГ-воздух	25±10 % НКПР	45±10 % НКПР	1 разряд	Комплект газоаналитичес ий ГНП-1 рег.№68283-17
Керосин ⁴⁾⁷⁾	ТКсп-СН-ПН-50	от 0 до 50 % НКПР	ПНГ-воздух	25±10 % НКПР	45±10 % НКПР	1 разряд	Комплект газоаналитичес ий ГНП-1 рег.№68283-17
Уайт-спирит ⁴⁾⁸⁾	ТКсп-СН-ПН-50	от 0 до 50 % НКПР	ПНГ-воздух	25±10 % НКПР	45±10 % НКПР	1 разряд	Комплект газоаналитичес ий ГНП-1 рег.№68283-17

^{* -} Источником ГС может являться баллон ГСО с использованием генератора ГГС-03-03, генераторы газовых смесей - модели Т703 (для получения ГС озона в воздухе), источники микропотоков газов и паров (ИМ-ГП), источники микропотоков газов и пара ИМ-ВРЗ и источники микропотоков паров ИМ-РТ в комплекте с термодиффузионным генератором, например – Микрогаз-ФМ

Таблица А.3 – Технические характеристики ГС, используемых при проведении поверки газоанализаторов с электрохимическим сенсором (ЭХ)

Определяемый	Модификация	Диапазон измерений		определ	минально ияемого ко допускае	омпонен	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ΓC №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*	
	ЭХ _{сп} -Н ₂ S-7,1	от 0 до 7,1 млн ⁻¹	от 0 до 10,0	ПНГ- азот	3,5 млн ⁻¹ ±5 % отн.	6,7 млн ⁻¹ ±5 % отн.		1 разряд	ГСО 10538- 2014	
	ЭХ _{сп} -H ₂ S-20	от 0 до 20 млн ⁻¹	от 0 до 28,4	ПНГ- азот	10 млн ⁻¹ ±5 % отн.	19 млн ⁻¹ ±5 % отн.		1 разряд	ГСО 10538- 2014	
Сероводород	ЭХ _{еп} -H ₂ S-50	от 0 до 50 млн ⁻¹	от 0 до 71	ПНГ- азот	4,75 млн ⁻¹ ±5 % отн.	25лн ⁻¹ ±5 % отн.	47,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10538- 2014	
(H ₂ S)	ЭХсп-Н2S-100	от 0 до 100 млн ⁻¹	от 0 до 142	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10538- 2014	
	ЭХ _{сп} -H ₂ S-200	от 0 до 200 млн ⁻¹	от 0 до 284	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	100 млн ⁻¹ ±5 % отн.	190 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10538- 2014	
	ЭХ _{сп} -H ₂ S-2000	от 0 до 2000 млн ⁻¹	от 0 до 2840	ПНГ- азот	190 млн ⁻¹ ±5 % отн.	1000 млн ⁻¹ ±5 % отн.	1900 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10538- 2014	

гродолжение таол	ицы А.Э	Диапазон	измерений		минально яемого ко			Пределы допускаемой	Номер ГС по
Определяемый компонент	Модификация сенсора	объемной	массовой	пределы	допускае:		лонения	основной	реестру ГСО или Источник
	concopa	доли, % (млн ⁻¹)	концентрац ии, мг/м ³	ГС №1	ГС №2	ΓC №3	ГС №4	погрешности аттестации, разряд	ΓC*
Оксид этилена	ЭХсп-С2Н4О-20	от 0 до 20 млн ⁻¹	от 0 до 36,6	ПНГ- азот	4,75 млн ⁻¹ ±5 % отн.	10 млн ⁻¹ ±5 % отн.	19 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
(C ₂ H ₄ O)	ЭХсп-С2Н4О-5	от 0 до 5 млн ⁻¹	от 0 до 9,15	ПНГ- азот	0,09 млн ⁻¹ ±5 % отн.	2,5 млн ⁻¹ ±5 % отн.	4,75 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10534- 2014
Хлористый водород (HCL)	ЭХ _{сп} -HCL-30	от 0 до 30 млн ⁻¹	от 0 до 45,6	ПНГ- азот	2,85 млн ⁻¹ ±5 % отн.	15 млн ⁻¹ ±5 % отн.	28,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Фтористый водород (HF)	ЭХ _{сп} -HF-5	от 0 до 5 млн ⁻¹	от 0 до 4,15	ПНГ- азот	0,09 млн ⁻¹ ±5 % отн.	2,5 млн ⁻¹ ±5 % отн.	4,75 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ _{сп} -HF-10	от 0 до 10 млн ⁻¹	от 0 до 8,3	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014

Определяемый компонент	Модификация сенсора	Диапазон	измерений	опреде.	оминальн ляемого в ределы до откло	сомпонен	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
Komionem	сенсора	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источнин ГС* ГГС мод. Т703 ГГС мод. Т703
O20H (O2)	ЭХ _{сп} -О ₃ -0,25	от 0 до 0,25 млн ⁻¹	от 0 до 0,5	ПНГ- азот	0,04 млн ⁻¹ ±5 % отн.	0,125 млн ⁻¹ ±5 % отн.	0,23 млн ⁻¹ ±5 % отн.	1 разряд	(5)/5
Озон (О3)	ЭХсп-О3-1	от 0 до 1 млн ⁻¹	от 0 до 2	ПНГ-	0,095 млн ⁻¹ ±5 % отн.	0,50 млн ⁻¹ ±5 % отн.	0,95 млн ⁻¹ ±5 % отн.	1 разряд	70.7
Моносилан (силан) (SiH ₄)	ЭХ _{сп} -SiH ₄ -50	от 0 до 50 млн ⁻¹	от 0 до 67	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	25 млн ⁻¹ ±5 % отн.	47,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Оксид азота (NO)	ЭХ _{сп} -NO-50	от 0 до 50 млн ⁻¹	от 0 до 62,5	ПНГ- азот	4,75 млн ⁻¹ ±5 % отн.	25 млн ⁻¹ ±5 % отн.	47,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
оксид азота (110)	ЭХ _{сп} -NO-250	от 0 до 250 млн ⁻¹	от 0 до 312,5	ПНГ- азот	47,5 млн ⁻¹ ±5 % отн.	125 млн ⁻¹ ±5 % отн.	237 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Диоксид азота NO ₂	ЭХ _{сп} -NO ₂ -20	от 0 до 20 млн ⁻¹	от 0 до 38,2	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	10 млн ⁻¹ ±5 % отн.	19 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014

Определяемый компонент	Модификация	Диапазон измерений		Номинальное значение определяемого компонента в ГС, пределы допускаемого отклонения				основной погрешности	Номер ГС по реестру ГСО или Источник
	сенсора	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	аттестации, разряд	ГС*
	ЭХеп-NН3-100	от 0 до 100 млн ⁻¹	от 0 до 71	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Аммиак (NН ₃)	ЭХсп-NН3-500	от 0 до 500 млн ⁻¹	от 0 до 355	ПНГ- азот	28,5 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ _{сп} -NH ₃ - 1000	от 0 до 1000 млн ⁻¹	от 0 до 710	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ _{сп} -HCN-10	от 0 до 10 млн ⁻¹	от 0 до 11,2	ПНГ- азот	0,47 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Цианистый водород HCN	ЭХ _{сп} -HCN-15	от 0 до 15 млн ⁻¹	от 0 до 16,8	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	7,5 млн ⁻¹ ±5 % отн.	14 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ _{сп} -HCN-30	от 0 до 30 млн ⁻¹	от 0 до 33,6	ПНГ- азот	4,75 млн ⁻¹ ±5 % отн.	15 млн ⁻¹ ±5 % отн.	28,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014

гродолжение	таолицы А.3	1		Номинальн	гое значени	е опрелел	демого	Пределы	
Определяе	Модификация	Диапазон и	Диапазон измерений		в ГС, предо отклоне	елы допус		допускаемо й основной	Номер ГС по реестру ГСО
мый сенсора	объемной доли, % (млн ⁻	массовой концентрац ии, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешност и аттестации, разряд	или Источник ГС*	
Цианистый водород НСN	ЭХ _{сп} -HCN-100	от 0 до 100 млн ⁻¹	от 0 до 112	ПНГ-азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻ 1 ±5 % отн.	95 млн ⁻ 1±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ.,-СО-200	от 0 до 200 млн ⁻¹	от 0 до 232	ПНГ-азот	14,2 млн ⁻¹ ±5 % отн.	100 млн ⁻¹ ±5 % отн.	190 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10532- 2014
Оксид углерода СО	ЭХ _{сп} -СО-500	от 0 до 500 млн ⁻¹	от 0 до 580	ПНГ-азот	14,2 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10532- 2014
	ЭХ _{сп} -СО-5000	от 0 до 5000 млн ⁻¹	от 0 до 5800	ПНГ-азот	950 млн ⁻¹ ±5 % отн.	2500 млн ⁻¹ ±5 % отн.	4750 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10532- 2014
	ЭХсп-SO ₂ -5	от 0 до 5 млн ⁻¹	от 0 до 13,3	ПНГ-азот	0,95 млн ⁻¹ ±5 % отн.	2,5 млн ⁻¹ ±5 % отн.	4,7 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Диоксид серы (SO ₂)	ЭХ _{сп} -SO ₂ -15	от 0 до15 млн ⁻¹	от 0 до 39,9	ПНГ-азот	0,95 млн ⁻¹ ±5 % отн.	7,5 млн ⁻¹ ±5 % отн.	14 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ _{сп} -SO ₂ -20	от 0 до 20 млн ⁻¹	от 0 до 53,2	ПНГ-азот	4,7 млн ⁻¹ ±5 % отн.	10 млн ⁻ 1 ±5 % отн.	19 млн ⁻ ¹ ±5 % отн.	1 разряд	ГСО 10546- 2014

родолжение таоли				Н	оминальн	ое значен	ие	Пределы	
_		Диапазон	измерений			сомпонен	70.	допускаемой	Номер ГС по
Определяемый	Модификация			предель	допуска	емого отк	лонения	основной	реестру ГСС
компонент	сенсора	объемной доли, %	массовой концентраци	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации,	или Источни ГС*
		(млн ⁻¹)	и, мг/м ³					разряд	
	ЭХ _{сп} -SO ₂ -50	от 0 до 50 млн ⁻¹	от 0 до 133	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	25 млн ⁻¹ ±5 % отн.	47,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Диоксид серы (SO ₂)	ЭХ _{сп} -SO ₂ -100	от 0 до 100 млн ⁻¹	от 0 до 266	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХеп-SO2-2000	от 0 до 2000 млн ⁻¹	от 0 до 5320	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	1000 млн ⁻¹ ±5 % отн.	1900 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ _{сп} -Cl ₂ -5	от 0 до 5 млн ⁻¹	от 0 до 14,7	ПНГ- азот	0,28 млн ⁻¹ ±5 % отн.	2,5 млн ⁻¹ ±5 % отн.	4,7 млн ⁻¹ ±5 % отн.	2 разряд	Генераторы хлора ГРАНТ ГХС
Хлор Cl ₂	ЭХ _{сп} -Сl ₂ -15	от 0 до 15 млн ⁻¹	от 0 до 44,2	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	7,5 млн ⁻¹ ±5 % отн.	14 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
	ЭХ _{сп} -Сl ₂ -20	от 0 до 20 млн ⁻¹	от 0 до 59	ПНГ- азот	4,7 млн ⁻¹ ±5 % отн.	10 млн ⁻¹ ±5 % отн.	19 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Кислород (О2)	ЭХсп-О2-30	от 0 до 30 %	-	ПНГ- азот	9,5 % ±5 % отн.	28,5 % ±5 % отн.	-	1 разряд	ГСО 10546- 2014

Определяемый	Модификация	1	измерений	опреде	ляемого в	ое значен сомпонен емого отк	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
	ЭХ _{сп} -Н ₂ -1000	от 0 до 1000 млн ⁻¹	от 0 до 80,0	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014
Водород Н2	ЭХ _{сп} - H ₂ -10000	от 0 до 10000 млн ⁻¹	от 0 до 800	ПНГ- азот	950 млн ⁻¹ ±5 % отн.	5000 млн ⁻¹ ±5 % отн.	9500 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014
	ЭХсп-Н2-20000	от 0 до 20000 млн ⁻¹	от 0 до 1600	ПНГ- азот	190 млн ⁻¹ ±5 % отн.	10000 млн ⁻¹ ±5 % отн.	190000 0 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10540- 2014
Формальдегид СН ₂ О	ЭХ _{сп} -CH ₂ O-10	от 0 до 10 млн ⁻¹	от 0 до 12,5	ПНГ- азот	0,38 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	l разряд	Микрогаз ФМ с ИМ-ГП-94- М-А2
Несимметричный диметилгидразин $C_2H_8N_2$	ЭХ _{сп} -С ₂ H ₈ N ₂ - 0,5	от 0 до 0,5 млн ⁻¹	от 0 до 1,24	ПНГ- азот	0,25 млн ⁻¹ ±5 % отн.	0,47 млн ⁻¹ ±5 % отн.	-	l разряд	Микрогаз ФМ с ИМ-РТ2-О- А1
Метанол (СН₃ОН)	ЭХ _{сп} -СН ₃ ОН- 20	от 0 до 20 млн ⁻¹	от 0 до 26,6	ПНГ- азот	4,7 млн ⁻¹ ±5 % отн.	10 млн ⁻¹ ±5 % отн.	19 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10534- 2014

Определяемый	Модификация	Диапазон		ента в ГС, пр	ение определ веделы допус нения		Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
1,1,1,2- тетрафторэтан	ИК _{сп} -R134a- 1000	от 0 до 1000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	500 млн ⁻¹ % ±5 % отн.	950 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10550- 2014
C2H2F4 (R134a)	ИК _{сп} -R134a- 2000	от 0 до 2000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	1000 млн ⁻¹ % ±5 % отн.	1900 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10550- 2014
Пентафторэтан	ИК _{сп} -R125- 1000	от 0 до 1000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	500 млн ⁻¹ % ±5 % отн.	950 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10550- 2014
C ₂ HF ₅ (R125)	ИК _{сп} -R125- 2000	от 0 до 2000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	1000 млн ⁻¹ % ±5 % отн.	1900 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10549- 2014
Хлордифторме	ИКсп-R22-1000	от 0 до 1000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	500 млн ⁻¹ % ±5 % отн.	950 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10549- 2014
Tah CHCIF ₂ (R22)	ИКеп-R22-2000	от 0 до 2000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	1000 млн ⁻¹ % ±5 % отн.	1900 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10549- 2014
1,2,2- трихлортрифто	ИК _{сп} -R113a- 1000	от 0 до 1000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	500 млн ⁻¹ % ±5 % отн.	950 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10549- 2014
рэтан C ₂ Cl ₃ F ₃ (R113a)	ИК _{сп} -R113a- 2000	от 0 до 2000 млн ⁻¹	ПНГ-азот	95 млн ⁻¹ % ±5 % отн.	1000 млн ⁻¹ % ±5 % отн.	1900 млн ⁻¹ % ±5 % отн.	1 разряд	ГСО 10549- 2014

Определяемый	Модификация	Диапазон	измерений	опреде.	оминальн ляемого к п допускае	сомпонен	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
	ЭХ _{сп} -СН ₃ ОН- 50	от 0 до 50 млн ⁻¹	от 0 до 66,5	ПНГ- азот	4,7 млн ⁻¹ ±5 % отн.	25 млн ⁻¹ ±5 % отн.	47,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Метанол	ЭХ _{сп} - СН ₃ ОН-100	от 0 до 100 млн ⁻¹	от 0 до 133	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
(CH₃OH)	ЭХ _{сп} - СН ₃ ОН-200	от 0 до 200 млн ⁻¹	от 0 до 266	ПНГ- азот	14,2 млн ⁻¹ ±5 % отн.	100 млн ⁻¹ ±5 % отн.	190 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10534- 2014
	ЭХ _{сп} -СН ₃ ОН- 1000	от 0 до 1000 млн ⁻¹	от 0 до 1330	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Этантиол (этилмеркаптан) (С ₂ Н ₅ SH)	ЭХ _{сп} - С ₂ Н ₅ SH-4	от 0 до 4 млн ⁻¹	от 0 до 10	ПНГ- азот	0,38 млн ⁻¹ ±5 % отн.	2 млн ⁻¹ ±5 % отн.	3,8 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10537- 2014
Метантиол метилмеркаптан) СН ₃ SH	ЭX _{en} -CH₃SH-4	от 0 до 4 млн ⁻¹	от 0 до 8	ПНГ- азот	0,38 млн ⁻¹ ±5 % отн.	2 млн ⁻¹ ±5 % отн.	3,8 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10537- 2014

Определяемый	Модификация	A	измерений	опреде	ляемого н	ое значен компонен емого отк	та в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
Фтор F ₂	ЭХ _{сп} -F ₂ -1	от 0 до 1 млн ⁻¹	от 0 до 1,58	ПНГ- азот	0,095 млн ⁻¹ ±5 % отн.	0,5 млн ⁻¹ ±5 % отн.	0,95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Карбонилхлорид	ЭХ _{сп} -COCl ₂ -1	от 0 до 1 млн ⁻¹	от 0 до 4,11	ПНГ- азот	0,095 млн ⁻¹ ±5 % отн.	0,5 млн ⁻¹ ±5 % отн.	0,95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
(фосген) (COCl ₂)	9X _{cn} -COCl ₂ -4	от 0 до 4 млн ⁻¹ включ.	от 0 до 8 включ.	ПНГ-	0,38 млн ⁻¹ ±5 % отн.	2 млн ⁻¹ ±5 % отн.	3,8 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Фосфин	ЭХсп-РН3-1	от 0 до 1 млн ⁻¹	от 0 до 1,41	ПНГ- азот	0,095 млн ⁻¹ ±5 % отн.	0,5 млн ⁻¹ ±5 % отн.	0,95 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10546- 2014
(PH ₃)	ЭХсп-РН3-10	от 0 до 10 млн ⁻¹	от 0 до 14,1	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10546- 2014
Арсин AsH ₃	ЭХ _{сп} -AsH ₃ -1	от 0 до 1 млн ⁻¹	от 0 до 3,24	ПНГ- азот	0,095 млн ⁻¹ ±5 % отн.	0,5 млн ⁻¹ ±5 % отн.	0,95 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10546- 2014

Определяемый	Модифи-	Диапазон і	измерений	опреде.	оминальн ляемого к 1 допускае	омпонент	а в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	кация сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
Гидразин (N ₂ H ₄)	ЭХсп-N2H4-2	от 0 до 2 млн ⁻¹	от 0 до 2,66	ПНГ- азот	0,19 млн ⁻¹ ±5 % отн.	1 млн ⁻¹ ±5 % отн.	1,9 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-177- М-А2
Уксусная кислота	ЭХ _{сп} -С ₂ H ₄ O ₂ - 10	от 0 до 10 млн ⁻¹	от 0 до 25	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-177- М-А2
C ₂ H ₄ O ₂	ЭХ _{сп} -С ₂ H ₄ O ₂ - 30	от 0 до 30 млн ⁻¹	от 0 до 75,0	ПНГ- азот	4,7 млн ⁻¹ ±5 % отн.	15 млн ⁻ 1 ±5 % отн.	28,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-104- М-А2

^{* –} Источником ГС может являться баллон ГСО с использованием генератора ГГС-03-03, генераторы газовых смесей - модели Т703 (для получения ГС озона в воздухе), источники микропотоков газов и паров (ИМ-ГП), источники микропотоков газов и пара ИМ-ВРЗ и источники микропотоков паров ИМ-РТ в комплекте с термодиффузионным генератором, например – Микрогаз-ФМ

Таблица А.4 – Технические характеристики ГС, используемых при проведении поверки газоанализаторов с фотоионизационным сенсором (ФИ)

Определяемый компонент	Модификация сенсора	Диапазон	измерений	определ	оминальн пяемого к ределы до откло	омпонен	га в ГС,	Пределы допускаемой основной погрешности	Номер ГС по реестру ГСО или Источник ГС*
		доли, % (млн ⁻¹)	концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	аттестации, разряд	10"
	ФИсп-С ₂ Н ₃ СІ- 10	от 0 до 10 млн ⁻¹	от 0 до 26	ПНГ- азот	1,8 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10549- 2014
	ФИ _{сп} -С ₂ H ₃ Cl- 100	от 0 до 100 млн ⁻¹	от 0 до 260	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10549- 2014
Винилхлорид (С₂Н₃Сl)	ФИ _{сп} -С ₂ H ₃ Cl- 500	от 0 до 500 млн ⁻¹	от 0 до 1300	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10549- 2014
	ФИ _{сп} -С ₂ Н ₃ Сl- 1000	от 0 до 500	от 0 до 1295	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ΓCO 10549- 2014

Определяемый компонент	Модификация сенсора	Диапазон измерений		опреде	оминальн еляемого в ределы до откло	сомпонент	а в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник
No smollett	Сенсори	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	ГС*
	ФИсп-С6Н6-10	от 0 до 10 млн ⁻¹	от 0 до 32,5	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
Бензол (С ₆ Н ₆)	ФИсп-С6Н6-100	от 0 до 100 млн ⁻¹	от 0 до 325	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻ ¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
Delison (C ₀ 11 ₀)	ФИсп-С6Н6-500	от 0 до 500 млн ⁻¹	от 0 до 1625	ПНГ- азот	95 млн ⁻ 1±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
	ФИ _{сп} -С ₆ Н ₆ - 1000	от 0 до 500	от 0 до 1625	ПНГ- азот	95 млн ⁻ 1±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
Этилбензол	ФИсп-С8Н10-10	от 0 до 10 млн ⁻¹	от 0 до 44,1	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
(C ₈ H ₁₀)	ФИ _{сп} -С ₈ Н ₁₀ - 100	от 0 до 100 млн ⁻¹	от 0 до 441	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻ 1 ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014

