
Федеральное государственное бюджетное учреждение «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГБУ «ВНИИМС»)

СОГЛАСОВАНО Заместитель директора по производственной метрологии

Государственная система обеспечения единства измерений

«ГСИ. Комплекс измерительный КМБТ.141. Методика поверки»

MΠ 206.1-084-2022

1 ОБШИЕ ПОЛОЖЕНИЯ

Настоящая методика поверки применяется для поверки комплекса измерительного КМБТ.141, заводской № 01, (далее по тексту – комплекс), изготовленный АО «ИТЦ Континуум», г. Ярославль, используемый в качестве средств измерений или рабочих эталонов в соответствии с:

- государственной поверочной схемой для средств измерений электрического напряжения постоянного тока в диапазоне от 1 до 500 кВ;
- государственной поверочной схемой для средств измерений электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до 500 кВ с гармоническими составляющими от 0,3 до 50 порядка, в диапазоне частот от 15 до 2500 Гц;
- государственной поверочной схемой для средств измерений переменного электрического напряжения до 1000~B в диапазоне частот от $1\cdot10^{-1}$ до $2\cdot10^{9}~\Gamma_{\rm II}$;
- государственной поверочной схемой для средств измерений постоянного электрического напряжения и электродвижущей силы;
- государственной поверочной схемой для средств измерений силы постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до 100 A;
- государственная поверочная схема для средств измерений электроэнергетических величин в диапазоне частот от 1 до 2500 Гц.

На поверку представляется комплекс, укомплектованный в соответствии с руководством по эксплуатации, и комплект следующей технической и нормативной документации:

- руководство по эксплуатации;
- паспорт;
- методика поверки.

При проведении поверки следует руководствоваться указаниями, приведенными в п.п. 2 – 6 настоящей методики поверки и руководстве по эксплуатации.

При определении метрологических характеристик комплекса должна быть обеспечена прослеживаемость к ГЭТ 181, ГЭТ 191, ГЭТ 89, ГЭТ 13, ГЭТ 4 и ГЭТ 153.

Методом, обеспечивающим реализацию методики поверки, является метод непосредственной оценки, значения определяемых величин определяются непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.

Допускается проводить периодическую поверку для меньшего числа величин или на меньшем числе поддиапазонов измерений на основании письменного заявления владельца СИ, оформленного в произвольной форме.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 Поверка проводится в объеме и в последовательности, указанной в таблице 1.

Таблина 1 – Перечень операций при первичной и периодических поверках

Наименование операции поверки	Обязательность		Номер раздела
	выполнени	я операций	(пункта) методики
	повері	ки при	поверки, в соответ-
	первичной	периодиче-	ствии с которым вы-
	поверке	ской	полняется операция
	поверке	поверке	поверки
Внешний осмотр	Да	Да	7
Подготовка к поверке и опробование сред-	Да	Да	8
ства измерений			
Проверка программного обеспечения	Да	Да	9
Определение метрологических характери-	Да	Да	10
стик средств измерений			
Подтверждение соответствия средства из-	Да	Да	11
мерений метрологическим требованиям			

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 Поверка должна проводиться при следующих условиях окружающей среды:
- температура окружающей среды, °С

от +15 до +30;

- атмосферное давление, кПа

от 84 до 106;

- относительная влажность воздуха при +25°C, %

до 90.

3.2 Напряжение питающей сети переменного тока частотой от 49,5 до 50,5 Гц, действующее значение напряжения от 198 до 242. Коэффициент искажения синусоидальности кривой напряжения не более 5 %. Остальные характеристики сети переменного тока должны соответствовать ГОСТ 32144-2013.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

- 4.1 К проведению поверки допускают специалистов из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучивших настоящую методику поверки и руководство пользователя/руководство по эксплуатации на поверяемое СИ и имеющих стаж работы по данному виду измерений не менее 1 года.
- 4.2 Специалист должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право проведения работ в электроустановках с квалификационной группой по электробезопасности не ниже III до и выше 1000 В.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 При проведении поверки должны применяться средства поверки с характеристиками, указанными в таблице 2.

Таблица 2 - Метрологические и технические требования к средствам поверки

1 аолица 2 —	Метрологические и технические требования к ср	едствам поверки
Операции по-	Метрологические и технические требования к	Перечень рекомендуемых
верки, требую-	средствам поверки, необходимые для прове-	средств поверки
щие применения	дения поверки	
средств поверки		
п.3.1	Средства измерений температуры окружаю-	Термогигрометры элек-
Условия прове-	щей среды в диапазоне измерений от 15 до	тронные CENTER, рег.
дения поверки	30 °C с абсолютной погрешностью не более 0,2 °C;	№ 22129-09;
	средства измерений относительной влажно-	Термогигрометры элек-
	сти воздуха в диапазоне измерений от 20 до	тронные CENTER, рег.
	90 % с абсолютной погрешностью не более 2	№ 22129-09;
	%;	_
	средства измерений атмосферного давления в	Барометры-анероиды ме-
	диапазоне измерений от 80 до 106 кПа с аб-	теорологические БАММ-
	солютной погрешностью не более 0,2 кПа.	1, per. № 5738-76.
п.3.2	Средства измерений действующих значений	Регистраторы показателей
Условия прове-	напряжения переменного тока от 154 до 286	качества электрической
дения поверки	В с относительной погрешностью не более 0,2%;	энергии Парма РК3.01ПТ, рег. № 25731-05;
	средства измерений частоты от 45 до 55 Гц с	Регистраторы показателей
	абсолютной погрешностью не более 0,02 Гц;	качества электрической
	средства измерений коэффициента искажения	энергии Парма РК3.01ПТ,
	синусоидальности кривой напряжения от 0 до	рег. № 25731-05.
	30 % с относительной погрешностью не бо-	
	лее 0,2 % (при K_U < 1%) и не более 10 % (при	
	$K_U > 1\%$).	