Определяемый	Модификация	7738	і измерений	опреде.	ляемого к	ое значен сомпонен емого отк	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источни ГС*
Этилбензол	ФИ _{сп} -С ₈ Н ₁₀ - 500	от 0 до 500 млн ⁻¹	от 0 до 2205	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
(C ₈ H ₁₀)	ФИ _{сп} -С ₈ Н ₁₀ - 1000	от 0 до 500	от 0 до 2205	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
Фенилэтилен (стирол)	ФИсп-С8Н10-10	от 0 до 10 млн ⁻¹	от 0 до 44,1	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10539- 2014
(винилбензол) C_8H_8)	ФИсп-С8Н8-40	от 0 до 40 млн ⁻¹	от 0 до 173,2	ПНГ- азот	6,5 млн ⁻¹ ±5 % отн.	20 млн ⁻¹ ±5 % отн.	38 млн ⁻¹ ±5 % отн.	0 разряд	ГСО 10539- 2014
Тетрафторэтан	ФИ _{сп} - С ₂ F ₄ -10	от 0 до 10 млн ⁻¹	от 0 до 41,3	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10548- 2014
C ₂ F ₄)	ФИ _{сп} - С ₂ F ₄ -100	от 0 до 100 Омлн ⁻¹	от 0 до 416	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10548- 2014

Определяемый компонент	Модификация сенсора	Диапазон измерений		опреде.	пяемого к ределы до	ое значен сомпонен пускаемо нения	га в ГС,	Пределы допускаемой основной погрешности	Номер ГС по реестру ГСО или Источник
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	ГС*
Фенилэтилен (стирол)	ФИ _{сп} -С ₈ Н ₈ - 500	от 0 до 500 млн ⁻¹	от 0 до 2165	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	0 разряд	ГСО 10539- 2014
(винилбензол) (С ₈ Н ₈)	ФИ _{сп} -С ₈ Н ₈ - 1000	от 0 до 500	от 0 до 2165	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	0 разряд	ГСО 10539- 2014
н-пропилацетат	ФИ _{сп} -С ₅ H ₁₀ O ₂ -	от 0 до 10 млн ⁻¹	от 0 до 42,5	ПНГ- азот	1,8 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ВР3-7- М-А2
C ₅ H ₁₀ O ₂	ФИ _{сп} -С ₅ H ₁₀ O ₂ - 100	от 0 до 100 млн ⁻¹	от 0 до 425	ПНГ- азот	18 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ВРЗ-7- М-А2
Эпихлоргидрин С ₃ Н ₅ СЮ	ФИ _{сп} - С ₃ Н ₅ ClO-10	от 0 до 10 млн ⁻¹	от 0 до 38,5	ПНГ- азот	1,8 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ВРЗ-10- М-А2
Хлористый бензил С ₇ H ₇ Cl	ФИ _{сп} -С ₇ H ₇ Cl-	от 0 до 10 млн ⁻¹	от 0 до 52,67	ПНГ- азот	1,8 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ВРЗ-14- М-А2

Определяемый компонент	Модификация сенсора	Диапазон	і измерений	опреде.	пяемого к еделы до	ое значен сомпонен опускаемс онения	га в ГС,	Пределы допускаемой основной погрешности	Номер ГС по реестру ГСО или Источник
KOMHOHEH	сенсора	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	гс*
	ФИ _{сп} - С ₂ Н ₅ ОН-2000	от 0 до 2000 млн ⁻¹	от 0 до 3840	ПНГ- азот	475 млн ⁻¹ ±5 % отн.	1000 млн ⁻¹ ±5 % отн.	1900 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
	ФИ _{сп} - С ₂ Н₅ОН-10	от 0 до 10	от 0 до 19,2	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Этанол (С₂Н₅ОН)	ФИ _{сп} - C ₂ H ₅ OH-100	от 0 до 100	от 0 до 192	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
	ФИ _{сп} - С ₂ Н ₅ ОН-1000	от 0 до 100	от 0 до 960	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
	ФИ _{сп} - С ₂ Н ₅ ОН-2000	от 0 до 2000 млн ⁻¹	от 0 до 3840	ПНГ- азот	475 млн ⁻¹ ±5 % отн.	1000 млн ⁻¹ ±5 % отн.	1900 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Фурфуриловый спирт С ₅ H ₆ O ₂	ФИ _{сп} -С ₅ H ₆ O ₂ -	от 0 до 10 млн ⁻¹	от 0 до 40,8	ПНГ-	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ВРЗ-24- М-И

Іродолжение табли	щы А.4								
Определяемый	Модификация сенсора	Диапазон	определ	пяемого к еделы до	ое значен омпонен пускаемо нения	га в ГС,	Пределы допускаемой основной погрешности	Номер ГС по реестру ГСО или Источник	
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	аттестации, разряд	ГС*
Моноэтаноламин	ФИ _{сп} - С ₂ H ₇ NO-3	от 0 до 3 млн ⁻¹	от 0 до 7,6	ПНГ- азот	0,19 млн ⁻¹ ±5 % отн.	1,5 млн ⁻¹ ±5 % отн.	2,85 млн ⁻¹ ±5 % отн.	1 разряд	ΓCO 10534- 2014
(2-аминоэтанол) (С ₂ H ₇ NO)	ФИ _{сп} - С ₂ H ₇ NO-10	от 0 до 10 млн ⁻¹	от 0 до 25,4	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Формальдегид (CH ₂ O)	ФИсп-СН2О-10	от 0 до 10 млн ⁻¹	от 0 до 12,5	ПНГ- азот	0,38 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-94- М-А2
2-пропанол	ФИ _{сп} -і- С ₃ Н ₇ ОН-10	от 0 до 10 млн ⁻¹	от 0 до 25	ПНГ- азот	3,8 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10534- 2014
(изопропанол) (i- C ₃ H ₇ OH)	ФИ _{сп} -і- С ₃ Н ₇ ОН-100	от 0 до 100 млн ⁻¹	от 0 до 250	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10534- 2014

Определяемый компонент	Модификация сенсора	Диапазон измерений		опреде.	пяемого к ределы до	ое значен сомпонен пускаемо нения	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник
ROMITORENT	сенсора	объемной доли, % (млн ⁻¹)	массовой концентрации, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	гс*
Уксусная кислота	ФИ _{сп} -С ₂ Н ₄ О ₂ -	от 0 до 10 млн ⁻¹	от 0 до 25	ПНГ- азот	3,8 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-104- М-А2
C ₂ H ₄ O ₂	ФИ _{сп} -С ₂ Н ₄ О ₂ - 100	от 0 до 100 млн ⁻¹	от 0 до 250	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-104- М-А2
	ФИ _{сп} -i-С ₄ Н ₈ - 10	от 0 до 10 млн ⁻¹	от 0 до 23,3	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10539- 2014
2-метилпропен (изобутилен)	ФИ _{сп} -i-С ₄ Н ₈ - 100	от 0 до 100 млн ⁻¹	от 0 до 233	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10539- 2014
(i-C ₄ H ₈)	ФИ _{сп} -i-С ₄ H ₈ - 1000	от 0 до 1000 млн ⁻¹	от 0 до 2330	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014
	ФИ _{сп} -i-С ₄ Н ₈ - 6000	от 0 до 6000 млн ⁻¹	от 0 до 13980	ПНГ- азот	475 млн ⁻¹ ±5 % отн.	3000 млн ⁻¹ ±5 % отн.	5700 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014

Определяемый	Модификация	Диапазон	измерений	опреде.	пяемого к	ое значен сомпонент емого отк	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
	ФИ _{сп} -С ₄ Н ₉ ОН- 10	от 0 до 10 млн ⁻¹	от 0 до 30,8	ПНГ- азот	3,0 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
1-бутанол (С₄Н₀ОН)	ФИ _{сп} -С ₄ Н ₉ ОН- 40	от 0 до 40 млн ⁻¹	от 0 до 123,3	ПНГ- азот	9,2 млн ⁻¹ ±5 % отн.	20 млн ⁻¹ ±5 % отн.	38 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
	ФИ _{сп} - С ₄ Н ₉ ОН -100	от 0 до 100 млн ⁻¹	от 0 до 123,3	ПНГ- азот	12 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10534- 2014
	ФИ _{сп} -С ₄ H ₁₁ N- 10	от 0 до 10 млн ⁻¹	от 0 до 30,4	ПНГ- азот	2,8 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10657- 2015
Диэтиламин (С4H ₁₁ N)	ФИ _{сп} -С ₄ H ₁₁ N- 40	от 0 до 40 млн ⁻¹	от 0 до 121,6	ПНГ- азот	9,3 млн ⁻¹ ±5 % отн.	20 млн ⁻¹ ±5 % отн.	38 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10657- 2015
	ФИ _{сп} - С ₄ H ₁₁ N-100	от 0 до 100 млн ⁻¹	от 0 до 304	ПНГ- азот	12 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10657- 2015

Определяемый	Модификация	Диапазон	измерений	опреде.	оминальн пяемого к п допускае	омпонент	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ΓC №2 ΓC №3 Γ		погрешности аттестации, разряд	или Источник ГС*
	ФИ _{сп} -СН ₃ ОН-	от 0 до 10 млн ⁻¹	от 0 до 13,3	ПНГ- азот	3,5 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Метанол (СН ₃ ОН)	ФИ _{сп} -СН ₃ ОН- 40	от 0 до 40 млн ⁻¹	от 0 до 53,2	ПНГ- азот	10 млн ⁻¹ ±5 % отн.	20 млн ⁻¹ ±5 % отн.	38 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
	ФИ _{еп} -СН ₃ ОН- 100	от 0 до 40 млн ⁻¹	от 0 до 133	ПНГ- азот	10 млн ⁻¹ ±5 % отн.	20 млн ⁻¹ ±5 % отн.	38 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Метилбензол (толуол) (С7Н8)	ФИсп-С7Н8-10	от 0 до 10 млн ⁻¹	от 0 до 38,3	ПНГ- азот	3,5 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
2,6- толуиленди- изоцианат С ₃ С ₆ Н ₃ (NCO) ₂	ФИ _{сп} - С ₃ С ₆ Н ₃ (NCO) ₂ -1	0 до 1 млн ⁻¹	от 0 до 7,24	ПНГ- азот	0,095 млн ⁻¹ ±5 % отн.	0,5 млн ⁻¹ ±5 % отн.	0,95 млн ⁻¹ ±5 % отн.	1 разряд	ИМ-ГП-158- М-А2

Определяемый компонент	Модификаци	Диапазон измерений		опреде.	пяемого к ределы до	ое значен омпонен пускаемо нения	га в ГС,	Пределы допускаемой основной	Номер ГС по
KOMHOHEHI	я сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источния ГС*
Метилбензол (толиол)	ФИсп-С7Н8-40	от 0 до 40 млн ⁻¹	от 0 до 153,3	ПНГ- азот	12 млн ⁻¹ ±5 % отн.	20 млн ⁻¹ ±5 % отн.	38 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
(толуол) (С ₇ Н ₈)	ФИ _{сп} -С ₇ Н ₈ -	от 0 до 100 млн ⁻¹	от 0 до 383	ПНГ- азот	12 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
	ФИ _{сп} - С ₆ Н ₅ ОН-3	от 0 до 3 млн ⁻¹	от 0 до 11,74	ПНГ- азот	0,23 млн ⁻¹ ±5 % отн.	1,5 млн ⁻¹ ±5 % отн.	2,85 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
Фенол С ₆ Н ₅ ОН	ФИ _{сп} - С ₆ Н ₅ ОН-10	от 0 до 10 млн ⁻¹	от 0 до 39,1	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
	ФИ _{сп} - С ₆ H ₅ OH-100	от 0 до 100 млн ⁻¹	от 0 до 44,1	ПНГ- азот	12 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014

Определяемый	Модификация	Диапазон	измерений	опреде.	пяемого к	ое значен сомпонент емого отк	га в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*	
1,3- диметилбензол	ФИ _{сп} -m-С ₈ H ₁₀ -	от 0 до 10 млн ⁻¹	от 0 до 44,1	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014	
(м-ксилол) (m-C ₈ H ₁₀)	ФИ _{сп} -m-С ₈ H ₁₀ - 100	от 0 до 100 млн ⁻¹	от 0 до 442	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014	
1,2- диметилбензол	ФИ _{сп} -о-С ₈ H ₁₀ -	от 0 до 10 млн ⁻¹	от 0 до 44,1	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014	
(о-ксилол) (о-С ₈ Н ₁₀)	ФИ _{сп} -о-С ₈ H ₁₀ -	от 0 до 100 млн ⁻¹	от 0 до 442	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014	
1,4- диметилбензол (п-ксилол) (р- С ₈ H ₁₀)	ФИ _{сп} -р-С ₈ Н ₁₀ -	от 0 до 10 млн ⁻¹	от 0 до 44,1	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014	

гродолжение таоли		П	v			ое значен		Пределы	и во
Определяемый	Модификация	VE .8	измерений			сомпонент емого отк		допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
1,4- диметилбензол (п-ксилол) (р- С ₈ H ₁₀)	ФИ _{сп} -р-С ₈ Н ₁₀ - 100	от 0 до 100 млн ⁻¹	от 0 до 442	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10528- 2014
Оксид этилена (C ₂ H ₄ O)	ФИ _{сп} -С ₂ Н ₄ О-	от 0 до 10 млн ⁻¹	от 0 до 18,3	ПНГ- азот	1,5 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Фосфин (РН ₃)	ФИсп-РН3-10	от 0 до 10 млн ⁻¹	от 0 до 14,1	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Нафталин С10Н8	ФИсп-С10Н8-10	от 0 до 10 млн-1	от 0 до 53,3	ПНГ- азот	3,5 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-97- М-А2
Бром (Вг2)	ФИ _{сп} -Вг ₂ -2	от 0 до 2 млн ⁻¹	от 0 до 13,3	ПНГ- азот	0,19 млн ⁻¹ ±5 % отн.	1 млн ⁻¹ ±5 % отн.	13,3 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-159- М-А2

Определяемый	Модификация	Диапазон	измерений	опред	Номинально еляемого к ы допускае	омпонент	а в ГС,	Пределы допускаемо й основной	Номер ГС по
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешност и аттестации, разряд	реестру ГСО или Источник ГС*
	ФИсп-NH3-100	от 0 до 100 млн ⁻¹	от 0 до 71	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	50 млн ⁻ ¹ ±5 % отн.	95 млн ⁻ ¹ ±5 % отн.	1 разряд	ГСО 10546- 2014
Аммиак (NH ₃)	ФИ _{сп} -NН ₃ - 1000	от 0 до 1000 млн ⁻¹	от 0 до 710	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10546- 2014
Этантиол (этилмеркаптан)	ФИ _{сп} -С ₂ H ₅ SH- 10	от 0 до 10 млн ⁻¹	от 0 до 25,8	ПНГ- азот	0,38 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10537- 2014
(C ₂ H ₅ SH)	ФИ _{сп} -С ₂ H ₅ SH- 20	от 0 до 20 млн ⁻¹	от 0 до 51,6	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	10 млн ⁻ 1 ±5 % отн.	19 млн ⁻ ¹ ±5 % отн.	1 разряд	ГСО 10537- 2014
Метантиол (метилмеркаптан)	ФИ _{сп} -СН ₃ SH- 10	от 0 до 10 млн ⁻¹	от 0 до 20	ПНГ- азот	0,38 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10537- 2014
(CH₃SH)	ФИ _{сп} -СН ₃ SH- 20	от 0 до 20 млн ⁻¹	от 0 до 40	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	10 млн ⁻ 1 ±5 % отн.	19 млн ⁻ ¹ ±5 % отн.	1 разряд	ΓCO 10537- 2014
Этилацетат (С ₄ H ₈ O ₂)	ФИ _{сп} -С ₄ H ₈ O ₂ - 100	от 0 до 100 млн ⁻¹	от 0 до 366	ПНГ- азот	12 млн ⁻¹ ±5 % отн.	50 млн ⁻ 1 ±5 % отн.	95 млн ⁻ ¹ ±5 % отн.	1 разряд	ГСО 10534- 2014

Определяемый	Модификация	Диапазон и	змерений	к	омпонента в омпонента в опускаемого	ГС, преде	елы	Пределы допускаемой основной	Номер ГС по реестру ГСО или	
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентра ции, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	Источник ГС*	
Бутилацетат	ФИ _{сп} -С ₆ H ₁₂ O ₂ - 50	от 0 до 50 млн ⁻¹	от 0 до 241,5	ПНГ- азот	4,75 млн ⁻¹ ±5 % отн.	25 млн ⁻ 1 ±5 % отн.	47,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534-2014	
(C ₆ H ₁₂ O ₂)	ФИ _{сп} -С ₆ H ₁₂ O ₂ - 100	от 0 до 100 млн ⁻¹	от 0 до 483	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻ 1 ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534-2014	
	ФИсп-С3Н6-10	от 0 до 10 млн ⁻¹	от 0 до 17,5	ПНГ- азот	0,38 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	0 разряд	ГСО 10539-2014	
Пропилен (пропен) С ₃ Н ₆	ФИ _{сп} -С ₃ Н ₆ - 100	от 0 до 100 млн ⁻¹	от 0 до 175	ПНГ- азот	9,5 млн ⁻¹ ±5 % отн.	50 млн ⁻ 1 ±5 % отн.	95 млн ⁻¹ ±5 % отн.	0 разряд	ГСО 10539-2014	
,	ФИ _{сп} -С ₃ Н ₆ - 300	от 0 до 300 млн ⁻¹	от 0 до 561	ПНГ- азот	47,5 млн ⁻¹ ±5 % отн.	150 млн ⁻¹ ±5 % отн.	285 млн ⁻ 1 ±5 % отн.	0 разряд	ГСО 10539-2014	
2,3-дитиабутан (диметилдисульф	ФИсп-С2H6S2-2	от 0 до 2 млн ⁻¹	от 0 до 7,8	ПНГ- азот	0,33 млн ⁻¹ ±5 % отн.	1 млн ⁻¹ ±5 % отн.	1,9 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ- ГП-77-М- A2	
ид) С₂Н ₆ S₂	ФИ _{сп} -С ₂ Н ₆ S ₂ -	от 0 до 10 млн ⁻¹	от 0 до 39,2	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ- ГП-77-М- A2	

Определяемый	Модификация	Диапазон	измерений	опред	еляемого	ное значение компонента аемого откло	в ГС,	Пределы допускаемой основной	Номер ГС по реестру ГСО или
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ΓC №4	погрешности аттестации, разряд	Источник ГС*
2,5-фурандион	ФИ _{сп} -С ₄ Н ₂ О ₃ -	от 0 до 3 млн ⁻¹	от 0 до 12,2	ПНГ- азот	0,23 млн ⁻¹ ±5 % отн.	1,5 млн ⁻¹ ±5 % отн.	2,85 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ- BP3-5-M-A1
(малеиновый ангидрид) С ₄ Н ₂ О ₃	ФИ _{сп} -С ₄ H ₂ O ₃ - 10	от 0 до 10 млн ⁻¹	от 0 до 40,8	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ- BP3-5-M-A1
Дисульфид углерода (сероуглерод) (CS ₂)	ФИсп-СЅ2-10	от 0 до 10 млн ⁻¹	от 0 до 31,7	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10537- 2014
Ацетонитрил (С ₂ H ₃ N)	ФИ _{сп} -С ₂ Н ₃ N- 10	от 0 до 10 млн ⁻¹	от 0 до 17,1	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Циклогексан (C_6H_{12})	ФИ _{сп} -С ₆ H ₁₂ - 100	от 0 до 100 млн ⁻¹	от 0 до 350	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
1,3-бутадиен (дивинил) (С ₄ Н ₆)	ФИ _{сп} -С ₄ H ₆ - 500	от 0 до 500 млн ⁻¹	от 0 до 1125	ПНГ- азот	47,5 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻¹ ±5 % отн.	0 разряд	ГСО 10539- 2014

гродолжение та	олицы А.4			Номина	льное значе	ение опред	еляемого	Пределы	H FC
Определяемы	Модификация	Диапазон и	змерений	ко	мпонента в опускаемог	в ГС, преде	елы	допускаемой основной	Номер ГС по реестру ГСО или
й компонент	сенсора	объемной доли, % (млн ⁻ ¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	Источник ГС*
Диметилсуль	ФИ _{сп} - С ₂ H ₆ S - 5	от 0 до 5 млн ⁻¹	от 0 до 12,9	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	25 млн ⁻¹ ±5 % отн.	47,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10537- 2014
фид C ₂ H ₆ S	ФИ _{сп} - С ₂ H ₆ S - 100	от 0 до 100 млн ⁻¹	от 0 до 258	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	50 млн ⁻¹ ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ΓCO 10537- 2014
н-гексан (С ₆ Н ₁₄)	ФИ _{сп} -С ₆ H ₁₄ - 1000	от 0 до 1000 млн ⁻¹	от 0 до 3584	ПНГ- азот	79 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014
A A all C	ФИсп-АзН3 -3	от 0 до 3 млн ⁻¹	от 0 до 9,7	ПНГ- азот	0,095 млн ⁻¹ ±5 % отн.	1,5 млн ⁻ 1 ±5 % отн.	2,85 млн ⁻¹ ±5 % отн.	0 разряд	ГСО 10545- 2014
Арсин АѕН₃	ФИсп-АзН3-10	от 0 до 10 млн ⁻¹	от 0 до 32,4	ПНГ- азот	0,95 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻ ¹ ±5 % отн.	0 разряд	ГСО 10545- 2014
Этилен С2Н4	ФИ _{сп} - С ₂ Н ₄ - 300	от 0 до 300 млн ⁻¹	от 0 до 351	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	150 млн ⁻¹ ±5 % отн.	285 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014
Эгилен С2гі4	ФИ _{сп} - С ₂ H ₄ - 1800	от 0 до 1800 млн ⁻¹	от 0 до 2106	ПНГ- азот	79 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014

гродолжение	Тиолицы га. т			Цомина	TI IIOA DIIGIIA	IIIIA ARRAS	ANGOVADO.	Пиололи	
Определяем ый	Модификация	Диапазон из	вмерений	ко	пьное значе мпонента в пускаемого	ГС, преде	елы	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	объемной доли, % (млн ⁻	массовой концентра ции, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*
н-гептан	ФИсп-С7Н16-500	от 0 до 500 млн ⁻¹	от 0 до 2084	ПНГ- азот	47,5 млн ⁻¹ ±5 % отн.	250 млн ⁻¹ ±5 % отн.	475 млн ⁻ 1 ±5 % отн.	1 разряд	ГСО 10540- 2014
(C ₇ H ₁₆)	ФИ _{сп} -С ₇ H ₁₆ - 2000	от 0 до 2000 млн ⁻¹	от 0 до 8334	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	1000 млн ⁻¹ ±5 % отн.	1900 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10540- 2014
Акрилонитр ил (С ₃ Н ₃ N)	ФИсп-С3Н3N-10	от 0 до 10 млн ⁻¹	от 0 до 22,1	ПНГ- азот	0,6 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
Муравьиная кислота (СН ₂ О ₂)	ФИсп-СН2О2-10	от 0 до 10 млн ⁻¹	от 0 до 19,1	ПНГ- азот	0,47 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-129 О-А2
Гексафторид	ФИ _{сп} -р- SF ₆ -10	от 0 до 10 млн ⁻¹	от 0 до 12,16	ПНГ- азот	0,6 млн ⁻¹ ±5 % отн.	5 млн ⁻¹ ±5 % отн.	9,5 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10549- 2014
серы SF ₆	ФИ _{сп} -р- SF ₆ -100	от 0 до 100 млн ⁻¹	от 0 до 608	ПНГ- азот	19 млн ⁻¹ ±5 % отн.	50 млн ⁻ 1 ±5 % отн.	95 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10549- 2014

		Диапазон	измерений	опреде	ляемого к	ое значен сомпонент емого отк	а в ГС,	Пределы допускаемой	Номер ГС по
Определяемый компонент	Модификация сенсора	объемной доли, % (млн ⁻	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	основной погрешности аттестации, разряд	реестру ГСО или Источник ГС*
2-пропанон (ацетон) (С ₃ Н ₆ О)	ФИ _{сп} -С ₃ Н ₆ О- 1000	от 0 до 1000 млн ⁻¹	от 0 до 2415	ПНГ- азот	76 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014
1,2-дихлорэтан (С ₂ H ₄ Cl ₂)	ФИ _{сп} -С ₂ H ₄ Cl ₂ - 20	от 0 до 20 млн ⁻¹	от 0 до 82,3	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	10 млн ⁻ ¹ ±5 % отн.	19 млн ⁻ 1 ±5 % отн.	1 разряд	ГСО 10549- 2014
Этилцеллозольв (2-этоксиэтанол) $C_4H_{10}O_2$	ФИ _{сп} -С ₄ H ₁₀ O ₂ - 20	от 0 до 20 млн ⁻¹	от 0 до 75	ПНГ- азот	1,9 млн ⁻¹ ±5 % отн.	10 млн ⁻ 1 ±5 % отн.	19 млн ⁻ 1 ±5 % отн.	1 разряд	Микрогаз ФМ с ИМ-ГП-93- О-А2
Диметиловый эфир (С₂Н ₆ О)	ФИ _{сп} -С ₂ Н ₆ О- 500	от 0 до 500 млн ⁻¹	от 0 до 958	ПНГ- азот	95 млн ⁻ 1±5 % отн.	250млн -1 ±5 % отн.	475 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014

Окончание таблицы А.4

Определяемый	Модификация	Диапазон измерений		Номинальное значение определяемого компонента в ГС, пределы допускаемого отклонения				Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и, мг/м ³	ГС №1	ГС №2	ГС №3	ГС №4	погрешности аттестации, разряд	или Источник ГС*	
2-метилпропан (изобутан) (i- C ₄ H ₁₀)	ФИ _{сп} -i-С ₄ H ₁₀ - 1000	от 0 до 1000 млн ⁻¹	от 0 до 2417	ПНГ- азот	95 млн ⁻¹ ±5 % отн.	500 млн ⁻¹ ±5 % отн.	950 млн ⁻¹ ±5 % отн.	l разряд	ГСО 10540- 2014	
2-метил-1- пропанол (изобутанол) (i- C ₄ H ₉ OH)	ФИ _{сп} -i- С ₄ Н ₉ ОН-20	от 0 до 20 млн ⁻¹	от 0 до 61,6	ПНГ- азот	2,85 млн ⁻¹ ±5 % отн.	10 млн ⁻¹ ±5 % отн.	19 млн ⁻¹ ±5 % отн.	1 разряд	ГСО 10534- 2014	
Циклогексанон (С ₆ Н ₁₀ О)	ФИ _{сп} -С ₆ H ₁₀ O- 20	от 0 до 20 млн ⁻¹	от 0 до 70	ПНГ- азот	1,9 млн ⁻¹ ±5 %	10 млн ⁻¹ ±5 %	19 млн ⁻¹ ±5 %	1 разряд	ГСО 10534- 2014	
2-бутанон (МЭК) (С ₄ Н ₈ О)	ФИ _{сп} -С ₄ H ₈ O- 500	от 0 до 500 млн ⁻¹	от 0 до 1500	ПНГ- азот	57 млн ⁻¹ ±5 %	250 млн ⁻¹ ±5 %	1425 млн ⁻¹ ±5 %	1 разряд	ГСО 10534- 2014	
Тетраэтилортоси ликат (TEOS) (C ₈ H ₂₀ O ₄ Si)	ФИ _{сп} - С ₈ H ₂₀ O ₄ Si-10	от 0 до 10 млн ⁻¹	от 0 до 86,6	ПНГ- азот	1,9 млн ⁻¹ ±5 %	5 млн ⁻¹ ±5 %	9,5 млн ⁻¹ ±5 %	1 разряд	Микрогаз ФМ с ИМ-ВРЗ-3- М-А2	
Акролеин С ₃ Н ₄ О	ФИ _{сп} - С3Н4О- 10	от 0 до 10 млн ⁻¹	от 0 до 24,9	ПНГ- азот	1,9 млн ⁻¹ ±5 %	5 млн ⁻¹ ±5 %	9,5 млн ⁻¹ ±5 %	1 разряд	ΓCO 10534- 2014	

^{* –} Источником ГС может являться баллон ГСО с использованием генератора ГГС-03-03, генераторы газовых смесей - модели Т703 (для получения ГС озона в воздухе), источники микропотоков газов и паров (ИМ-ГП), источники микропотоков газов и пара ИМ-ВРЗ и источники микропотоков паров ИМ-РТ в комплекте с термодиффузионным генератором, например – Микрогаз-ФМ

Таблица А.5 – Технические характеристики ГС, используемых при проведении поверки газоанализаторов с полупроводниковым

сенсором (ПП)

Определяемый М- компонент	Модификация	Диапазон		ое значение оправить ГС, пределы до отклонения	E 2007	Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник ГС*
	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	
	ППсп-Н2-100	от 0 до 4,0 % (от 0 до 100 % НКПР)	ПНГ-азот	2,0 % ±5 % oth.	3,8 % ±5 % oth.	1 разряд	ГСО 10540-2014
Водород (Н2)	ППсп-Н2-50	от 0 до 2,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,0% ±5 % отн.	1,9 % ±5 % отн.	1 разряд	ГСО 10540-2014
	ППеп-Н2-20 %	от 0 до 20 %	ПНГ-азот	10 % ±5 % отн.	19 % ±5 % отн.	1 разряд	ГСО 10540-2014
	ППсп-СН4-100	от 0 до 4,4 % (от 0 до 100 % НКПР)	ПНГ-азот	2,2 % ±5 % отн.	4,0 % ±5 % отн.	1 разряд	ГСО 10597-2015
Метан (СН4)	ППсп-СН4-50Т	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,1 % ±5 % отн.	2,1 % ±5 % отн.	1 разряд	ГСО 10599-2015
	ППеп-СН4-50	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,1 % ±5 % отн.	2,1 % ±5 % отн.	1 разряд	ГСО 10599-2015
D===== (C.H.)	ППсп-С2Н4-100	от 0 до 2,3 % (от 0 до 100 % НКПР)	ПНГ-азот	1,15 % ±5 %	2,1 % ±5 %	1 разряд	ГСО 10597-2015
Этилен (С ₂ Н ₄)	ППсп-С2Н4-50	0 до 1,15 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,6 % ±5 %	1,1 % ±5 %	1 разряд	ГСО 10597-2015

Определяемый	Модификация	Диапазон		ое значение опра ГС, пределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
	ППсп-С3Н8-100	0 до 1,7 % (от 0 до 100 % НКПР)	ПНГ-азот	0,85 % ±5 % отн.	1,6 % ±5 % отн.	1 разряд	ГСО 10597-2015	
Пропан (С ₃ Н ₈)	ППсп-С3Н8-50Т	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % oth.	0,8 % ±5 % отн.	1 разряд	ГСО 10599-2015	
ППе	ППеп-С ₃ Н ₈ -50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % oth.	0,8 % ±5 % отн.	1 разряд	ГСО 10599-2015	
6 (C.H.)	ПП _{сп} -С ₄ H ₁₀ -100	от 0 до 1,4 % (от 0 до 100 % НКПР)	ПНГ-азот	0,7 % ±5 % oth.	1,3 % ±5 % отн.	1 разряд	ГСО 10540-2014	
н-бутан (С4Н10)	ППсп-С4Н10-50	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±5 % отн.	0,6 % ±5 % отн.	1 разряд	ГСО 10540-2014	
1.5-may (C.H.)	ППсп-С4Н8-100	от 0 до 1,6 % (от 0 до 100 % НКПР)	ПНГ-азот	0,8 % ±5 % отн.	1,5 % ±5 % отн.	1 разряд	ГСО 10540-2014	
1-бутен (С4Н8)	ППсп-С4Н8-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % отн.	0,75 % ±5 % отн.	1 разряд	ГСО 10540-2014	

Определяемый	Модификация	Диапазон		ое значение оправ ГС, пределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
2-метилпропан	ПП _{сп} -i-С ₄ H ₁₀ - 100	от 0 до 1,30 % (от 0 до 100 % НКПР)	ПНГ-азот	0,65 % ±5 % отн.	1,2 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(изобутан) (i- С ₄ H ₁₀)	ППсп-і-С4Н10-50	от 0 до 0,65 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,32 % ±5 % отн.	0,61 % ±5 % отн.	1 разряд	ГСО 10540-2014	
	ППсп-С5Н12-100	от 0 до 1,1 % (от 0 до 100 % НКПР)	ПНГ-азот	0,55 % ±5 % oth.	1,0 % ±5 % отн.	1 разряд	ГСО 10540-2014	
н-пентан (С5Н12)	ППсп-С5Н12-50	от 0 до 0,55 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,25 % ±5 % oth.	0,5 % ±5 % oth.	1 разряд	ГСО 10540-2014	
Циклопентан	ППсп-С5Н10-100	от 0 до 1,4 % (от 0 до 100 % НКПР)	ПНГ-азот	0,7 % ±5 % отн.	1,3 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(C ₅ H ₁₀)	ППсп-С5Н10-50	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±5 % oth.	0,6 % ±5 % отн.	1 разряд	ГСО 10540-2014	
u rowani (C.H.)	ППсп-С6Н14-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	ПНГ-азот	0,5 % ±5 % oth.	0,95 % ±5 % отн.	1 разряд	ГСО 10540-2014	
н-гексан (С ₆ Н ₁₄)	ППсп-С6Н14-50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,25 % ±5 % отн.	0,47 % ±5 % oth.	1 разряд	ГСО 10540-2014	

Определяемый	Модификация Диапазон			ое значение оправления от ределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
Циклогексан	ППсп-С6Н12-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	ПНГ-азот	0,5 % ±5 % OTH.	0,95 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(C_6H_{12})	ППсп-С6Н12-50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,25 % ±5 % oth.	0,47 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Draw (C.H.)	ППсп-С2Н6-100	от 0 до 2,4 % (от 0 до 100 % НКПР)	ПНГ-азот	1,2 % ±5 % отн.	2,3 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Этан (С2Н6)	ППсп-С2Н6-50	от 0 до 1,2 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,6 % ±5 % oth.	1,1 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Метанол (СН₃ОН)	ППсп-СН3ОН-50	от 0 до 3,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,5 % ±5 % отн.	2,85 % ±5 % oth.	1 разряд	ГСО 10540-2014	
Бензол (С ₆ Н ₆)	ППсп-С6Н6-100	от 0 до 1,2 % (от 0 до 100 % НКПР)	ПНГ-азот	0,6 % ±5 % OTH.	1,1 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Вензол (С6П6)	ППсп -С6Н6-50	от 0 до 0,6 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,3 % ±5 % oth.	0,57 % ±5 % oth.	1 разряд	ГСО 10540-2014	

Определяемый	Модификация Диапазон			ое значение оправ ГС, пределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
Пропилен	ППсп-С ₃ Н ₆ -100	от 0 до 2,0 % (от 0 до 100 % НКПР)	ПНГ-азот	1,0 % ±5 % отн.	1,9 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(пропен) (С ₃ Н ₆)	ППсп-С3Н6-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,5 % ±5 % отн.	0,95 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Этанол (С ₂ Н ₅ ОН)	ПП _{сп} -С ₂ Н ₅ ОН- 50	от 0 до 1,55 % (от 0 до 50 % НКПР)	воздух -	0,75 % ±5 % отн.	1,45 % ±5 % отн.	1 разряд	ГСО 10534-2014	
(C II)	ППсп-С7Н16-100	от 0 до 0,85 % (от 0 до 100 % НКПР)	ПНГ-азот	0,425 % ±5 % отн.	0,8 % ±5 % oth.	1 разряд	ГСО 10540-2014	
н-гептан (С7Н16)	ППсп-С7Н16-50	от 0 до 0,425 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,21 % ±5 % oth.	0,4 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Оксид этилена	ППсп-С2Н4О-100	от 0 до 2,6 % (от 0 до 100 % НКПР)	ПНГ-азот	1,3 % ±5 % отн.	2,5 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(C ₂ H ₄ O)	ППсп-С2Н4О-50	от 0 до 1,3 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,65 % ±5 % oth.	1,2 % ±5 % отн.	1 разряд	ГСО 10540-2014	
2-пропанон (ацетон) (С ₃ Н ₆ О)	ППсп-С3Н6О-50	от 0 до 1,25 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,625 % ±5 % отн.	1,2 % ±5 % отн.	1 разряд	ГСО 10534-2014	

Определяемый	Модификация	Диапазон		ое значение оправ ГС, пределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
2-метилпропен	ПП _{сп} -i-С ₄ H ₈ -100	от 0 до 1,6 % (от 0 до 100 % НКПР)	ПНГ-азот	0,8 % ±5 % oth.	1,5 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(изобутилен) (і- С ₄ Н ₈)	ППсп-і-С4Н8-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,4 % ±5 % oth.	0,75 % ±5 % OTH.	1 разряд	ГСО 10540-2014	
2-метил-1,3-	ППсп-С5Н8-100	от 0 до 1,7 % (от 0 до 100 % НКПР)	ПНГ-азот	0,85 % ±5 % отн.	1,5 % ±5 % отн.	1 разряд	ГСО 10540-2014	
бутадиен (изопрен) (С ₅ Н ₈)	ПП _{сп} -С ₅ H ₈ -50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,425 % ±5 % отн.	0,80 % ±5 % oth.	1 разряд	ГСО 10540-2014	
Ацетилен (C ₂ H ₂)	ППсп-С2Н2-100	от 0 до 2,30 % (от 0 до 100 % НКПР)	ПНГ-азот	1,15 % ±5 % отн.	2,1 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Акрилонитрил (С ₃ H ₃ N)	ППсп-С3Н3N-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,7 % ±5 % отн.	1,3 % ±5 % oth.	1 разряд	ГСО 10534-2014	

Іродолжение табли	щы А.Э						T	
Определяемый	Тип сенсора	Диапазон		ое значение оправот отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	тип сенеора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
Метилбензол	ППсп-С7Н8-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	ПНГ-азот	0,5 % ±5 % oth.	0,95 % ±5 % oth.	1 разряд	ГСО 10528-2014	
(толуол) (С7Н8)	ППсп-С7Н8-50	от 0 до 0,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	$0,25~\% \pm 5~\%$ OTH.	0,475 % ±5 % отн.	1 разряд	ГСО 10528-2014	
Этилбензол С ₈ Н ₁₀	ПП _{сп} - С ₈ Н ₁₀ - 37,5Т	от 0 до 0,3 % (от 0 до 37,5 % НКПР)	ПНГ-воздух	0,15 % ±5 % отн.	0,275 % ±5 % отн.	1 разряд	ГСО 10528-2014	
н-октан (С ₈ Н ₁₈)	ППсп-С8Н18-50	от 0 до 0,4 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,2 % ±5 % отн.	0,38 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Этилацетат (C ₄ H ₈ O ₂)	ППсп-С4Н8О2-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,5 % ±5 % отн.	0,95 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Бутилацетат С ₆ H ₁₂ O ₂	ПП _{сп} -С ₆ H ₁₂ O ₂ 25T	от 0 до 0,3 % (от 0 до 25 % НКПР)	ПНГ-воздух	0,15 % ±5 % отн.	0,28 % ±5 % отн.	1 разряд	ГСО 10534-2014	
1,3-бутадиен (дивинил) (С ₄ Н ₆)	ППсп-С4Н6-50	от 0 до 0,7 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,35 % ±5 % отн.	0,66 % ±5 % отн.	1 разряд	ГСО 10540-2014	
1,2-дихлорэтан (С ₂ H ₄ Cl ₂)	ППсп-С ₂ H ₄ Cl ₂ - 50	от 0 до 3,1 % (от 0 до 50 % НКПР)	ПНГ-воздух	1,55 % ±5 % отн.	2,9 % ±5 % отн.	1 разряд	ГСО 10549-2014	
Диметил- сульфид (C ₂ H ₆ S)	ППсп-С2Н6Ѕ-50	от 0 до 1,1 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,55 % ±5 % oth.	1,0 % ±5 % отн.	1 разряд	ГСО 10540-2014	

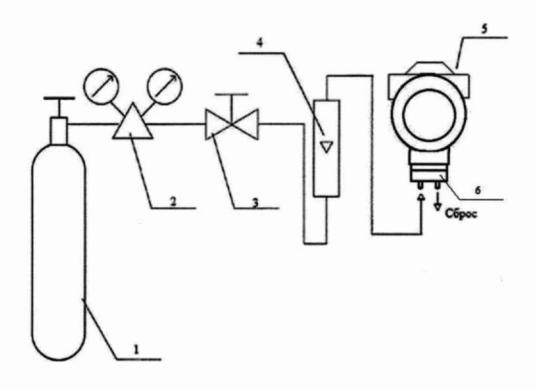
Определяемый	Модификация	Диапазон		ое значение оправ ГС, пределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО или Источник ГС*	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд		
1-гексен (С ₆ Н ₁₂)	ППсп-С6Н12-50	от 0 до 0,6 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,3 % ±5 % oth.	0,57 % ±5 % отн.	1 разряд	ГСО 10540-2014	
2-бутанол (втор- бутанол) sec- C ₄ H ₉ OH	ПП _{сп} -sec- C ₄ H ₉ OH-31,2T	от 0 до 0,5 % (от 0 до 31,2 % НКПР)	ПНГ-воздух	0,25 % ±5 % oth.	0,475 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Винилхлорид (C ₂ H ₃ Cl)	ПП _{сп} -С ₂ H ₃ Cl-50	от 0 до 1,8 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,9 % ±5 % oth.	1,71 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Циклопропан	ППсп-С3Н6-100	от 0 до 2,4 % (от 0 до 100 % НКПР)	ПНГ-азот	1,2 % ±5 % отн.	2,3 % ±5 % отн.	1 разряд	ГСО 10540-2014	
(C_3H_6)	ППсп-С3Н6-50	от 0 до 1,2 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,6 % ±5 % oth.	1,1 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Диметиловый эфир (C ₂ H ₆ O)	ППсп-С2Н6О-50	от 0 до 1,35 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,67 % ±5 % отн.	1,3 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Диэтиловый эфир (С ₄ H ₁₀ O)	ППсп-С4Н10О-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,425 % ±5 % отн.	0,8 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Оксид пропилена (С ₃ H ₆ O)	ППсп-С3Н6О-50	от 0 до 0,95 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,475 % ±5 % отн.	0,9 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Хлорбензол С ₆ Н₅С1	ПП _{сп} -С ₆ Н ₅ СІ- 38,4Т	от 0 до 0,5 % (от 0 до 38,4 % НКПР)	ПНГ-воздух	0,25 % ±5 % отн.	0,475 % ±5 % отн.	1 разряд	ГСО 10549-2014	

продолжение таол	ицы л.э							
Определяемый	Модификация	1127. ADMINISTRAÇÃO COM DE MICHARDE E E AMORDE E ESTADOS DE		ре значение оправот в ГС, пределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
2-бутанон (метилэтилкетон) (С ₄ Н ₈ О)	ППсп-С4Н8О-50	от 0 до 0,75 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,375 % ±5 % отн.	0,71 % ±5 % отн.	1 разряд	ГСО 10534-2014	
2-метил- 2- пропанол (трет- бутанол) (tert- C ₄ H ₉ OH)	ПП _{сп} -tert- C ₄ H ₉ OH-50	от 0 до 0,9 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,45 % ±5 % отн.	0,85 % ±5 % отн.	1 разряд	ГСО 10534-2014	
2-метокси- 2- метилпропан (метилтретбутил овый эфир) (tert- $C_5H_{12}O$)	ПП _{сп} -tert- C ₅ H ₁₂ O-50	от 0 до 0,75 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,375 % ±5 % отн.	0,71 % ±5 % отн.	1 разряд	ГСО 10534-2014	
1,4- диметилбензол (п-ксилол) р- С ₈ Н ₁₀	ПП _{сп} -р-С ₈ Н ₁₀ - 22,2Т	от 0 до 0,2 % (от 0 до 22,2 % НКПР)	ПНГ-воздух	0,1 %±5 % отн.	0,19 % ±5 % отн.	1 разряд	ГСО 10528-2014	
1,2- диметилбензол (о-ксилол) о- С ₈ Н ₁₀	ПП _{сп} -о-С ₈ H ₁₀ - 20Т	от 0 до 0,2 % (от 0 до 20 % НКПР)	ПНГ-воздух	0,1 % ±5 % отн.	0,19 % ±5 % отн.	1 разряд	ГСО 10528-2014	
2-пропанол (изопропанол) (i-C ₃ H ₇ OH)	ПП _{сп} -i-С ₃ H ₇ OH- 50	от 0 до 1,0 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,5 % ±5 % отн.	0,95 % ±5 % отн.	1 разряд	ГСО 10534-2014	
Октен С ₈ Н ₁₆	ПП _{сп} -С ₈ Н ₁₆ - 33,3Т	от 0 до 0,3 % (от 0 до 33,3 % НКПР)	ПНГ-воздух	0,15 % ±5 % отн.	0,285 % ±5 % отн.	1 разряд	ГСО 10540-2014	

Определяемый	Модификация	Диапазон		ое значение оправ ГС, пределы до отклонения		Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	•	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*	
2-метилбутан (изопентан) (і- C_5H_{12})	ПП _{сп} -i-С ₅ H ₁₂ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)	ПНГ-воздух	0, 325% ±5 % отн.	0,6 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Метантиол (метилмеркапта н) (СН ₃ SH)	ПП _{сп} -CH ₃ SH-50	от 0 до 2,05 % (от 0 до 50 % НКПР)	ПНГ-воздух	1 % ±5 % отн.	1,9 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Этантиол (этилмеркаптан) (C ₂ H ₅ SH)	ПП _{сп} -С ₂ Н ₅ SH-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,7 % ±5 % oth.	1,3 % ±5 % отн.	1 разряд	ГСО 10540-2014	
Ацетонитрил (C ₂ H ₃ N)	ПП _{сп} -С ₂ Н ₃ N-50	от 0 до 1,5 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,75 % ±5 % отн.	1,4 % ±5 % отн.	1 разряд	ГСО 10534-2014	
$2,3$ -дитиабутан (диметилдисуль фид) ($C_2H_6S_2$)	ППсп-С2Н6S2-50	от 0 до 0,55 % (от 0 до 50 % НКПР)	ПНГ-воздух	0,275 % ±5 % отн.	0,52 % ±5 % отн.	1 разряд	ГСО 10537-2014	
Бензин	ППсп-СН-ПН-50	от 0 до 50 % НКПР	ПНГ-воздух	25±5 % НКПР	45±5 % НКПР	1 разряд	Комплект газоаналитическ ий ГНП-1 рег.№68283-17	
Дизельное топливо	ППсп-СН-ПН-50	от 0 до 50 % НКПР	ПНГ-воздух	25±5 % НКПР	45±5 % НКПР	1 разряд	Комплект газоаналитическ ий ГНП-1 рег.№68283-17	

Определяемый	Модификация	Диапазон	комі	ное значение опр понента в ГС, про ускаемого отклог	Пределы допускаемой основной	Номер ГС по реестру ГСО	
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*
Керосин	ППсп-СН-ПН-50	от 0 до 50 % НКПР	ПНГ- воздух	25±5 % НКПР	45±5 % НКПР	1 разряд	Комплект газоана- литический ГНП-1 рег.№ 68283-17
Сумма	ПП _{сп} -C ₂ C ₁₀ CH ₄ - 100	от 0 до 4,4 % (от 0 до 100 % НКПР)	ПНГ- воздух	1,2 % ±5 % oth.	2,3 % ±5 % oth.	1 разряд	ГСО 10599-2015
углеводородов СН (С ₂ -С ₁₀) (по метану)	ПП _{сп} -С ₂ С ₁₀ СН4- 50	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ- воздух	1,1 % ±5 % отн.	2,1 % ±5 % отн.	1 разряд	ГСО 10599-2015
CODE DESCRIPTION OF THE PROPERTY OF	ПП _{сп} - С ₂ С ₁₀ СН ₄ -3000	от 0 до 3000 мг/м ³	ПНГ- воздух	1500 мг/м ³ ±5 % отн.	2700 мг/м ³ ±5 % отн.	1 разряд	ГСО 10599-2015
Сумма углеводородов	ПП _{сп} - C ₂ C ₁₀ C ₃ H ₈ -100	от 0 до 1,7 % (от 0 до 100 % НКПР)	ПНГ-азот	0,85 % ±10 % отн.	1,53 %±10 % отн.	1 разряд	ГСО 10597-2015
С2-С10 (поверочный компонент	ПП _{сп} - C ₂ C ₁₀ C ₃ H ₈ -50	от 0 до 0,85 % (от 0 до 50 % НКПР)	ПНГ-азот	0,42 % ±10 % отн.	0,76 % ±10 % отн.	1 разряд	ГСО 10597-2015
пропан)	ПП _{сп} - С ₂ С ₁₀ С ₃ Н ₈ -3000	от 0 до 3000 мг/м ³	ПНГ-азот	1500 мг/м ³ ±10 % отн.	2700 мг/м ³ ±10 % отн.	1 разряд	ГСО 10597-2015
Уайт-спирит ⁾	ППеп -СН-ПН-50	от 0 до 50 % НКПР	ПНГ- воздух	25±10 % НКПР	45±10 % НКПР	1 разряд	Комплект газоаналитический ГНП-1 рег.№68283-17

* - Источником ГС может являться баллон ГСО с использованием генератора ГГС-03-03, генераторы газовых смесей - модели Т703 (для получения ГС озона в воздухе), источники микропотоков газов и паров (ИМ-ГП), источники микропотоков газов и пара ИМ-ВРЗ и источники микропотоков паров ИМ-РТ в комплекте с термодиффузионным генератором, например — Микрогаз-ФМ


Окончание таблицы А.5

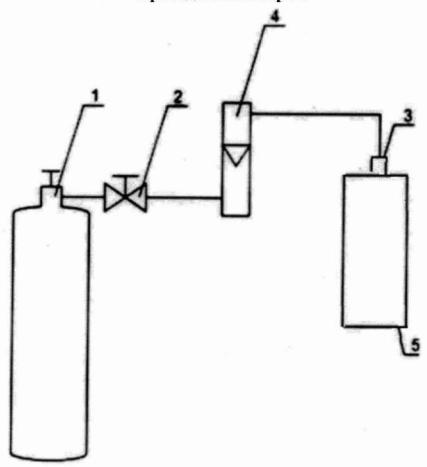
Определяемый	Модификация	Диапазон	ком	ное значение опр понента в ГС, пр ускаемого отклог	еделы	Пределы допускаемой основной	Номер ГС по реестру ГСО
компонент	сенсора	измерений	ГС №1	ГС №2	ГС №3	погрешности аттестации, разряд	или Источник ГС*
Сумма	ТК _{сп} - С ₂ С ₁₀ СН ₄ - 3000	от 0 до 3000 мг/м ³	ПНГ- воздух	1500 мг/м ³ ±5 % отн.	2700 мг/м ³ ±5 % отн.	1 разряд	ГСО 10599-2015
углеводородов СН (С2-С10) (по метану)	TK _{cn} -C ₂ C ₁₀ CH ₄ - 50T TK _{cn} -C ₂ C ₁₀ CH ₄ - 50	от 0 до 2,2 % (от 0 до 50 % НКПР)	ПНГ- воздух	1,1 %±5 % отн.	2,1 %±5 % отн.	1 разряд	ГСО 10599-2015

Приложение Б

(обязательное)

Схема подачи ГС, на вход стационарного газоанализатора при проведении поверки

1 – источник ПГС (баллон или генератор);


2 – редуктор баллонный (только при использовании ГС в баллонах под давлением); 3 – вентиль точкой регулировки (только при использовании ПГС в баллонах под давлением); 4 – ротаметр (индикатор расхода);

5 - газоанализатор;

6 - калибровочная насадка.

Рисунок Б.1 – Рекомендуемая схема подачи Γ С, на вход стационарного газоанализатора при проведении поверки

Рекомендуемая схема подачи ГС, на вход переносного газоанализатора при проведении поверки

1 — источник ПГС (баллон или генератор); 2 — редуктор (регулятор расхода поверочной газовой смеси); 3 — калибровочная насадка; 4 — ротаметр (индикатор расхода); 5 — газоанализатор.

Рисунок Б.2– Рекомендуемая схема подачи ГС, на вход переносного газоанализатора при проведении поверки

Приложение В (обязательные)

Метрологические характеристики

Таблица В.1 – Метрологические характеристики с инфракрасным сенсором (ИК)

Определяемый компонент ¹⁾	Модификация сенсора	стики с инфракрасным се Диапазон измерений определяемого компонента ²⁾³⁾	Пределы допускаемой основной абсолютной погрешности
1	2	3	4
	ИКсп-СН4-100	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % НКПР)
	ИКсп-СН4-100Т	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % НКПР)
	ИКсп-СН4-50Т	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,13 % (±3 % НКПР)
Метан СН4	ИКсп-СН4-50	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % НКПР)
	ИКсп-СН4-100 %	от 0 до 100 %	±(0,1+0,049·X) %
	ИКеп-СН4-7000	от 0 до 7000 мг/м ³	от 0 до 500 мг/м ³ включ. ± 50 мг/м ³ св.500 до 7000 мг/м ³ $\pm (0.152 \cdot X - 15.6)$
	ИК _{сп} -С ₂ С ₁₀ СН ₄ - 100	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % НКПР)
Сумма углеводородов С2-С10 (поверочный	ИК _{сп} -С ₂ С ₁₀ СН ₄ - 50	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % НКПР)
компонент метан)	ИК _{сп} - С ₂ С ₁₀ СН ₄ - 3000	от 0 до 3000 мг/м ³	от 0 до 500 мг/м ³ включ. \pm 50 мг/м ³ св.500 до 3000 мг/м ³ \pm (0,152·X $-$ 15,6)
	ИК _{сп} -С ₂ С ₁₀ С ₃ Н ₈ - 100	от 0 до 1,7 % (от 0 до 100 % НКПР)	±0,085 % (±5 % HKIIP)
Сумма углеводородов С2-С10 (поверочный компонент пропан)	ИК _{сп} - C ₂ C ₁₀ C ₃ H ₈ - 50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)
	ИК _{сп} - C ₂ C ₁₀ C ₃ H ₈ -3000	от 0 до 3000 мг/м ³	от 0 до 500 мг/м ³ включ. \pm 50 мг/м ³ св.500 до 3000 мг/м ³ \pm (0,152·X - 15,6)
Этилен С2Н4	ИК _{сп} -С ₂ Н ₄ -100	от 0 до 2,3 % (от 0 до 100 % НКПР)	±0,12 % (±5 % НКПР)
	ИК _{сп} -С ₂ Н ₄ -50	0 до 1,15 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)

Продолжение таблицы	B.1		
	ИК _{сп} -С ₃ Н ₈ -100	0 до 1,7 % (от 0 до 100 % НКПР)	±0,085 % (±5 % НКПР)
	ИК _{сп} -С ₃ Н ₈ -50Т	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,051 % (±3 % НКПР)
Пропан С ₃ Н ₈	ИК _{сп} -С ₃ Н ₈ -50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)
	ИК _{сп} -С ₃ H ₈ - 100 %	от 0 до 100 %	±(0,1+0,049·X) %
	ИК _{сп} -С ₃ Н ₈ -7000	от 0 до 7000 мг/м ³	от 0 до 500 мг/м ³ включ. ± 50 мг/м ³ св.500 до 7000 мг/м ³ $\pm (0.152 \cdot X - 15.6)$
5 C. H	ИКеп-С4Н10-100	от 0 до 1,4 % (от 0 до 100 % НКПР)	±0,07 % (±5 % ΗΚΠΡ)
н-бутан С4Н10	ИКсп-С4Н10-50	от 0 до 0,7 % (от 0 до 50 % НКПР)	±0,07 % (±5 % НКПР)
1.5	ИК _{сп} -С ₄ Н ₈ -100	от 0 до 1,6 % (от 0 до 100 % НКПР)	±0,08 % (±5 % НКПР)
1-бутен С₄Н8	ИКсп-С4Н8-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	±0,08 % (±5 % НКПР)
2-метилпропан	ИК _{сп} -i- C ₄ H ₁₀ -100	от 0 до 1,30 % (от 0 до 100 % НКПР)	±0,065 % (±5 % НКПР)
(изобутан) і-С ₄ Н ₁₀	ИК _{сп} -i-C ₄ H ₁₀ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)	±0,065 % (±5 % НКПР)
н-пентан С₅Н ₁₂	ИКсп-С5Н12-100	от 0 до 1,1 % (от 0 до 100 % НКПР)	±0,055 % (±5 % НКПР)
n nontan esting	ИК _{сп} -С ₅ H ₁₂ -50	от 0 до 0,55 % (от 0 до 50 % НКПР)	±0,055 % (±5 % НКПР)
Циклопентан C ₅ H ₁₀	ИКсп-С5Н10-100	от 0 до 1,4 % (от 0 до 100 % НКПР)	±0,07 % (±5 % НКПР)
- January Collins	ИК _{сп} -С ₅ H ₁₀ -50	от 0 до 0,7 % (от 0 до 50 % НКПР)	±0,07 % (±5 % НКПР)
н-гексан С ₆ Н ₁₄	ИКсп-С6Н14-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	±0,05 % (±5 % НКПР)
11-10-00 G1114	ИК _{сп} -С ₆ Н ₁₄ -50	от 0 до 0,5 % (от 0 до 50 % НКПР)	±0,05 % (±5 % НКПР)
Циклогексан C ₆ H ₁₂	ИКсп-С6Н12-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	±0,05 % (±5 % HKTIP)
Landor Chean Corre	ИК _{сп} -С ₆ H ₁₂ -50	от 0 до 0,5 % (от 0 до 50 % НКПР)	±0,05 % (±5 % НКПР)

Іродолжение таблицы .	B. 1		
D C.H	ИК _{сп} -С ₂ Н ₆ -100	от 0 до 2,4 % (от 0 до 100 % НКПР)	±0,12 % (±5 % НКПР)
Этан С ₂ Н ₆	ИКсп-С2Н6-50	от 0 до 1,2 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)
Пары нефтепродуктов	ИКсп-СН-ПН-50	от 0 до 50 % НКПР	±5 % HK∏P
Метанол СН₃ОН	ИКеп-СН3ОН-50	от 0 до 3,0 % (от 0 до 50 % НКПР)	±0,3 % (±5 % НКПР)
Бензол С ₆ Н ₆	ИКсп-С6Н6-100	от 0 до 1,2 % (от 0 до 100 % НКПР)	±0,06 % (±5 % НКПР)
Delison Colle	ИКсп-С6Н6-50	от 0 до 0,6 % (от 0 до 50 % НКПР)	±0,06 % (±5 % НКПР)
Пропилен (пропен)	ИКсп-С3Н6-100	от 0 до 2,0 % (от 0 до 100 % НКПР)	±0,1 % (±5 % НКПР)
C ₃ H ₆	ИКсп-С3Н6-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	±0,1 % (±5 % НКПР)
Этанол С2Н5ОН	ИК _{сп} - С ₂ Н ₅ ОН-50	от 0 до 1,55% (от 0 до 50% НКПР)	±0,16 % (±5 % НКПР)
н-гептан С7Н16	ИКсп-С7Н16-100	от 0 до 0,85 % (от 0 до 100 % НКПР)	± 0,078 % (±5 % ΗΚΠΡ)
n-Tellian C/III6	ИКсп-С7Н16-50	от 0 до 0,425 % (от 0 до 50 % НКПР)	±0,042 % (±5 % НКПР)
Оксид этилена С2Н4О	ИК _{сп} - С ₂ H ₄ O-100	от 0 до 2,6 % (от 0 до 100 % НКПР)	±0,13 % (±5 % НКПР)
0,01,01	ИКсп-С2Н4О-50	от 0 до 1,3 % (от 0 до 50 % НКПР)	±0,13 % (±5 % НКПР)
	ИК _{сп} -СО ₂ -2,5	от 0 до 0,5 % включ.	±0,05 %
Диоксид углерода	FIRen-CO2-2,3	св. 0,5 до 2,5 %	±(0,1·X) %
CO ₂	ИКсп-СО2-5	от 0 до 2,5 % включ.	±0,25 %
	ritell-co2 5	св. 2,5 до 5,0 %	±(0,1·X) %
2-пропанон (ацетон) С ₃ Н ₆ О	ИК _{сп} -С ₃ Н ₆ О-50	от 0 до 1,25 % (от 0 до 50 % НКПР)	±0,13 % (±5 % HKПР)
	ИКсп-і-	от 0 до 1,6 %	±0,08 %
2-метилпропен	C ₄ H ₈ -100	(от 0 до 100 % НКПР)	(±5 % НКПР)
(изобутилен) і-С ₄ Н ₈	ИК _{сп} -i-С ₄ H ₈ -50	от 0 до 0,8 % (от 0 до 50 % НКПР)	±0,08 % (±5 % HKПР)
2-метил-1,3-бутадиен	ИКсп-С5Н8-100	от 0 до 1,7 % (от 0 до 100 % НКПР)	±0,085 % (±5 % ΗΚΠΡ)
(изопрен) С₅Н8	ИК _{сп} -С ₅ Н ₈ -50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)

Продолжение таблицы	B. I		
Aviagrugay C.H.	ИКсп-С2Н2-100	от 0 до 2,30 % (от 0 до 100 % НКПР)	±0,12 % (±5 % НКПР)
Ацетилен С ₂ Н ₂	ИКсп-С2Н2-50	от 0 до 1,15 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)
Акрилонитрил C_3H_3N	ИК _{сп} -С ₃ H ₃ N-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	±0,14 % (±5 % НКПР)
Метилбензол (толуол)	ИКсп-С7Н8-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	±0,05 % (±5 % НКПР)
C ₇ H ₈	ИК _{сп} -С ₇ Н ₈ -50	от 0 до 0,5 % (от 0 до 50 % НКПР)	±0,05 % (±5 % НКПР)
Этилбензол С ₈ Н ₁₀	ИК _{сп} - С ₈ H ₁₀ - 37,5Т	от 0 до 0,3 % (от 0 до 37,5 % НКПР)	±0,024 % (±3 % НКПР)
	ИКсп- С8Н10-50	от 0 до 0,4 % (от 0 до 50 % НКПР)	±0,03% (±3 % НКПР)
н-октан С ₈ Н ₁₈	ИК _{сп} -С ₈ Н ₁₈ -50	от 0 до 0,4 % (от 0 до 50 % НКПР)	±0,04 % (±5 % ΗΚΠΡ)
Этилацетат С ₄ Н ₈ О ₂	ИК _{сп} - С ₄ H ₈ O ₂ -50	от 0 до 1,0 % (от 0 до 50 % НКПР)	±0,1 % (±5 % НКПР)
Бутилацетат С ₆ Н ₁₂ О ₂	ИК _{сп} - С ₆ H ₁₂ O ₂ -25T	от 0 до 0,3 % (от 0 до 25 % НКПР)	±0,036 % (±3 % НКПР)
	ИК _{сп} -С ₆ H ₁₂ O ₂ -50	от 0 до 0,6 % (от 0 до 50 % НКПР)	±0,06 % (±5 % НКПР)
1,3-бутадиен (дивинил) С ₄ Н ₆	ИК _{сп} -С ₄ Н ₆ -50	от 0 до 0,7 % (от 0 до 50 % НКПР)	±0,07 % (±5 % НКПР)
1,2-дихлорэтан С ₂ H ₄ Cl ₂	ИК _{сп} - C ₂ H ₄ Cl ₂ -50	от 0 до 3,1 % (от 0 до 50 % НКПР)	±0,31 % (±5 % НКПР)
Диметилсульфид C_2H_6S	ИК _{сп} -С ₂ H ₆ S-50	от 0 до 1,1 % (от 0 до 50 % НКПР)	±0,11 % (±5 % HKПР)
1-гексен С ₆ Н ₁₂	ИКсп-С6Н12-50	от 0 до 0,6 % (от 0 до 50 % НКПР)	±0,06 % (±5 % HKIIP)
2-бутанол (втор-бутанол) sЭX-С ₄ H ₉ OH	ИК _{сп} -sЭX- C ₄ H ₉ OH-31,2T	от 0 до 0,5 % (от 0 до 31,2 % НКПР)	±0,051 % (±3 % НКПР)
Винилхлорид С ₂ Н ₃ СІ	ИК _{сп} -С ₂ H ₃ Cl-50	от 0 до 1,8 % (от 0 до 50 % НКПР)	±0,18 % (±5 % НКПР)
Циклопропан C ₃ H ₆	ИК _{сп} -С ₃ H ₆ -100	от 0 до 2,4 % (от 0 до 100 % НКПР)	±0,12 % (±5 % НКПР)
	ИК _{сп} -С ₃ Н ₆ -50	от 0 до 1,2 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)
Диметиловый эфир C_2H_6O	ИК _{сп} -С ₂ Н ₆ О-50	от 0 до 1,35 % (от 0 до 50 % НКПР)	±0,14 % (±5 % НКПР)
Диэтиловый эфир С ₄ Н ₁₀ О	ИК _{сп} -С ₄ H ₁₀ O-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)

Продолжение таблицы 1	B. 1	8	
Оксид пропилена	ИК _{сп} -С ₃ Н ₆ О-50	от 0 до 0,95 %	±0,095 %
С ₃ H ₆ O Хлорбензол С ₆ H ₅ Cl	ИК _{сп} -С ₆ Н ₅ СІ- 38,4Т	от 0 до 50 % НКПР) от 0 до 0,5 % (от 0 до 38,4 % НКПР)	(±5 % НКПР) ±0,039 % (±3 % НКПР)
2-бутанон (метилэтилкетон) С ₄ Н ₈ О	ИКсп-С4Н8О-50	от 0 до 0,75 % (от 0 до 50 % НКПР)	±0,075 % (±5 % ΗΚΠΡ)
2-метил-2-пропанол (трет-бутанол) tert-C ₄ H ₉ OH	ИК _{сп} -tert- C ₄ H ₉ OH-50	от 0 до 1,15 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)
2-метокси-2- метилпропан (метилтретбутиловый эфир) tert- $C_5H_{12}O$	ИК _{сп} -tert- C ₅ H ₁₂ O-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	±0,08 % (±5 % HKПР)
$1,4$ -диметилбензол (п-ксилол) p- C_8H_{10}	ИК _{сп} -р- С ₈ H ₁₀ -22,2T	от 0 до 0,2 % (от 0 до 22,2 % НКПР)	±0,027 % (±3 % НКПР)
1,2-диметилбензол (о- ксилол) о-С ₈ H ₁₀	ИК _{сп} -о- С ₈ H ₁₀ -20Т	от 0 до 0,2 % (от 0 до 20 % НКПР)	±0,03 % (±3 % НКПР)
2-пропанол (изопропанол) i-C ₃ H ₇ OH	ИК _{сп} -i- С ₃ H ₇ OH-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	±0,1 % (±5 % НКПР)
Октен С ₈ Н ₁₆	ИК _{сп} - С ₈ H ₁₆ -33,3Т	от 0 до 0,3 % (от 0 до 33,3 % НКПР)	±0,027 % (±3 % НКПР)
2-метилбутан (изопентан) і-С₅Н ₁₂	ИК _{сп} -i- C ₅ H ₁₂ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)	±0,065 % (±5 % НКПР)
Метантиол (метилмеркаптан) СН ₃ SH	ИК _{сп} - СН₃SH-50	от 0 до 2,05 % (от 0 до 50 % НКПР)	±0,21 % (±5 % НКПР)
Этантиол (этилмеркаптан) С₂Н₅SН	ИК _{сп} - С ₂ H ₅ SH-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	±0,14 % (±5 % НКПР)
Ацетонитрил C ₂ H ₃ N	ИК _{сп} -С ₂ H ₃ N-50	от 0 до 1,5 % (от 0 до 50 % НКПР)	±0,15 % (±5 % НКПР)
Диметилдисульфид С ₂ Н ₆ S ₂	ИК _{сп} -С ₂ H ₆ S ₂ -50	от 0 до 0,55 % (от 0 до 50 % НКПР)	±0,055 % (±5 % НКПР)
Бензин ⁴⁾⁵⁾	ИК _{сп} -СН- ПН -50	от 0 до 50 % НКПР	±5 % НКПР
Дизельное топливо ⁴⁾⁶⁾	ИК _{сп} -СН- ПН -50	от 0 до 50 % НКПР	±5 % НКПР
Керосин ⁴⁾⁷⁾	ИК _{сп} -СН- ПН -50	от 0 до 50 % НКПР	±5 % НКПР

Уайт-спирит ⁴⁾⁸⁾ $ ИК_{cn}$ -CH-ПН -50 от 0 до 50 % НКПР ± 5 % НКПР	Уайт-спирит ⁴⁾⁸⁾	ИКсп-СН-ПН -50	от 0 до 50 % НКПР	±5 % ΗΚΠΡ
---	-----------------------------	----------------	-------------------	-----------

- при контроле компонентов, указанных в Руководстве по эксплуатации, но не приведённых в таблице, газоанализаторы применяются для определения содержания компонентов по методикам измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009;
- диапазоны измерений конкретных газоанализаторов можно изменять внутри указанных в таблице диапазонов Диапазон показаний выходных сигналов соответствует диапазону от 0 до 100 % НКПР или диапазону измерений;
- значения НКПР для горючих газов и паров в соответствии с ГОСТ Р МЭК 31610.20-1-2020;
- 4) пары нефтепродуктов являются смесью углеводородов, поэтому калибруются по конкретной марке топлива, с указанием марки в паспорте на прибор;
 - 5) пары бензина по ГОСТ 1012-2013, ГОСТ Р 51866-2002;
- 6) пары дизельного топлива по ГОСТ 305-2013, ГОСТ 32511-2013, ГОСТ 52368-2005;
 - 7) пары керосина по ТУ 38.401-58-8-90, ОСТ 38 01408-86;
 - 8) уайт-спирит по ГОСТ Р 52368-2005;
 - X содержание определяемого компонента в поверочной газовой смеси, % (мг/м³).

Таблица В.2 – Метрологические характеристики с инфракрасным сенсором (ИК)

Определяемый компонент ¹⁾	Модификация	Диапазон измерений ²⁾ определяемого компонента		допус	делы каемой овной ности, %	
компонент	сенсора	объемной доли, млн ⁻¹	массовой концентраци 3 , мг/м 3	приведе нной к ВПИ	относите льной	
1	2	3	4	5	6	
	ИКсп-	от 0 до 100 включ.	от 0 до 424 включ.	±20	-	
1,1,1,2-	R134a-1000	св. 100 до 1000	св. 424 до 4240	-	±20	
тетрафторэтан $C_2H_2F_4$ (R134a)	ИКсп-	от 0 до 100 включ.	от 0 до 424 включ.	±20	-	
	R134a-2000	св. 100 до 2000	св. 424 до 8480	-	±20	
	ИКсп-R125-	от 0 до 100 включ.	от 0 до 499 включ.	±20	-	
Пентафторэтан С ₂ HF ₅ (R125)	1000	св. 100 до 1000	св. 499 до 4990	· ·	±20	
	ИКсп-R125- 2000	от 0 до 100 включ.	от 0 до 499 включ.	±20	-	
	2000	св. 100 до 2000	св. 499 до 9980	-	±20	

		от 0 до 100	от 0 до 360	±20	-
Хлордифтор- метан СНСІГ₂(R22)	ИКсп-R22-1000	включ. св. 100 до 1000	включ. св. 360 до 3600	1=	±20
	HIC B22 2000	от 0 до 100 включ.	от 0 до 360 включ.	±20	-
	ИКсп-R22-2000	св. 100 до 2000	св. 360 до 7200		±20
1,2,2-трихлор- трифторэтан C ₂ Cl ₃ F ₃ (R113a)	ИКсп-	от 0 до 100 включ.	от 0 до 779 включ.	±20	-
	R113a-1000	св. 100 до 1000	св. 779 до 7790	•	±20
	The Control of the Co	от 0 до 100 включ.	от 0 до 779 включ.	±20	-
	R113a- 2000	св. 100 до 2000	св. 779 до 15580		±20
Дихлорди- фторметан CCl ₂ F ₂ (R12)	ИКсп-	от 0 до 50 включ.	от 0 до 251 включ.	±20	
	R12-100	св. 50 до 100	св. 251 до 503	•	±20

^{1) –} при контроле в воздухе рабочей зоны компонентов, указанных в Руководстве по эксплуатации, но не приведенных в таблице, газоанализаторы применяются в качестве индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам (методам) измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009;

Таблица В.3 – Метрологические характеристики с термокаталитическим сенсором (ТК)

Определяемый компонент ¹⁾	Модификация сенсора	Диапазон измерений определяемого компонента ²⁾³⁾	Пределы допускаемой основной абсолютной погрешности	
1	2	3	4	
Метан СН4	ТКеп-СН4-50Т	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,13 % (±3 % НКПР)	
	TK _{cn} -CH ₄ -50	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % HKΠP)	
	ТКсп-СН4-7000	от 0 до 7000 мг/м ³	от 0 до 500 мг/м ³ включ. ±50 мг/м ³ св.500 до 7000 мг/м ³ ± (0,152·X - 15,6)	

^{2) –} диапазон показаний выходных сигналов соответствует диапазону измерений. В зависимости от заказа диапазон показаний может быть изменен, как при производстве, так и пользователем при помощи программного обеспечения (поставляется по заказу). Диапазон показаний не может быть меньше диапазона измерений;

³⁾ – пересчет значений объемной доли X, млн⁻¹, в массовую концентрацию C, мг/м³, проводят по формуле: C=X·M/Vm, где C – массовая концентрация компонента, мг/м³; М – молярная масса компонента, г/моль; Vm – молярный объем газа-разбавителя - воздуха, равный 24,06, при условиях (20 °C и 101,3 кПа по ГОСТ 12.1.005-88), дм³/моль

Іродолжение таблиць	ı B.3		
	TKcn -C2H4-	от 0 до 1,15 %	±0,069 %
D C II	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Этилен С ₂ Н ₄	TIC C II 50	от 0 до 1,15 %	±0,12 %
	ТКсп-С2Н4-50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	ТКсп -С3Н8-	от 0 до 0,85 %	±0,051 %
	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
	THE CHIEF	от 0 до 0,85 %	±0,085 %
ПС И	ТКсп -С3Н8-50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
Пропан С ₃ Н ₈			от 0 до 500 мг/м ³
	ТКсп- С3Н8-	от 0 до 7000 мг/м ³	включ. $\pm 50 \text{ мг/м}^3$
	7000	от о до 7000 мі7м	св.500 до 7000мг/м ³
			$\pm (0,152 \cdot X - 15,6)$
	TKcn -C4H10-	от 0 до 0,7 %	±0,042 %
6 C.II	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
н-бутан С4Н10	TIC CII 50	от 0 до 0,7 %	±0,07 %
	TK _{en} -C ₄ H ₁₀ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
1.5 C.H.	TK _{cn} -C ₄ H ₈ -	от 0 до 0,8 %	±0,048 %
	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
1-бутен С4Н8	TIC 0 11 50	от 0 до 0,8 %	±0,08 %
	ТКсп -С4Н8-50	(от 0 до 50 % НКПР)	(±5 % HKПР)
	ТКсп -i-С4Н10-	от 0 до 0,65 %	±0,039 %
2-метилпропан	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
(изобутан) і-С4Н10	ТК _{сп} -i-С ₄ H ₁₀ -	от 0 до 0,65 %	±0,065 %
The same and the s	50	(от 0 до 50 % НКПР)	(±5 % HKПР)
	ТКсп -	от 0 до 0,55 %	±0,033 %
	C ₅ H ₁₂ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
н-пентан С ₅ Н ₁₂	TIC CIL 50	от 0 до0,55 %	±0,055 %
	TK _{en} -C ₅ H ₁₂ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	TK _{en} -	от 0 до 0,7 %	±0,042 %
II	C ₅ H ₁₀ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Циклопентан C ₅ H ₁₀	TK _{cn} -	от 0 до 0,7 %	±0,07 %
	C ₅ H ₁₀ -50	(от 0 до 50 % НКПР)	(±5 % HKПР)
	TK _{en} -	от 0 до 0,5 %	±0,03 %
u powanu C II	C ₆ H ₁₄ -50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
н-гексан С ₆ Н ₁₄	ТКсп -	от 0 до 0,5 %	±0,05 %
	C ₆ H ₁₄ -50	(от 0 до 50 % НКПР)	(±5 % HKПР)
	ТКсп -	от 0 до 0,5 %	±0,03 %
Hamanamara C H	C ₆ H ₁₂ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Циклогексан С ₆ H ₁₂	ТКсп -	от 0 до 0,5 %	±0,05 %
	C ₆ H ₁₂ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	ТКсп -	от 0 до 1,2 %	±0,072 %
Draw C II	C ₂ H ₆ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Этан С ₂ Н ₆	ТКсп-	от 0 до 1,2 %	±0,12 %
	C ₂ H ₆ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)

Продолжение таблицы	t B.3		
	TK _{cn} -CH ₃ OH-	от 0 до 3,0 %	±0,18 %
Marraya r CU OU	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Метанол СН₃ОН	ТКсп-	от 0 до 3,0 %	±0,3 %
	CH ₃ OH-50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	ТКсп -С6Н6-	от 0 до 0,6 %	±0,036 %
Г С. И	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Бензол С ₆ Н ₆	THE CHI CO	от 0 до 0,6 %	±0,06 %
	ТКсп -С6Н6-50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	TKen -C3H6-	от 0 до 1,0 %	±0,06 %
Пропилен (пропен)	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C ₃ H ₆	mu	от 0 до 1,0 %	±0,1 %
17 (1-4), 3 0(400)(100)	TK _{cn} -C ₃ H ₆ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	TK _{cn} -C ₂ H ₅ OH-	от 0 до 1,55 %	± 0,093 %
	50T	(от 0 до 48,3 % НКПР)	(±3 % НКПР)
Этанол С2Н5ОН	TK _{cri} -C ₂ H ₅ OH-	от 0 до 1,55 %	±0,16 %
	50	(от 0 до 48,3 % НКПР)	(±5 % HKΠP)
	TK _{cn} –	от 0 до 0,425 %	±0,025 %
	C ₇ H ₁₆ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
н-гептан С7Н16	TK _{cn} –	от 0 до 0,425 %	±0,042 %
	C ₇ H ₁₆ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	ТКсп-	от 0 до 1,3 %	±0,078 %
Оксид этилена	C ₂ H ₄ O-50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C ₂ H ₄ O	TK _{cn} -	от 0 до 1,3 %	±0,13 %
021140	C ₂ H ₄ O-50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	TK _{cn} -	от 0 до 1,25 %	±0,075 %
2-пропанон (ацетон)	C ₃ H ₆ O-50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C ₃ H ₆ O	ТКеп –	от 0 до 1,25 %	±0,13 %
C3116O	C ₃ H ₆ O-50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	C3116O-30	от 0 до 2,0 %	±0,12 %
	ТКсп -Н2-50Т	(от 0 до 50 % НКПР)	
Водород Н2		от 0 до 2,0 %	(±3 % HKΠP) ±0,2 %
₽'	TK _{cn} -H ₂ -50	(от 0 до 50 % НКПР)	
	TK _{cn} -i-	от 0 до 0,8 %	(±5 % HKПР)
2-метилпропен			±0,048 %
(изобутилен)	C ₄ H ₈ -50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
i-C ₄ H ₈	TK _{cn} -i-	от 0 до 0,8 %	±0,08 %
	C ₄ H ₈ -50	(от 0 до 50 % НКПР)	(±5 % HKПР)
2-метил-1,3-	TK _{cn} -	от 0 до 0,85 %	±0,051 %
бутадиен	C ₅ H ₈ -50T	(от 0 до 50 % НКПР)	(±3 % ΗΚΠΡ)
(изопрен) С5Н8	TK _{cn} -	от 0 до 0,85 %	±0,085 %
18 - 조리 - 19 - 22 전 	C ₅ H ₈ -50	(от 0 до 50 % НКПР)	(±5 % HKПР)
A	TK _{cn} -	от 0 до 1,15 %	±0,069 %
Ацетилен	C ₂ H ₂ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C ₂ H ₂	TK _{cn} -	от 0 до 1,15 %	±0,12 %
	C ₂ H ₂ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)

одолжение таблицы		от 0 до 1,4 %	TU U64 0/
A reputation	TK _{cn} -		±0,084 %
Акрилонитрил С ₃ Н ₃ N	C ₃ H ₃ N-50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
C3F13IN	TK _{en} - C ₃ H ₃ N-50	от 0 до 1,4 %	±0,14 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
Mamura	TK _{cn} -	от 0 до 0,5 %	±0,03 %
Метилбензол (полист) С. Н.	C ₇ H ₈ -50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
(толуол) С7Н8	TK _{cn} -	от 0 до 0,5 %	±0,05 %
	C ₇ H ₈ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
Этилбензол С ₈ Н ₁₀	TK _{cn} -	от 0 до 0,3 %	±0,024 %
	C ₈ H ₁₀ -37,5T	(от 0 до 37,5 % НКПР)	(±3 % НКПР)
	TK _{cn} -C ₈ H ₁₈ -	от 0 до 0,4 %	±0,024 %
н-октан	50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
C_8H_{18}	TK _{cn} -C ₈ H ₁₈ -50	от 0 до 0,4 %	±0,04 %
		(от 0 до 50 % НКПР)	(±5 % HKПР)
>	ТКеп -С4Н8О2-	от 0 до 1,0 %	±0,06 %
Этилацетат	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
$C_4H_8O_2$	ТКеп -С4Н8О2-	от 0 до 1,0 %	±0,1 %
	50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	ТКсп -С3Н6О2-	от 0 до 1,55 %	±0,093 %
Метилацетат	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
$C_3H_6O_2$	TK _{cn} -C ₃ H ₆ O ₂ -	от 0 до 1,55 %	±0,16 %
	50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	ТК _{сп} -С ₆ H ₁₂ O ₂ -	от 0 до 0,3 %	±0,036 %
Бутилацетат	25T	(от 0 до 25 % НКПР)	(±3 % HKПР)
$C_6H_{12}O_2$	ТКсп -С3Н6О2-	от 0 до 0,7 %	±0,042 %
	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
100	ТКсп -С4Н6-	от 0 до 0,7 %	±0,042 %
1,3-бутадиен	50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
(дивинил) С ₄ Н ₆	ТКсп -С4Н6-50	от 0 до 0,7 %	±0,07 %
		(от 0 до 50 % НКПР)	(±5 % НКПР)
	TK _{cn} -C ₂ H ₄ Cl ₂ -	от 0 до 3,1 %	±0,19 %
1,2-дихлорэтан	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C ₂ H ₄ Cl ₂	TK _{cn} -C ₂ H ₄ Cl ₂ -	от 0 до 3,1 %	±0,31 %
	50	(от 0 до 50 % НКПР)	(±5 % HKTIP)
	TK _{cn} - C ₂ H ₆ S-	от 0 до 1,1 %	±0,066 %
Диметилсульфид	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C ₂ H ₆ S	TK _{cn} - C ₂ H ₆ S-	от 0 до 1,1 %	±0,11 %
	50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	ТКсп -С6Н12-	от 0 до 0,6 %	±0,036 %
1-гексен	50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
C_6H_{12}	ТКсп -С6Н12-50	от 0 до 0,6 %	±0,06 %
	ТКсп -С6П12-30	(от 0 до 50 % НКПР)	(±5 % HKΠP)
2-бутанол (втор-	ТКсп -sЭХ-	от 0 до 0,5 %	±0,051 %
бутанол) sЭX-	C ₄ H ₉ OH-31,2T	(от 0 до 31,2 % НКПР)	(±3 % HKПР)
C ₄ H ₉ OH	54119011 51,21	(от о до эт,2 летикти)	(±2 /0 LIKLIL)

1 % НКПР)
72 %
НКПР)
2 %
НКПР)
81 %
НКПР)
4 %
НКПР)
51 %
НКПР)
85 %
НКПР)
57 %
НКПР)
95 %
НКПР)
39 %
НКПР)
45 %
НКПР)
75 %
НКПР)
54 %
НКПР)
19 %
НКПР)
48 %
НКПР)
8 %
НКПР)
27 %
НКПР)
13 %
НКПР)
1 %
НКПР)
5 %
5 % НКПР)
15 % НКПР) 75 %

Продолжение таблиць	I B.3		
Октен С ₈ Н ₁₆	TK _{cn} -C ₈ H ₁₆ -	от 0 до 0,3 %	±0,027 %
	33,3T	(от 0 до 33,3 % НКПР)	(±3 % HKПР)
2-метилбутан	ТК _{сп} -i-С ₅ H ₁₂ -	от 0 до 0,65 %	±0,039 %
	50Т	(от 0 до 50 % НКПР)	(±3 % НКПР)
(изопентан) i-C ₅ H ₁₂	ТК _{сп} -i-С ₅ H ₁₂ -	от 0 до 0,65 %	±0,065 %
	50	(от 0 до 50 % НКПР)	(±5 % HKПР)
Метантиол (метилмеркаптан) СН₃SН	TK _{cn} -CH ₃ SH- 50	от 0 до 2,05 % (от 0 до 50 % НКПР)	±0,21 % (±5 % НКПР)
Этантиол $($ этилмеркаптан $)$ C_2H_5SH	TK _{cn} -C ₂ H ₅ SH-	от 0 до 1,4 %	±0,14 %
	50	(от 0 до 50 % НКПР)	(±5 % HKIIP)
Ацетонитрил C ₂ H ₃ N	ТК _{сп} -C ₂ H ₃ N-	от 0 до 1,5 %	±0,15 %
	50	(от 0 до 50 % НКПР)	(±5 % НКПР)
Диметилдисульфид	ТК _{сп} -C ₂ H ₆ S ₂ -	от 0 до 0,55 %	±0,055 %
C ₂ H ₆ S2	50	(от 0 до 50 % НКПР)	(±5 % НКПР)
Бензин ⁴⁾⁵⁾	ТК _{сп} -СН-ПН- 50	от 0 до 50 % НКПР	±5 % НКПР
Дизельное топливо ⁴⁾⁶⁾	ТК _{сп} -СН-ПН- 50	от 0 до 50 % НКПР	±5 % НКПР
Керосин ⁴⁾⁷⁾	ТК _{сп} -СН-ПН- 50	от 0 до 50 % НКПР	±5 % НКПР
Уайт-спирит ⁴⁾⁸⁾	ТК _{сп} -СН-ПН- 50	от 0 до 50 % НКПР	±5 % НКПР
Сумма	TK _{en} -	от 0 до 2,2 %	±0,13 %
	C ₂ C ₁₀ CH ₄ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
углеводородов по	TK _{cn} -	от 0 до 2,2 %	±0,22 %
метану C ₂ -C ₁₀	C ₂ C ₁₀ CH ₄ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
(поверочный компонент метан)	TK _{cn} - C ₂ C ₁₀ CH ₄ -3000	от 0 до 3000 мг/м 3	от 0 до 500 мг/м ³ включ. ±50 мг/м ³ св. 500 до 3000 мг/м ³ ± (0,152·X - 15,6)
Сумма	ТК _{сп} -	от 0 до 0,85 %	±0,051 %
	С ₂ С ₁₀ С ₃ Н ₈ -50Т	(от 0 до 50 % НКПР)	(±3 % НКПР)
углеводородов	ТК _{сп} -	от 0 до 0,85 %	±0,085 %
С ₂ -С ₁₀ (поверочный	С ₂ С ₁₀ С ₃ Н ₈ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
компонент пропан)	TK _{cn} - C ₂ C ₁₀ C ₃ H ₈ -3000	от 0 до 3000 мг/м ³	от 0 до 500 мг/м ³ включ. ±50 мг/м ³ св.500 до 3000 мг/м ³ ± (0,152·X - 15,6)

Окончание таблицы В.3

- 1) при контроле компонентов, указанных в Руководстве по эксплуатации, но не приведённых в таблице, газоанализаторы применяются для определения содержания компонентов по методикам измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009.
- диапазоны измерений конкретных газоанализаторов можно изменять внутри указанных в таблице диапазонов. Диапазон показаний выходных сигналов соответствует диапазону от 0 до 100 % НКПР или диапазону измерений.
- значения НКПР для горючих газов и паров в соответствии с ГОСТ Р МЭК 31610.20-1-2020;
- 4) пары нефтепродуктов являются смесью углеводородов, поэтому калибруются по конкретной марке топлива, с указанием марки в паспорте на прибор;
 - 5) пары бензина по ГОСТ 1012-2013, ГОСТ Р 51866-2002;
- 6) пары дизельного топлива по ГОСТ 305-2013, ГОСТ 32511-2013, ГОСТ 52368-2005;
 - 7) пары керосина по ТУ 38.401-58-8-90, ОСТ 38 01408-86;
 - 8) vайт-спирит по ГОСТ Р 52368-2005;
 - X содержание определяемого компонента в поверочной газовой смеси, мг/м³.

Таблица В.4 – Метрологические характеристики с электрохимическим сенсором (ЭХ)

Определяемый	Модификация	Диапазон изг определяемого		допусн	делы каемой вной ности, %
компонент ¹⁾	сенсора	объемной доли, % (млн ⁻¹)	массовой концентраци и ³⁾ , мг/м ³	приведе нной к ВПИ	относите льной
1	2	3	4	5	6
Сероводород Н ₂ S	ЭХ _{сп} -Н ₂ S-7,1	от 0 до 7,1млн ⁻¹	от 0 до 10,0 включ.	±15	-

Гродолжение тав	блицы <i>В.4</i>				
	ЭХ _{сп} -H ₂ S-20	от 0 до 10 млн ⁻¹ включ.	от 0 до 14,2 включ.	±10	-
		св. 10 до 20 млн ⁻¹	св. 14,2 до 28,4	-	±10
	ЭХ _{сп} -H ₂ S-50	от 0 до 5 млн ⁻¹ включ.	от 0 до 7,1 включ.	±15	-
		св. 5 до 50млн ⁻¹	св. 7,1 до 71	_	±15
	ЭХ _{сп} -Н ₂ S-100	от 0 до 10 млн ⁻¹ включ.	от 0 до 14,2 включ.	±10	-
Сероводород H ₂ S	ЭА _{сп} -П2S-100	св. 10 до 100 млн ⁻	св. 14,2 до 142	-	±10
	ЭХ _{сп} -H ₂ S-200	от 0 до 20 млн ⁻¹ включ.	от 0 до 28,4 включ.	±15	- 1
	Элеп-1125-200	св. 20 до 200млн ⁻¹	св. 28,4 до 284	-	±15
	ЭХ _{сп} -H ₂ S-2000	от 0 до 200 млн ⁻¹ включ.	от 0 до 284 включ.	±15	
	5/XCII 1125-2000	св. 200 до 2000 млн ⁻¹	св. 284 до 2840	•	±15
Оксид этилена С ₂ Н ₄ О	ЭХ _{сп} -С ₂ Н ₄ О-5	от 0 до 0,5 млн ⁻¹ включ.	от 0 до 0,915 включ.	±20	-
		св. 0,5 до 5 млн ⁻¹	св. 0,915 до 9,15	-	±20
	ЭХ _{сп} - С₂Н₄О-20	от 0 до 5 млн ⁻¹ включ.	от 0 до 9,15 включ.	±20	-
	C2114O-20	св. 5 до 20млн ⁻¹	св. 9,15 до 36,6		±20
Хлористый	ЭХ _{сп} -HCL-30	от 0 до 3 млн ⁻¹ включ.	от 0 до 4,56 включ.	±20	-
водород HCL	R posteriores (secret William Vine 51)	св. 3 до 30млн ⁻¹	св. 4,56 до 45,6	-	±20
	ЭХ _{сп} -HF-5	от 0 до 0,1млн ⁻¹ включ.	от 0 до 0,08 включ.	±20	-
Фтористый		св. 0,1 до 5 млн ⁻¹	св. 0,08 до 4,15	-	±20
водород НГ	ЭХ _{сп} -HF-10	от 0 до 1 млн ⁻¹ включ.	от 0 до 0,8 включ.	±20	-
		св. 1 до 10млн ⁻¹	св. 0,8 до 8,3	-	±20
Озон Оз	ЭХсп-О3-0,25	от 0 до 0,05 млн ⁻¹ включ.	от 0 до 0,1 включ.	±20	-
	37.0g-03-0,23	св. 0,05 до 0,25 млн ⁻¹	св. 0,1 до 0,5		±20
	ЭХсп-О3-1	от 0 до 0,1 млн ⁻¹ включ.	от 0 до 0,2 включ.	±20	:=.
		св. 0,1 до 1 млн ⁻¹	св. 0,2 до 2	-	±20
Моносилан	ЭХ _{сп} -S _i H ₄ -50	от 0 до 10 млн ⁻¹ включ.	от 0 до 13,4 включ.	±20	•
(силан) S _i H ₄	3.30H 0114 00	св. 10 до 50 млн ⁻¹	св. 13,4 до 67	-	±20

Продолжение таб	блицы B.4				
	DV NO 50	от 0 до 5 млн ⁻¹ включ.	от 0 до 6,25 включ.	±20	-
Оксид азота	ЭХ _{сп} -NO-50	св. 5 до 50млн ⁻¹	св. 6,25 до 62,5	-	±20
NO	DV NO 250	от 0 до 50 млн ⁻¹ включ.	от 0 до 62,5 включ.	±20	-
	ЭХсп-NO-250	св. 50 до 250 млн ⁻	св. 62,5 до 312,5	-	±20
Диоксид азота	ЭХсп-NO2-20	от 0 до 1 млн ⁻¹ включ.	от 0 до 1,91 включ.	±20	•
NO ₂	3/kgn-1102-20	св. 1 до 20млн ⁻¹	св. 1,91 до 38,2	(4	±20
	ЭХсп-NН3-100	от 0 до 10 млн ⁻¹ включ.	от 0 до 7,1 включ.	±20	-
	Э л еп-14113-100	св. 10 до 100 млн ⁻	св. 7,1 до 71		±20
Аммиак NH3	ЭХсп-NН3-500	от 0 до 30 млн ⁻¹ включ.	от 0 до 21,3 включ.	±20	:=:
Amminak 14113	3Acii-1413-300	св. 30 до 500 млн ⁻	св. 21,3 до 355	> =	±20
	ЭХ _{сп} - NH ₃ -1000	от 0 до 100 млн ⁻¹ включ.	от 0 до 71 включ.	±20	-
		св. 100 до 1000 млн ⁻¹	св. 71 до 710	7	±20
Цианистый	ЭХ _{сп} -HCN-10	от 0 до 0,5млн ⁻¹ включ.	от 0 до 0,56 включ.	±15	-
		св. 0,5 до 10 млн ⁻	св. 0,56 до 11,2	-	±15
	ЭХ _{сп} -HCN-15	от 0 до 1 млн ⁻¹ включ.	от 0 до 1,12 включ.	±15	-
		св. 1 до 15млн ⁻¹	св. 1,12 до 16,8		±15
водород HCN	ЭХ _{сп} -HCN-30	от 0 до 5 млн ⁻¹ включ.	от 0 до 5,6 включ.	±15	-
		св. 5 до 30млн ⁻¹	св. 5,6 до 33,6		±15
	ЭХ _{сп} -HCN-100	от 0 до 10 млн ⁻¹ включ.	от 0 до 11,2 включ.	±15	-
	JAcn-HCIV-100	св. 10 до 100 млн ⁻	св. 11,2 до 112	•	±15
	ЭХсп-СО-200	от 0 до 15 млн ⁻¹ включ.	от 0 до 17,4 включ.	±20	- 0
Оксид углерода	57.0g-CO-200	св. 15 до 200 млн ⁻	св. 17,4 до 232	*	±20
СО	ЭХсп-СО-500	от 0 до 15 млн ⁻¹ включ.	от 0 до 17,4 включ.	±20	-
	JAcn-CO-300	св. 15 до 500 млн ⁻	св. 17,4 до 580	-	±20

Гродолжение так	олицы В.4				
Оксид углерода	ЭХсп-СО-5000	от 0 до 1000 млн ⁻ ¹ включ.	от 0 до 1160 включ.	±20	24
co .	Э х еп-СО-3000	св. 1000 до 5000 млн ⁻¹	св. 1160 до 5800	•	±20
	DV 50.25	от 0 до 1 млн ⁻¹ включ.	от 0 до 2,66 включ.	±20	-
	ЭХсп-SO ₂ 2-5	св. 1 до 5 млн ⁻¹	св. 2,66 до 13,3	-	±20
	DV 80 15	от 0 до 5 млн ⁻¹ включ.	от 0 до 13,3 включ.	±20	-
	ЭХ _{сп} -SO ₂ -15	св. 5 до 15 млн ⁻¹	св. 13,3 до 39,9	-	±20
	DV 80 20	от 0 до 5 млн ⁻¹ включ.	от 0 до 13,3 включ.	±20	-
Диоксид серы	ЭХсп-SO ₂ -20	св. 5 до 20млн ⁻¹	св. 13,3 до 53,2	-	±20
SO_2	ЭХсп-SO ₂ -50	от 0 до 10 млн ⁻¹ включ.	от 0 до 26,6 включ.	±20	=
	3XcII-3O ₂ -30	св. 10 до 50 млн ⁻¹	св. 26,6 до 133	-	±20
	ЭХсп-SO ₂ -100	от 0 до 10 млн ⁻¹ включ.	от 0 до 26,6 включ.	±20	-
		св. 10 до 100 млн ⁻	св. 26,6 до 266	-	±20
	ЭХсп-SO2-2000	от 0 до 100 млн ⁻¹ включ.	от 0 до 266 включ.	±20	-
		св. 100 до 2000 млн ⁻¹	св. 266 до 5320	÷	±20
	ЭХ _{сп} -Cl ₂ -5	от 0 до 0,3млн ⁻¹ включ.	от 0 до 0,88 включ.	±20	-
		св. 0,3 до 5 млн ⁻¹	св. 0,88 до 14,75	-	±20
Хлор Cl ₂	DV CL 15	от 0 до 5 млн ⁻¹ включ.	от 0 до 14,7 включ.	±20	-
_	ЭХсп-СІ2-15	св. 5 до 15 млн ⁻¹	св. 14,7 до 44,2	-	±20
	ЭХсп-СІ2-20	от 0 до 5 млн ⁻¹ включ.	от 0 до 14,7 включ.	±20	.
		св. 5 до 20млн ⁻¹	св. 14,7 до 59	-	±20
Кислород О2	ЭХсп-О2-30	от 0 до 10 % включ.	-	±5	-
		св. 10 до 30 %	•	-	±5
	ЭХсп-Н2-1000	от 0 до 100 млн ⁻¹ включ.	от 0 до 8,0 включ.	±10	-
Водород Н2		св. 100 до 1000 млн ⁻¹	св. 8,0 до 80,0	-	±10
	ЭХ _{сп} -H ₂ -10000	от 0 до 1000 млн ⁻ 1 включ.	от 0 до 80,0 включ.	±10	=

Тродолжение таблицы Е	3.4				
		от 0 до 10000	от 0 до 800	±10	
Водород Н2	ЭX _{cn} -H ₂ -	млн ⁻¹ включ.	включ.	110	
водород 112	20000	св. 10000 до	св. 800 до		±10
		20000 млн ⁻¹	1600	-	±10
		от 0 до 0,4млн ⁻¹	от 0 до 0,5	±20	
Формальдегид CH ₂ O	ЭХсп-	включ.	включ.	±20	_
Формальдегид СП2О	CH ₂ O-10	св. 0,4 до 10 млн	св. 0,5 до		±20
		I	12,5	-	±20
Несиммет-ричный		от 0 до 0,12 млн ⁻¹	от 0 до 0,3	±20	
диметилг-идразин	ЭХсп-	включ.	включ.	120	
$C_2H_8N_2$	C ₂ H ₈ N ₂ -0,5	св. 0,12 до 0,5	св. 0,3 до		±20
C2118112		млн ⁻¹	1,24		-20
		от 0 до 5 млн ⁻¹	от 0 до 6,65	±20	
	ЭХсп-	включ.	включ.	120	1674
	CH ₃ OH-20	св. 5 до 20млн ⁻¹	св. 6,65 до	21	±20
			26,6		±20
		от 0 до 5 млн ⁻¹	от 0 до 6,65	±20	
	ЭХсп-	включ.	включ.	120	2/5
	CH ₃ OH-50	св. 5 до 50млн ⁻¹	св. 6,65 до		±20
		св. 5 до зомлн	66,5	5:	
	ЭХсп-	от 0 до 10 млн ⁻¹	от 0 до 13,3	±20	
Метанол	CH ₃ OH-	включ.	включ.	±20	
CH ₃ OH	100	св. 10 до 100млн ⁻	св. 13,3 до		±20
	100	1	133	-	±20
	ЭХсп-	от 0 до 20 млн ⁻¹	от 0 до 26,6	±20	
	CH ₃ OH-	включ.	включ.	±20	
	200	св. 20 до 200млн ⁻	св. 26,6 до		±20
	200	1	266,0	-	±20
	ЭХсп-	от 0 до 100 млн ⁻¹	от 0 до 133,0	±20	
	CH ₃ OH-	включ.	включ.	±20	-
	1000	св. 100 до 1000	св. 133,0 до		120
	1000	млн ⁻¹	1330	-	±20
D=0.00000 = (0.00000000	OV	от 0 до 0,4млн ⁻¹	от 0 до 1	120	
Этантиол (этилмер- каптан) C ₂ H ₅ SH	ЭХсп-	включ.	включ.	±20	-
	C ₂ H ₅ SH-4	св. 0,4 до 4 млн ⁻¹	св. 1 до 10	•	±20
Метантиол	οv	от 0 до 0,4млн ⁻¹	от 0 до 0,8	120	
(метилмеркаптан)	ЭХсп-	включ.	включ.	±20	-
CH ₃ SH	CH₃SH-4	св. 0,4 до 4 млн ⁻¹	св. 0,8 до 8	-	±20
•	DV	от 0 до 0,1 млн ⁻¹	от 0 до 0,41	120	
	ЭХсп-	включ.	включ.	±20	-
T/	COCl ₂ -1	св. 0,1 до 1 млн ⁻¹	св.0,41 до 4,11	-	±20
Карбонилхлорид		от 0 до 0,2 млн ⁻¹	от 0 до 0,82		
(фосген) COCl ₂	ЭХсп-	включ.	включ.	+20	
	COCl ₂ -4	an 0.2 as 41	св.0,82 до 8	±20	-
		св. 0,2 до 4 млн ⁻¹	включ		

ооолжение та	олицы Б.т				
Фтор F2	ЭХсп-F2-1	от 0 до 0,1 млн ⁻¹ включ.	от 0 до 0,16 включ.	±20	-
5-10-10-10-10-10-10-10-10-10-10-10-10-10-	CONTRACTOR MADE OF CONTRACTOR	св. 0,1 до 1 млн ⁻¹	св.0,16 до 1,58	±20 - ±20 - ±20 - ±20 - ±20 - ±20 - ±20	±20
	ЭХс _п -РН ₃ -1	от 0 до 0,1 млн ⁻¹ включ.	от 0 до 0,14 включ.	±20	i-
Фосфин		св. 0,1 до 1 млн ⁻¹	св. 0,14 до 1,41	-	±20
PH ₃	ЭХсп-РН3-10	от 0 до 1 млн ⁻¹ включ.	от 0 до 1,41 включ.	±20	-
		св. 1 до 10 млн ⁻¹	св.1,41 до 14,1	-	±20
Арсин	ЭХ _{сп} -AsH ₃ -1	от 0 до 0,1 млн ⁻¹ включ.	от 0 до 0,32 включ.	±20	7-
AsH ₃		св. 0,1 до 1 млн ⁻¹	св.0,32 до 3,24	-	±20
	ЭХ _{сп} -С ₂ H ₄ O ₂ -10	от 0 до 2 млн ⁻¹ включ.	от 0 до 5 включ.	±20	-
Уксусная		св. 2 до 10млн ⁻¹	св. 5 до 25	-	±20
кислота С ₂ H ₄ O ₂	DV CHO 20	от 0 до 5 млн ⁻¹ включ.	от 0 до 12,5 включ.	±20	
JAcn-C2H	ЭX _{сп} -С ₂ H ₄ O ₂ -30	св. 5 до 30млн ⁻¹	св.12,5 до 75,0	-	±20
Гидразин	DV N.H. 2	от 0 до 0,2 млн ⁻¹ включ.	от 0 до 0,26 включ.	±20	
N ₂ H ₄	ЭХ _{сп} -N ₂ H ₄ -2	св. 0,2 до 2 млн ⁻¹	св. 0,26 до 2,66	±20 ±20 ±20 ±20 ±20 ±20	±20

^{1) —} при контроле компонентов, указанных в Руководстве по эксплуатации, но не приведённых в таблице, газоанализаторы применяются для определения содержания компонентов по методикам измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009;

диапазоны измерений конкретных газоанализаторов можно изменять внутри указанных в таблице диапазонов. Диапазон показаний выходных сигналов соответствует диапазону от 0 до 100 % НКПР или диапазону измерений;

^{3) —} пересчет значений объемной доли X, млн⁻¹, в массовую концентрацию C, мг/м³, проводят по формуле: $C=X\cdot M/V_m$, где C — массовая концентрация компонента, мг/м³; M — молярная масса компонента, г/моль; V_m — молярный объем газа-разбавителя - воздуха, равный 24,06, при условиях (20 C и 101,3 кПа по ГОСТ 12.1.005-88), дм³/моль.

Таблица В.5 – Метрологические характеристики с фотоионизационным сенсором (ФИ)

Винилхлорид С2H3Cl- ФИсп-С2H3Cl- 100 ФИсп-С2H3Cl- 100 ФИсп-С2H3Cl- 100 ФИсп-С2H3Cl- 100 ФИсп-С2H3Cl- 100 ФИсп-С2H3Cl- 100 ФИсп-С2H3Cl- 1000 ФИсп-С6H6-100 ФИсп-С6H6-1000 ФИсп-	аемой зной
Винилхлорид С2H3Cl- 100 Винилхлорид С2H3Cl- 100 ФИ _{сп} -С2H3Cl- 1000 ФИ _{сп} -С3H3Cl- 1000 ФИ _{сп} -С4H6-100 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-500 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-100 ФИ _{сп} -С6H6-1000	относи тельно й
Винилхлорид С2H3Cl ФИсп-C2H3Cl-10 ФИсп-C2H3Cl-10 ФИсп-C2H3Cl-10 ФИсп-C2H3Cl-10 ФИсп-C2H3Cl-10 ФИсп-C2H3Cl-10 ФИсп-C2H3Cl-10 ФИсп-С2H3Cl-10 ФИсп-С2H3Cl-1000 ФИсп-С4H6-1000 ФИсп-С4	тельно й
ТО (МЛИ) МГ/М3 ВПИ ВПИ В ПИ В ПИ В ПИ В ПИ В ПИ В ПИ	й
1 2 3 4 5 ФИсп-С2H3CI-10 от 0 до 1,9 включ. от 0 до 1,9 включ. ±20 ФИсп-С2H3CI-100 от 0 до 10 включ. от 0 до 26 включ. ±20 ФИсп-С2H3CI-100 от 0 до 100 включ. включ. ±20 Бензол С6H6 ФИсп-С2H3CI-1000 от 0 до 500 включ. от 0 до 260 включ. ±20 Бензол С6H6 ФИсп-С6H6-100 от 0 до 4,6 включ. от 0 до 4,6 включ. от 0 до 15 включ. ±25 Бензол С6H6 ФИсп-С6H6-100 от 0 до 4,6 включ. от 0 до 32,5 включ. ±20 Бензол С6H6 ФИсп-С6H6-100 от 0 до 10 включ. ±20 включ. ±20 включ. Бензол С6H6 ФИсп-С6H6-100 от 0 до 10 включ. ±20 включ. ±20 включ. Бензол С6H6 ФИсп-С6H6-100 от 0 до 10 включ. ±20 включ. ±20 включ. Бензол С6H6 ФИсп-С6H6-100 от 0 до 100 включ. ±20 включ. ±20 включ. Бензол С6H6 ФИсп-С6H6-100 от 0 до 500 от 0 до 325 включ. ±20 включ. ФИсп-С6H6-1000 от 0 до 2 включ. от 0 до 8,8 включ.	
Винилхлорид С2H3Cl ФИ _{сп} -C ₂ H ₃ Cl-10 ФИ _{сп} -C ₂ H ₃ Cl-100 ФИ _{сп} -C ₂ H ₃ Cl-100 ФИ _{сп} -C ₂ H ₃ Cl-100 ФИ _{сп} -C ₂ H ₃ Cl-1000 ФИ _{сп} -C ₃ H ₃ Cl-1000 ФИ _{сп} -C ₄ H ₆ -100 ФИ _{сп} -C ₆ H ₆ -1000 ФИ _{сп} -C ₆ H ₆ -1000 ФИ _{сп} -C ₆ H ₆ -1000 ФИ _{сп} -С ₆ H ₆ -	
Винилхлорид С2H3Cl- 100	-
Винилхлорид С2H3Cl ФИсп-С2H3Cl- 100 ФИсп-С2H3Cl- 500 ФИсп-С2H3Cl- 1000 ФИсп-С2H3Cl- 1000 ФИсп-С2H3Cl- 1000 ФИсп-С2H3Cl- 1000 ФИсп-С2H3Cl- 1000 ФИсп-С2H3Cl- 1000 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-100 ФИсп-С6H6-1000 ФИсп-С6H6-10	
Винилхлорид С2H3Cl ФИ _{сп} -С2H3Cl- 500 ФИ _{сп} -С2H3Cl- 500 ФИ _{сп} -С2H3Cl- 500 ФИ _{сп} -С2H3Cl- 500 ФИ _{сп} -С2H3Cl- 1000 СВ. 100 до 500 СВ. 260 до 260 ВКЛЮЧ. СВ. 100 до 500 СВ. 260 до 1300 ФИ СВ. 260 до 1300 ФИ СВ. 100 до 500 ОТ 0 до 1295 ФИ СВ. 4,6 до 10 СВ. 15 до 32,5 ОТ 0 до 100 ВКЛЮЧ. СВ. 4,6 до 10 СВ. 15 до 32,5 ОТ 0 до 100 ВКЛЮЧ. СВ. 10 до 100 СВ. 32,5 до 325 ФИ СВ. 10 до 100 СВ. 32,5 до 325 ФИ СВ. 100 до 500 ФИ СВ. 100 до 500 ФИ СВ. 100 до 500 ОТ 0 до 325 ВКЛЮЧ. СВ. 100 до 500 СВ. 32,5 до 325 ФИ СВ. 100 до 500 СВ. 325 до 1625 ФИ СВ. 100 до 500 ОТ 0 до 1625 ФИ СВ. 100 до 500 ОТ 0 до 8,8 ФИ СВ. 100 до 500 ОТ 0 до 8,8 ФИ СВ. 100 до 2 ВКЛЮЧ. СВ. 100 до 500 ОТ 0 до 8,8 ФИ СВ. 100 до 2 ВКЛЮЧ. СВ. 100 до 500 ОТ 0 до 8,8 ФИ СВ. 100 до 2 ВКЛЮЧ. СВ. 100 до 500 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 200 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 325 до 1625 ОТ 0 до 8,8 ФИ СВ. 320 ФИ СВ. 3	±20
Винилхлорид С2H3Cl ФИсп-С2H3Cl- 500 ФИсп-С2H3Cl- 1000 ФИсп-С2H3Cl- 1000 ФИсп-С2H3Cl- 1000 ФИсп-С6H6-100 ФИсп-С6H6-500 ФИсп-С6H6-100 ФИсп-С6H6-1000 ФИсп-С6	_
Винилхлорид С2H3Cl ФИсп-C2H3Cl- 500 ФИсп-C2H3Cl- 1000 ФИсп-C2H3Cl- 1000 ФИсп-C2H3Cl- 1000 ФИсп-C2H3Cl- 1000 ФИсп-C6H6-100 ФИсп-C6H6-100 ФИсп-C6H6-100 ФИсп-C6H6-100 ФИсп-C6H6-100 ФИсп-C6H6-100 ФИсп-C6H6-100 ФИсп-C6H6-1000 ФИсп-C6H6-1000 ФИсп-С6H6-1000 Ф	- 27
Бензол С6Н6 Бензол С6 Бенз	±20
Бензол С ₆ Н ₆ Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 Бензол С ₆ Н ₆ Бен	-
ТООО	±20
Бензол С6Н6 ФИсп-С6Н6-10 включ. св. 10 до 100 св. 32,5 до 325 св. 10 до 100 от 0 до 325 включ. св. 10 до 100 от 0 до 325 включ. св. 100 до 500 св. 325 до 1625 св. 100 до 500 от 0 до 1625 св. 100 до 500 от 0 до 1625 св. 100 до 500 от 0 до 1625 св. 100 до 2 включ. включ. от 0 до 8,8 св. 100 до 2 включ. включ. включ. включ. от 0 до 8,8 св. 100 до 2 включ. вк	10-
Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 от 0 до 10 включ. включ. включ. св. 10 до 100 от 0 до 32,5 включ. св. 10 до 100 от 0 до 325 включ. включ. включ. св. 100 до 500 св. 32,5 до 325 св. 100 до 500 св. 325 до 1625 св. 100 до 500 от 0 до 1625 св. 100 до 500 от 0 до 1625 св. 25 ±20 ФИ _{сп} -С ₆ Н ₆ -1000 от 0 до 500 от 0 до 1625 св. 325 до 1625 св. 3	-
Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 от 0 до 10 от 0 до 10 от 0 до 32,5 ±20 Бензол С ₆ Н ₆ От 0 до 100 от 0 до 100 от 0 до 325 ±20 ФИ _{сп} -С ₆ Н ₆ -500 включ. включ. ±20 ФИ _{сп} -С ₆ Н ₆ -1000 от 0 до 500 от 0 до 1625 ±25 ФИ _{сп} -С ₆ Н ₆ -1000 от 0 до 2 включ. от 0 до 8,8 ±20	±20
Бензол С ₆ Н ₆ ФИ _{сп} -С ₆ Н ₆ -100 включ. св. 10 до 100 св. 32,5 до 325 - ФИ _{сп} -С ₆ Н ₆ -500 от 0 до 100 от 0 до 325 ±20 включ. св. 100 до 500 св. 325 до 1625 - ФИ _{сп} -С ₆ Н ₆ -1000 от 0 до 500 от 0 до 1625 ±25 ФИ _{сп} - сона стана стан	
Св. 10 до 100 св. 32,5 до 325 - ФИсп-С6Н6-500 включ. включ. ФИсп-С6Н6-1000 от 0 до 500 св. 325 до 1625 - ФИсп-С6Н6-1000 от 0 до 500 от 0 до 1625 ±25 ФИсп- от 0 до 2 включ. от 0 до 8,8 ±20	-
ФИ _{сп} -С ₆ H ₆ -500 от 0 до 100 от 0 до 325 ±20 включ. включ. св. 100 до 500 св. 325 до 1625 - ФИ _{сп} -С ₆ H ₆ -1000 от 0 до 500 от 0 до 1625 ±25 ФИ _{сп} - от 0 до 2 включ. от 0 до 8,8 ±20	±20
ΦИ _{сп} -C ₆ H ₆ -500 включ. включ. ±20 св. 100 до 500 св. 325 до 1625 - ФИ _{сп} -C ₆ H ₆ -1000 от 0 до 500 от 0 до 1625 ±25 ФИ _{сп} - от 0 до 2 включ. от 0 до 8,8 ±20	
св. 100 до 500 св. 325 до 1625 ФИсп-С6Н6-1000 от 0 до 500 от 0 до 1625 ±25 ФИсп- от 0 до 2 включ. от 0 до 8,8 ±20	-
ФИ _{сп} -С ₆ H ₆ -1000 от 0 до 500 от 0 до 1625 ±25 ФИ _{сп} - от 0 до 2 включ. от 0 до 8,8 ±20	±20
ФИ _{сп} - от 0 до 2 включ. от 0 до 8,8 ±20	-20
	-
С ₈ H ₁₀ -10 св. 2 до 10 св. 8,8 до 44,1 -	±20
от 0 до 10 от 0 до 44 1	-20
WHICH BKINOU ± 15	-
Этилбензол Св 10 до 100 св 44 1 до 441	± 15
C8H10 OT 0 TO 100 OT 0 TO 441	± 13
ФИсп-	-
C8H10-300	+ 15
СВ. 100 до 500 СВ. 441 до 2205 - ФИ _{сп} -С ₈ Н ₁₀ - 1000 от 0 до 500 от 0 до 2205 ± 25	± 15

Продолжение таб	лицы В.5				
	ФИсп-	от 0 до 2 включ.	от 0 до 8,6 включ.	±20	-
	C ₈ H ₈ -10	св. 2 до 10	св. 8,6 до 43,3	-	±20
		от 0 до 6,9 включ.	от 0 до 29,9 включ.	±20	-
Фенилэтилен (стирол) (винилбензол) C_8H_8	ФИ _{сп} - С ₈ H ₈ -40	св. 6,9 до 40	св. 29,9 до 173,2	-	±20
	ФИсп-	от 0 до 100 включ.	от 0 до 433 включ.	±20	-
	C ₈ H ₈ -500	св. 100 до 500	св. 433 до 2165	-	±20
	ФИ _{сп} - С ₈ H ₈ -1000	от 0 до 500	от 0 до 2165	±20	-
н-пропилацетат С ₅ H ₁₀ O ₂	ФИ _{сп} - С ₅ H ₁₀ O ₂ -10 ФИ _{сп} -С ₅ H ₁₀ O ₂ - 100	от 0 до 2 включ.	от 0 до 8,5 включ.	±20	-
		св. 2 до 10	св. 8,5 до 42,5	-	±20
		от 0 до 30 включ.	от 0 до 127,5 включ.	±20	-
		св. 30 до 100	св. 127,5 до 425	-	±20
Эпихлоргидрин	ФИсп-С3Н5СЮ-	от 0 до 2 включ.	от 0 до 7,7 включ.	±20	-
C ₃ H ₅ ClO	10	св. 2 до 10	св. 7,7 до 38,5	-	±20
Хлористый	фИ	от 0 до 2 включ.	от 0 до 10,5 включ.	±20	-
Алористыи бензил С₁Н₁СІ	ФИ _{сп} - 1 С ₇ H ₇ Cl-10	св. 2 до 10	св. 10,5 до 52,67	-	±20
Фурфуриловый спирт С ₅ H ₆ O ₂	ФИсп-С5Н6О2-10	от 0 до 2 включ.	от 0 до 8,6 включ.	±20	-
5111pt C3116O2		св. 2 до 10	св. 8,6 до 40,8	-	±20

Продолжение тав	блицы В.5				
	ФИсп-	от 0 до 2 включ.	от 0 до 3,84 включ.	± 20	-
Этанол С2Н5ОН	C ₂ H ₅ OH-10	св. 2 до 10	св.3,84 до 19,2	_	± 20
	ФИсп-	от 0 до 10 включ.	от 0 до 19,2 включ.	± 20	-
Этанол С2Н5ОН	C ₂ H ₅ OH-100	св. 10 до 100	св.19,2 до 192	-	± 20
	ФИ _{сп} - C ₂ H ₅ OH-1000	от 0 до 500	от 0 до 960	± 20	-
	ФИ _{сп} -С ₂ Н ₅ ОН- 2000	от 0 до 500 включ.	от 0 до 960 включ.	± 15	-
	2000	св. 500 до 2000	св. 960 до 3840	-	± 15
Моноэтанолами	ФИ _{сп} -С ₂ H ₇ NO-3	от 0 до 0,2 включ.	от 0 до 0,5 включ.	± 20	-
н (2-	***	св. 0,2 до 3	св. 0,5 до 7,6	-	± 20
аминоэтанол) С ₂ H ₇ NO	ФИ _{сп} -С ₂ H ₇ NO-	от 0 до 2 включ.	от 0 до 5,1 включ.	± 20	-
	10	св. 2 до 10	св. 5,1 до 25,4	-	± 20
Формальдегид СН ₂ О	ФИсп-	от 0 до 0,4 включ.	от 0 до 0,5 включ.	± 20	
C1120	CH ₂ O-10	св. 0,4 до 10	св. 0,5 до 12,5	-	± 20
2	ФИсп-і- С ₃ Н ₇ ОН-10	от 0 до 4 включ.	от 0 до 10 включ.	± 20	-
2-пропанол		св. 4 до 10	св. 10 до 25	-	± 20
(изопропанол) i-C ₃ H ₇ OH	ФИ _{сп} -i-C ₃ H ₇ OH- 100	от 0 до 20 включ.	от 0 до 50 включ.	± 20	(=)
	100	св. 20 до 100	св. 50 до 250	11=	± 20
	ФИсп-	от 0 до 2 включ.	от 0 до 5 включ.	± 20	-
Уксусная	C ₂ H ₄ O ₂ -10	св. 2 до 10	св. 5 до 25	•	± 20
кислота С ₂ Н ₄ О ₂	ФИ _{сп} - С ₂ H ₄ O ₂ -100	от 0 до 100	от 0 до 250	±20	-
	ФИ _{сп} -і- С ₄ Н ₈ -10	от 0 до 2 включ.	от 0 до 4,6 включ.	±20	-
	C4118-10	св. 2 до 10	св. 4,6 до 23,3	-	±20
2-метилпропен (изобутилен) (ЛОС по изобутилену) i-C ₄ H ₈	ФИ _{сп} -i- C ₄ H ₈ -100	от 0 до 10 включ.	от 0 до 23,3 включ.	±20	-
	C4118-100	св. 10 до 100	св. 23,3 до 233	-	±20
	ФИ _{сп} -і- С ₄ Н ₈ -1000	от 0 до 100 включ.	от 0 до 233 включ.	±15	= 0
	C4118-1000	св. 100 до 1000	св. 233 до 2330	-	±15
	ФИсп-і-	от 0 до 500 включ.	от 0 до 1165 включ.	±15	-
	C ₄ H ₈ -6000	св. 500 до 6000	св. 1165 до 13980	-	±15

Продолжение таб	пицы В.5				
	ФИсп-С4Н9ОН-	от 0 до 3,2	от 0 до 9,9	±20	_
	10	включ.	включ.	-20	
	10	св. 3,2 до 10	св. 9,9 до 30,8	-	±20
1-бутанол	ФИсп-С4Н9ОН-	от 0 до 9,7	от 0 до 29,9	±20	
1-оутанол С ₄ Н ₉ ОН	40	включ.	включ.	-20	
C4119011	40	св. 9,7 до 40	св. 29,9 до 123,3	-	±20
	ФИсп-	от 0 до 10	от 0 до 30,8	±20	
	C ₄ H ₉ OH-100	включ.	включ.	120	_
	C4119O11-100	св. 10 до 100	св. 29,9 до 123,3	-	±20
	ФИ _{сп} -С ₄ H ₁₁ N-	от 0 до 3 включ.	от 0 до 9,1 включ.	±20	-
	10	св. 3 до 10	св. 9,1 до 30,4	-	±20
π	AH CHN	от 0 до 9,8	от 0 до 29,8		1
Диэтиламин	ФИсп-С4Н11N-	включ.	включ.	±20	-
C ₄ H ₁₁ N	40	св. 9,8 до 40	св. 29,8 до 121,6	-	±20
	AH	от 0 до 10	от 0 до 30,4		
	ФИсп-	включ.	включ.	±20	-
	C ₄ H ₁₁ N-100	св. 10 до 100	Св. 30,4 до 304	-	±20
	*** ***	от 0 до 3,75	от 0 до 4,98		
	ФИ _{сп} -СН ₃ ОН- 10	включ.	включ.	±15	, . .
		св. 3,75 до 10	св. 4,98 до 13,3	-	±15
	*** ***	от 0 до 11,2	от 0 до 14,9	.15	
Метанол СН ₃ ОН	ФИ _{сп} -СН ₃ ОН- 40	включ.	включ.		-
		св. 11,2 до 40	св. 14,9 до 53,2	_	±15
	277	от 0 до 10	от 0 до 13,3		
	ФИ _{сп} - СН ₃ ОН-100	включ.	включ.	±20	-
		св. 10 до 40	св. 13,3 до 133	-	±20
	ΔU	от 0 до 2	от 0 до 7,66	. 20	
	ФИсп-	включ.	включ.	±20	-
	C ₇ H ₈ -10	св. 2 до 10	св. 7,66 до 38,3	-	±20
16. 6	*11	от 0 до 13	от 0 до 49,8		
Метилбензол	ФИсп-	включ.	включ.	±15	-
(толуол) С7Н8	C ₇ H ₈ -40	св. 13 до 40	св. 49,8 до 153,3	-	±15
	A11	от 0 до 13	от 0 до 49,8		
	ФИсп-	включ.	включ.	±15	-
	C ₇ H ₈ -100	св. 13 до 100	св. 49,8 до 383	-	±15
	AU CHOU	от 0 до 0,25	от 0 до 0,98	5.00	
	ФИсп-С6Н5ОН-	включ.	включ.	±20	5
	3	св. 0,25 до 3	св. 0,98 до 11,74	-	±20
Δ	AU CHOU	от 0 до 2	от 0 до 7,8	. 20	
Фенол	ФИсп-С6Н5ОН-	включ.	включ.	±20	-
C ₆ H ₅ OH	10	св. 2 до 10	св. 7,8 до 39,1	-	±20
	ФИсп-	от 0 до 10	от 0 до 8,82	±20	-
	C ₆ H ₅ OH-100	включ.	включ.		
		св. 10 до 100	св. 8,82 до 44,1	-	±20

Гродолжение табл	пицы В.5				
1,2-	ФИсп-т-	от 0 до 2 включ.	от 0 до 8,82 включ.	±20	-
диметилбензол	C_8H_{10} -10	св. 2 до 10	св. 8,82 до 44,1	-	±20
(о-ксилол) о- С ₈ H ₁₀	ФИсп-о-	от 0 до 10 включ.	от 0 до 44,2 включ.	±15	-
	C_8H_{10} -100	св. 10 до 100	св. 44,2 до 442	-	±15
1,3-	ФИсп-т-	от 0 до 2 включ.	от 0 до 8,82 включ.	±20	-
диметилбензол	C_8H_{10} -10	св. 2 до 10	св. 8,82 до 44,1	-	±20
(м-ксилол) m- С ₈ H ₁₀	ФИсп-	от 0 до 10 включ.	от 0 до 44,2 включ.	±15	5₩6
	$m-C_8H_{10}-100$	св. 10 до 100	св. 44,2 до 442	-	±15
1,4-	ФИ _{сп} -m- С ₈ H ₁₀ -10	от 0 до 2 включ.	от 0 до 8,82 включ.	±20	•
диметилбензол	C8H10-10	св. 2 до 10	св. 8,82 до 44,1	-	±20
(п-ксилол) р- С ₈ H ₁₀	ФИсп-р-	от 0 до 10 включ.	от 0 до 44,2 включ.	±15	
	C_8H_{10} -100	св. 10 до 100	св. 44,2 до 442	-	±15
	ФИсп-	от 0 до 2 включ.	от 0 до 12,16 включ.	±20	-
Гексафторид	p- SF ₆ -10	св. 2 до 10	св. 12,16 до 60,8	12	±20
серы SF ₆	ФИсп-р- SF ₆ -100	от 0 до 10 включ.	от 12,16 до 60,8 включ.	±20	-
		св. 10 до 100	св. 60,8 до 608	-	±20
Фосфин	ФИсп-	от 0 до 1 включ.	от 0 до 1,4 включ.	±20	•
PH ₃	PH ₃ -10	св. 1 до 10	св. 1,4 до 14,1	-	±20
Нафталин С10Н8	ФИсп-	от 0 до 3,7 включ.	от 0 до 19,7 включ.	±20	_
	$C_{10}H_{8}-10$	св. 3,7 до 10	св. 19,7 до 53,3	-	±20
Бром Вг2	ФИ _{сп} - Вг ₂ -2	от 0 до 0,2 включ.	от 0 до 1,33 включ.	±20	•
	ФИсп-	от 0 до 20 включ.	от 0 до 14,2 включ.	±15	•
	NH ₃ -100	св. 20 до 100	св. 14,2 до 71	-	±15
Аммиак NH ₃	ФИсп-	от 0 до 100 включ.	от 0 до 71 включ.	±15	-
	NH ₃ -1000	св. 100 до 1000	св. 71 до 710	•	±15
	ФИсп-	от 0 до 0,4 включ.	от 0 до 1 включ.	±20	-
Этантиол	C_2H_5SH-10	св. 0,4 до 10	св. 1 до 25,8	: ***	±20
(этилмеркаптан) С ₂ Н ₅ SH	ФИсп-	от 0 до 2 включ.	от 0 до 5,16 включ.	±20	-
	C ₂ H ₅ SH-20	св. 2 до 20	св. 5,16 до 51,6	-	±20

±20 ±20 ±20 ±20
±20 - ±20
±20 - ±20
±20
±20
-
±20
-
±20
-
±15
-
±20
-
±15
-
±20
±20
-
±20
_
±20
-
±20

Тродолжение тав	блицы В.5				
Дисульфид углерода ФИсп-CS2-10		от 0 до 1 включ.	от 0 до 3,17 включ.	±20	-
(сероуглерод) CS ₂	Φ11cn-C32-10	св. 1 до 10	св. 3,17 до 31,7	-	±20
Ацетонитрил	ФИсп-	от 0 до 6 включ.	от 0 до 10,2 включ.	±15	-
C_2H_3N	C ₂ H ₃ N-10	св. 6 до 10	св. 10,2 до 17,1	24	±15
Циклогексан	ФИсп-	от 0 до 20 включ.	от 0 до 70 включ.	±20	-
C_6H_{12}	C ₆ H ₁₂ -100	св. 20 до 100	св. 70 до 350	-	±20
		от 0 до 50	от 0 до 112		120
1,3-бутадиен	ФИсп-	включ.	включ.	±20	, .
(дивинил) С ₄ Н ₆	C ₄ H ₆ -500	св. 50 до 500	св. 112 до 1125		±20
					±20
н-гексан С ₆ Н ₁₄	ФИсп-	от 0 до 84	от 0 до 301	±20	-
н-тексан С6П14	C ₆ H ₁₄ -1000	включ.	включ. 201 2594		120
		св. 84 до 1000	св. 301 до 3584	-	±20
	ФИсп-	от 0 до 0,1	от 0 до 0,32	±20	-
·	AsH ₃ -3	включ.	включ.		
Арсин		св. 0,1 до 3	св. 0,32 до 9,7	-	±20
AsH ₃	ФИсп-АзН3-10	от 0 до 2 включ.	от 0 до 6,48 включ.	±20	•
		св. 2 до 10	св. 6,48 до 32,4	-	±20
	ФИсп- С2H6S -5	от 0 до 1включ.	от 0 до 2,58 включ.	±20	-
Диметил-		св. 1 до 5	св. 2,58 до 12,9		±20
сульфид C ₂ H ₆ S	***	от 0 до 20	от 0 до 51,6		
	ФИсп-	включ.	включ.	±20	-
	C ₂ H ₆ S -100	св. 20 до 100	св. 51,6 до 258	-	±20
		от 0 до 20	от 0 до 23,4	3.000000	-20
	ФИсп-	включ.	включ.	±20	-
_	C ₂ H ₄ -300	св. 20 до 300	св. 23,4 до 351	_	±20
Этилен С2Н4		от 0 до 100	от 0 до 117		-20
	ФИсп-	включ.	включ.	±20	-
	C ₂ H ₄ -1800	св. 100 до 1800	св. 117 до 2106		±20
	ФИсп-	от 0 до 2 включ.	от 0 до 8,32 включ.	±20	-
Тетрафторэтан	C ₂ F ₄ -10	св. 2 до 10	св. 8,32 до 41,6		±20
C ₂ F ₄		от 0 до 10	от 0 до 41,6		120
0214	ФИсп-	включ.	включ.	±20	-
	C_2F_4-100	св. 10 до 100	св. 41,6 до 416		±20
					±20
Акрилонитрил	ФИсп-	от 0 до 0,7	от 0 до 1,45	±20	-
C ₃ H ₃ N	C ₃ H ₃ N-10	включ. св. 0,7 до 10	включ. св. 1,45 до 22,1	_	±20
			- 0.007 2 0.000 0.000 0.000 0.000 0.000 0.000		-20
Муравьиная кислота СН ₂ О ₂	ФИ _{сп} - CH ₂ O ₂ -10	от 0 до 0,5 включ.	от 0 до 0,96 включ.	±20	•
	0.1202 10	св. 0,5 до 10	св. 0,96 до 19,1	-	±20

Продолжение таб	лицы В.5				
	ФИсп-	от 0 до 50 включ.	от 0 до 208 включ.	±15	
	C ₇ H ₁₆ -500	св. 50 до 500	св. 208 до 2084	-	±15
н-гептан С7Н16	ФИсп-	от 0 до 100 включ.	от 0 до 416 включ.	±15	-
	C ₇ H ₁₆ -2000	св. 100 до 2000	св. 416 до 8334	-	±15
2-пропанон (ацетон) С ₃ Н ₆ О	ФИ _{сп} - С ₃ Н ₆ О-1000	от 0 до 80 включ.	от 0 до 193 включ.	±15	- 6
(114010) 031200	5,2,00 1000	св. 80 до 1000	св. 193 до 2415	-	±15
1,2-дихлорэтан	ФИ _{сп} -С ₂ H ₄ Cl ₂ -	от 0 до 2 включ.	от 0 до 8,23 включ.	±20	-
C ₂ H ₄ Cl ₂	20	св. 2 до 20	св. 8,23 до 82,3	14 0	±20
Этилцеллозольв (2-	ФИсп-С4Н10О2-	от 0 до 2 включ.	от 0 до 7,5 включ.	±20	-
этоксиэтанол) $C_4H_{10}O_2$	20	св. 2 до 20	св. 7,5 до 75	-	±20
Диметиловый	ФИ _{сп} - С ₂ H ₆ O-500	от 0 до 100 включ.	от 0 до 192 включ.	±15	-
эфир С₂Н₀О		св. 100 до 500	св. 192 до 958	-	±15
2-метилпропан (изобутан) i-	ФИсп-і-	от 0 до 100 включ.	от 0 до 241 включ.	±15	-
C ₄ H ₁₀	C ₄ H ₁₀ -1000	св. 100 до 1000	св. 241 до 2417	-	±15
2-метил-1- пропанол	ФИсп-і-С4Н9ОН-	от 0 до 3 включ.	от 0 до 9,2 включ.	±20	-
(изобутанол) і- С ₄ Н ₉ ОН	20	св. 3 до 20	св. 9,2 до 61,6	-	±20
Циклогексанон	AU OU O 20	от 0 до 2 включ.	от 0 до 7 включ.	±20	-
C ₆ H ₁₀ O	ФИсп-С ₆ Н ₁₀ О-20	св. 2 до 20	св. 7 до 70	-	±20
2-бутанон (метилэтилкетон	ФИсп-	от 0 до 60 включ.	от 0 до 180 включ.	±15	\ -
) C ₄ H ₈ O	C ₄ H ₈ O-500	св. 60 до 500	св. 180 до 1500		±15
Тетраэтилор- тосиликат	ФИсп-	от 0 до 2 включ.	от 0 до 17,3 включ.	±20	-
(TEOC) C ₈ H ₂₀ O ₄ Si	C ₈ H ₂₀ O ₄ Si-10	св. 2 до 10	св. 17,3 до 86,6	-	±20

Акролеин	ФИсп-	от 0 до 2 включ.	от 0 до 4,98 включ.	±20	-
C ₃ H ₄ O	C ₃ H ₄ O-10	св. 2 до 10	св. 4,98 до 24,9	.=	±20

- при контроле компонентов, указанных в Руководстве по эксплуатации, но не приведённых в таблице, газоанализаторы применяются для определения содержания компонентов по методикам измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009;
- 2) диапазоны измерений конкретных газоанализаторов можно изменять внутри указанных в таблице диапазонов. Диапазон показаний выходных сигналов соответствует диапазону от 0 до 100 % НКПР или диапазону измерений;
- 3) пересчет значений объемной доли X, млн⁻¹, в массовую концентрацию C, мг/м³, проводят по формуле: $C=X\cdot M/V_m$, где C массовая концентрация компонента, мг/м³; M молярная масса компонента, г/моль; V_m молярный объем газа-разбавителя воздуха, равный 24,06, при условиях (20 C и 101,3 кПа по ГОСТ 12.1.005-88), дм³/моль.

Таблица В.6 – Метрологические характеристики полупроводниковым сенсором (ПП)

Определяемый компонент ¹⁾	Модификация сенсора	Диапазон измерений объемной доли определяемого компонента ²⁾³⁾	Пределы допускаемой основной абсолютной погрешности
1	2	3	4
	ППсп-Н2-100	от 0 до 4,0 % (от 0 до 100 % НКПР)	±0,2 % (±5 % ΗΚΠΡ)
Водород Н2	ППсп-Н2-50	от 0 до 2,0 % (от 0 до 50 % НКПР)	±0,2 % (±5 % НКПР)
	ППсп-Н2-20 %	от 0 до 20 %	±0,5 %
	ППсп-СН4-100	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % НКПР)
Метан СН4	ППсп-СН4-50Т	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,13 % (±3 % НКПР)
	ППсп-СН4-50	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % НКПР)
Deverage C. H.	ППеп-С2Н4-100	от 0 до 2,3 % (от 0 до 100 % НКПР)	±0,12 % (±5 % ΗΚΠΡ)
Этилен С ₂ Н ₄	ППсп-С2Н4-50	0 до 1,15 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)
	ППсп-С3Н8-100	0 до 1,7 % (от 0 до 100 % НКПР)	±0,085 % (±5 % НКПР)
Пропан С ₃ Н ₈	ППсп-С3Н8-50Т	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,051 % (±3 % НКПР)
	ППсп-С3Н8-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)

родолжение таблицы	B.6		
	ППсп-С4Н10-100	от 0 до 1,4 %	±0,07 %
н-бутан С4Н10	22201 042210 244	(от 0 до 100 % НКПР)	(±5 % HKПР)
	$\Pi\Pi_{cn}$ -C ₄ H ₁₀ -50	от 0 до 0,7 %	±0,07 %
		(от 0 до 50 % НКПР)	(±5 % HKПР)
	$\Pi\Pi_{cn}$ -C ₄ H ₈ -100	от 0 до 1,6 %	±0,08 %
1-бутен С4Н8		(от 0 до 100 % НКПР)	(±5 % HKПР)
	ППсп-С4Н8-50	от 0 до 0,8 %	±0,08 %
		(от 0 до 50 % НКПР)	(±5 % HKПР)
	ПП _{сп} -i-С ₄ H ₁₀ -100	от 0 до 1,30 %	±0,065 %
2-метилпропан		(от 0 до 100 % НКПР)	(±5 % HKПР)
(изобутан) і-С ₄ Н ₁₀	ППсп-і-С4Н10-50	от 0 до 0,65 %	±0,065 %
	TITICII : CAXIIO CC	(от 0 до 50 % НКПР)	(±5 % HKПР)
	$\Pi\Pi_{cn}$ -C ₅ H ₁₂ -100	от 0 до 1,1 %	±0,055 %
н-пентан	111ttll C31112 100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
C ₅ H ₁₂	ППсп-С5Н12-50	от 0 до 0,55 %	±0,055 %
	1111cn-C31112-30	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 1,4 %	±0,07 %
	$\Pi\Pi_{cn}$ -C ₅ H ₁₀ -100	(от 0 до 100 % НКПР)	(±5 % ΗΚΠΡ)
Циклопентан		(от о до тостититу	, , , , , , , , , , , , , , , , , , , ,
C ₅ H ₁₀	TIT C II 50	от 0 до 0,7 %	±0,07 %
	$\Pi\Pi_{cn}$ -C ₅ H ₁₀ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		0 100/	10.05.0/
	$\Pi\Pi_{cn}$ -C ₆ H ₁₄ -100	от 0 до 1,0 %	±0,05 %
н-гексан	1111211 201114 100	(от 0 до 100 % НКПР)	(±5 % HKПP)
C_6H_{14}	ППсп-С6Н14-50	от 0 до 0,5 %	±0,05 %
TO COMMON SECURITY		(от 0 до 50 % НКПР)	(±5 % HKΠP)
		(01 0 до 30 78 ПКПП)	(±3 /01Hd11)
	0.11 100	от 0 до 1,0 %	±0,05 %
	$\Pi\Pi_{cn}$ -C ₆ H ₁₂ -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
Циклогексан С ₆ Н ₁₂		,	
OR A SHOOM MAKE SHOW ON THE RESIDENCE AND A SHOWN AND A SHOWN ASSESSMENT.	ПП С.И., 50	от 0 до 0,5 %	±0,05 %
	$\Pi\Pi_{cn}$ -C ₆ H ₁₂ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
			2.12.23
	ППсп-С2Н6-100	от 0 до 2,4 %	±0,12 %
	1111cm-C2116-100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
Этан С2Н6		0 1 2 0/	+0.12.0/
	ППсп-С2Н6-50	от 0 до 1,2 %	±0,12 %
		(от 0 до 50 % НКПР)	(±5 % НКПР)
		от 0 до 3,0 %	±0,3 %
Метанол СН₃ОН	ППсп-СН3ОН-50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
enteres entres à escrit de 1992 de la company de la compan		(от о до эо лотичит)	(-5 /V.IIdii)
		от 0 до 1,2 %	±0,06 %
	ППсп-С6Н6-100	(от 0 до 1,2 % (от 0 до 100 % НКПР)	±0,00 % (±5 % HKΠP)
D 011		(от 0 до 100 % пкир)	(±5 /01IKIII)
Бензол С ₆ Н ₆		0 0 0 0	10.06.0/
	ППсп-С6Н6-50	от 0 до 0,6 %	±0,06 %
	TATACH CONTO	(от 0 до 50 % НКПР)	(±5 % HKПP)

Іродолжение таблицы	D.0		
Пропилен (пропен)	ППсп-С3Н6-100	от 0 до 2,0 % (от 0 до 100 % НКПР)	±0,1 % (±5 % НКПР)
C ₃ H ₆	ППсп-С ₃ Н ₆ -50	от 0 до 1,0 % (от 0 до 50 % НКПР)	±0,1 % (±5 % НКПР)
Этанол С ₂ Н ₅ ОН	ППсп-С2Н5ОН-50	от 0 до 1,5 % (от 0 до 50 % НКПР)	±0,16 % (±5 % НКПР)
н-гептан С7Н16	ППсп-С7Н16-100	от 0 до 0,85% (от 0 до 100 % НКПР)	± 0,078 % (±5 % ΗΚΠΡ)
н-тептан С7П16	ППсп-С7Н16-50	от 0 до 0,425 % (от 0 до 50 % НКПР)	±0,042 % (±5 % НКПР)
Оксид этилена	ППсп-С2Н4О-100	от 0 до 2,6 % (от 0 до 100 % НКПР)	±0,13 % (±5 % НКПР)
C ₂ H ₄ O	ППсп-С2Н4О-50	от 0 до 1,3 % (от 0 до 50 % НКПР)	±0,13 % (±5 % НКПР)
2-пропанон (ацетон) С ₃ H ₆ O	ППсп-С3Н6О-50	от 0 до 1,25 % (от 0 до 50 % НКПР)	±0,13 % (±5 % НКПР)
2-метилпропен	ППсп-і-С4Н8-100	от 0 до 1,6 % (от 0 до 100 % НКПР)	±0,08 % (±5 % НКПР)
(изобутилен) і-С ₄ Н ₈	ППсп-і-С4Н8-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	±0,08 % (±5 % НКПР)
2-метил- 1,3-	ПП _{сп} -С ₅ H ₈ -100	от 0 до 1,7 % (от 0 до 100 % НКПР)	±0,085 % (±5 % НКПР)
бутадиен (изопрен) С ₅ Н ₈	ППсп-С5Н8-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)
Ацетилен С2Н2	ППсп-С2Н2-100	от 0 до 2,30 % (от 0 до 100 % НКПР)	±0,12 % (±5 % НКПР)
Акрилонитрил C_3H_3N	ППсп-С3Н3N-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	±0,14 % (±5 % НКПР)
Метилбензол	ППсп-С7Н8-100	от 0 до 1,0 % (от 0 до 100 % НКПР)	±0,05 % (±5 % ΗΚΠΡ)
(толуол) С7Н8	ППсп-С7Н8-50	от 0 до 0,5 % (от 0 до 50 % НКПР)	±0,05 % (±5 % НКПР)
Этилбензол С ₈ Н ₁₀	ППсп- С8Н10-37,5Т	от 0 до 0,3 % (от 0 до 37,5 % НКПР)	±0,024 % (±3 % НКПР)
н-октан С ₈ Н ₁₈	ППсп-С8Н18-50	от 0 до 0,4 % (от 0 до 50 % НКПР)	±0,04 % (±5 % НКПР)
Этилацетат С ₄ Н ₈ О ₂	ППсп-С4Н8О2-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	±0,1 % (±5 % НКПР)
Бутилацетат С ₆ Н ₁₂ О ₂	ППсп-С6Н12О2-25Т	от 0 до 0,3 % (от 0 до 25 % НКПР)	±0,036 % (±3 % НКПР)
1,3-бутадиен (дивинил) С ₄ Н ₆	ППсп-С4Н6-50	от 0 до 0,7 % (от 0 до 50 % НКПР)	±0,07 % (±5 % НКПР)
1,2-дихлорэтан С ₂ Н ₄ Сl ₂	ПП _{сп} -С ₂ H ₄ Cl ₂ -50	от 0 до 3,1 % (от 0 до 50 % НКПР)	±0,31 % (±5 % НКПР)

Продолжение таблицы	B.0	a	
Диметилсульфид	ППсп-С2Н6Ѕ-50	от 0 до 1,1 %	±0,11 %
C ₂ H ₆ S		(от 0 до 50 % НКПР)	(±5 % НКПР)
1-гексен С ₆ Н ₁₂	$\Pi\Pi_{cn}$ -С ₆ H_{12} -50	от 0 до 0,6 % (от 0 до 50 % НКПР)	±0,06 % (±5 % НКПР)
2-бутанол (втор- бутанол) sЭX- С₄Н9ОН	ПП _{сп} -sЭX-C ₄ H ₉ OH- 31,2T	от 0 до 0,5 % (от 0 до 31,2 % НКПР)	±0,051 % (±3 % НКПР)
Винилхлорид C_2H_3CI	ППсп-С2Н3СІ-50	от 0 до 1,8 % (от 0 до 50 % НКПР)	±0,18 % (±5 % НКПР)
И	ППсп-С3Н6-100	от 0 до 2,4 % (от 0 до 100 % НКПР)	±0,12 % (±5 % НКПР)
Циклопропан C ₃ H ₆	ППеп-С ₃ Н ₆ -50	от 0 до 1,2 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)
Диметиловый эфир С ₂ Н ₆ О	ППсп-С2Н6О-50	от 0 до 1,35 % (от 0 до 50 % НКПР)	±0,14 % (±5 % НКПР)
Диэтиловый эфир $C_4H_{10}O$	ПП _{сп} -С ₄ H ₁₀ O-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)
Оксид пропилена С ₃ Н ₆ О	ППсп-С3Н6О-50	от 0 до 0,95 % (от 0 до 50 % НКПР)	±0,095 % (±5 % НКПР)
Хлорбензол С ₆ Н ₅ СІ	ППсп-С6Н5СІ-38,4Т	от 0 до 0,5 % (от 0 до 38,4 % НКПР)	±0,039 % (±3 % НКПР)
2-бутанон (метилэтилкетон) С ₄ Н ₈ О	ПП _{сп} -С ₄ H ₈ O-50	от 0 до 0,75 % (от 0 до 50 % НКПР)	±0,075 % (±5 % НКПР)
2-метил-2-пропанол (трет-бутанол) tert- C ₄ H ₉ OH	ПП _{сп} -tert- C ₄ H ₉ OH-50	от 0 до 0,9 % (от 0 до 50 % НКПР)	±0,09 % (±5 % НКПР)
2-метокси-2- метилпропан (метилтретбутиловый эфир) tert- $C_5H_{12}O$	ПП _{сп} -tert- C ₅ H ₁₂ O-50	от 0 до 0,8 % (от 0 до 50 % НКПР)	±0,08 % (±5 % ΗΚΠΡ)
1,4-диметилбензол (п-ксилол) p-C ₈ H ₁₀	ППсп-р-С8Н10-22,2Т	от 0 до 0,2 % (от 0 до 22,2 % НКПР)	±0,027 % (±3 % НКПР)
1,2-диметилбензол (о-ксилол) о-С ₈ H ₁₀	ППсп-о-С8Н10-20Т	от 0 до 0,2 % (от 0 до 20 % НКПР)	±0,03 % (±3 % НКПР)
2-пропанол (изопропанол) і- С ₃ Н ₇ ОН	ППсп-і-С ₃ Н ₇ ОН-50	от 0 до 1,0 % (от 0 до 50 % НКПР)	±0,1 % (±5 % НКПР)
Октен С ₈ Н ₁₆	ППсп-С8Н16-33,3Т	от 0 до 0,3 % (от 0 до 33,3 % НКПР)	±0,027 % (±3 % ΗΚΠΡ)
2-метилбутан (изопентан) i-C ₅ H ₁₂	ППсп-і-С5Н12-50	от 0 до 0,65 % (от 0 до 50 % НКПР)	±0,065 % (±5 % НКПР)
Метантиол (метилмеркаптан) СН ₃ SH	ПП _{сп} -СН ₃ SH-50	от 0 до 2,05 % (от 0 до 50 % НКПР)	±0,21 % (±5 % НКПР)

грооолжение таолицы	D.0		
Этантиол (этилмеркаптан) C_2H_5SH	ПП _{сп} - С ₂ Н ₅ SH-50	от 0 до 1,4 % (от 0 до 50 % НКПР)	±0,14 % (±5 % НКПР)
Ацетонитрил C ₂ H ₃ N	ППсп-С2Н3N-50	от 0 до 1,5 % (от 0 до 50 % НКПР)	±0,15 % (±5 % НКПР)
$2,3$ -дитиабутан (диметилдисульфид) $C_2H_6S_2$	ППсп-С2Н6S2-50	от 0 до 0,55 % (от 0 до 50 % НКПР)	±0,055 % (±5 % ΗΚΠΡ)
Бензин ⁴⁾⁵⁾	ППсп -СН-ПН-50	от 0 до 50 % НКПР	±5 % ΗΚΠΡ
Дизельное топливо ⁴⁾⁶⁾	ППсп -СН-ПН-50	от 0 до 50 % НКПР	±5 % НКПР
Керосин ⁴⁾⁷⁾	ППсп -СН-ПН-50	от 0 до 50 % НКПР	±5 % НКПР
Уайт-спирит ⁴⁾⁸⁾	ППсп -СН-ПН-50	от 0 до 50 % НКПР	±5 % НКПР
0	ППсп -С2С10СН4-100	от 0 до 4,4 % (от 0 до 100 % НКПР)	±0,22 % (±5 % НКПР)
Сумма углеводородов по	ППсп-С2С10СН4-50	от 0 до 2,2 % (от 0 до 50 % НКПР)	±0,22 % (±5 % ΗΚΠΡ)
метану С ₂ -С ₁₀ (поверочный компонент метан)	ПП _{сп} - С ₂ С ₁₀ СН ₄ - 3000	от 0 до 3000 мг/м ³	от 0 до 500 мг/м ³ включ. ±50 мг/м ³ св. 500 до 3000 мг/м ³ ± (0,152·X - 15,6)
	ППсп -С2С10С3Н8-100	от 0 до 1,7 % (от 0 до 100 % НКПР)	±0,085 % (±5 % ΗΚΠΡ)
Сумма углеводородов	ППсп -С2С10С3Н8-50	от 0 до 0,85 % (от 0 до 50 % НКПР)	±0,085 % (±5 % НКПР)
C ₂ -C ₁₀ (поверочный компонент пропан)	ПП _{сп} - С ₂ С ₁₀ С ₃ Н ₈ - 3000	от 0 до 3000 мг/м ³	от 0 до 500 мг/м ³ включ. ±50 мг/м ³ св.500 до 3000 мг/м ³ ± (0,152·X – 15,6)

- при контроле компонентов, указанных в Руководстве по эксплуатации, но не приведённых в таблице, газоанализаторы применяются для определения содержания компонентов по методикам измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009;
- диапазоны измерений конкретных газоанализаторов можно изменять внутри указанных в таблице диапазонов Диапазон показаний выходных сигналов соответствует диапазону от 0 до 100 % НКПР или диапазону измерений;
- 3) значения НКПР для горючих газов и паров в соответствии с ГОСТ Р МЭК 31610.20-1-2020;
- 4) пары нефтепродуктов являются смесью углеводородов, поэтому калибруются по конкретной марке топлива, с указанием марки в паспорте на прибор;
 - 5) пары бензина по ГОСТ 1012-2013, ГОСТ Р 51866-2002;
- 6) пары дизельного топлива по ГОСТ 305-2013, ГОСТ 32511-2013, ГОСТ 52368-2005;
 - 7) пары керосина по ТУ 38.401-58-8-90, ОСТ 38 01408-86;
 - 8) уайт-спирит по ГОСТ Р 52368-2005;
 - X содержание определяемого компонента в поверочной газовой смеси, мг/м³.

Таблица В.7 – Дополнительные метрологические характеристики

Наименование характеристики	Значение
1	2
Время установления показаний T _{0,9} , с, не более ¹⁾	
 для инфракрасного сенсора 	5
 для термокаталитического сенсора 	10
 для электрохимического сенсора 	15
 для фотоионизационного сенсора 	15
 для полупроводникового сенсора 	20
Пределы допускаемой дополнительной погрешности от изменения	
температуры окружающей среды от нормальной на каждые 10 °C, в	±0,25
долях от пределов допускаемой основной погрешности	300 Mill 1990

^{1) –} без учета установленных защитных фильтров, а также, для фотоионизационного сенсора, периодичности измерений концентрации (периодичность определяется при заказе и может быть изменена пользователем).