Операции по- верки, требую- щие применения средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
п.10 Определение метрологических характеристик средств измерений	Государственный вторичный эталон единицы электрического напряжения постоянного тока в соответствии с государственной поверочной схемой для средств измерений электрического напряжение постоянного тока в диапазоне ±(1500) кВ;	Государственный вторичный эталон единицы электрического напряжения постоянного тока в диапазоне измерения от 1 до -100 и от 1 до 100 кВ, регистрационный № 2.1.ZZM.0350.2016;
	ГПСЭ единицы электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до 500 кВ с гармоническими составляющими от 0,3 до 50 порядка, в диапазоне частот от 15 до 2500 Гц, (ГЭТ);	государственный первичный эталон ГЭТ 191-2019;
	эталон единицы электрического напряжения переменного тока не ниже 3 разряда в соответствии с государственной поверочной схемой для средств измерений электрического напряжения переменного тока до 1000 В;	мультиметр 3458A, регистрационный № 77012-19;
	эталон единицы электрического напряжения постоянного тока не ниже 2 разряда в соответствии с государственной поверочной схемой для средств измерений электрического напряжения и электродвижущей силы;	мультиметр 3458A, регистрационный № 77012-19;
	эталон единицы электрического напряжения переменного тока не ниже 3 разряда в соответствии с государственной поверочной схемой для средств измерений электрического напряжения переменного тока до 1000 В;	калибратор универсальный 9100, регистрационный № 25985-09;
	эталон единицы электрического напряжения постоянного тока не ниже 3 разряда в соответствии с государственной поверочной схемой для средств измерений электрического напряжения постоянного тока до 1000 В;	калибратор универсальный 9100, регистрационный № 25985-09;
	эталон единицы силы постоянного тока не ниже 2 разряда в соответствии с государственной поверочной схемой для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}$ до 100 A;	прибор электроизмерительный эталонный многофункциональный Энергомонитор-3.1КМ, регистрационный № 52854-13;
	эталон единицы силы переменного тока не ниже 2 разряда в соответствии с государ-	прибор электроизмери- тельный многофункцио-

Операции по- верки, требую-	Метрологические и технические требования к средствам поверки, необходимые для прове-	Перечень рекомендуемых средств поверки
щие применения	дения поверки	
средств поверки		
	ственной поверочной схемой для средств из-	нальный Энергомонитор
	мерений силы переменного электрического	61850, регистрационный
	тока в диапазоне от 1·10-8 до 100 А в диапа-	№ 73445-18.
	зоне частот от 1·10 ⁻¹ до 1·10 ⁶ Гц.	

Примечание — Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, и обеспечивающие необходимую точность измерений.

5.2 Средства измерений, применяемые при поверке, должны обеспечивать требуемую точность, быть поверены и иметь действующие записи о поверке во ФГИС «Аршин». Эталоны единиц величин должны быть аттестованы и иметь свидетельства об аттестации.

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕ-ДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться требования ГОСТ 12.1.019, ГОСТ 12.3.019, а также выполнен комплекс мероприятий по обеспечению безопасности, установленных приказом министерства труда и социальной защиты РФ от 15.12.2020 г. № 903н «Об утверждении правил по охране труда при эксплуатации электроустановок».

Перед проведением поверки необходимо ознакомиться с настоящей методикой, эксплуатационной документацией на поверяемые СИ и средства поверки.

Должны быть также обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 При проведении внешнего осмотра должно быть установлено соответствие поверяемого СИ следующим требованиям:
 - комплектность должна соответствовать приведенной в руководстве по эксплуатации;
- все органы управления и коммутации должны действовать плавно и обеспечивать надежность фиксации во всех позициях;
- не должно быть механических повреждений корпуса, органов управления. Незакрепленные или отсоединенные части должны отсутствовать. Внутри корпуса не должно быть посторонних предметов. Все надписи на панелях должны быть четкими и ясными;
 - все разъемы, клеммы не должны иметь повреждений и должны быть чистыми.
- 7.2 Соответствие требованиям комплектности и маркировки, а также отсутствие внешних механических повреждений проверяются визуально.
- 7.3 Результат операции поверки по 7.1 считается положительным, если отсутствуют внешние механические повреждения, а комплектность и маркировка соответствуют требованиям, приведенным в руководстве по эксплуатации.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

8.1 Подготовка к поверке

- 8.1.1 Средства поверки должны быть подготовлены к работе согласно указаниям, приведенным в соответствующих эксплуатационных документах.
- 8.1.2 До проведения поверки поверителю надлежит ознакомиться с эксплуатационной документацией на поверяемое СИ и используемые средства поверки.

8.2 Опробование

- 8.2.1 Опробование комплекса проводят в следующей последовательности:
- запустить на компьютере специальное ПО для комплекса;
- подключить интерфейсный модуль к компьютеру со специальным ПО, проконтролировать включение индикатора питания;
- подключить блок преобразования тока Reference CT module к источнику электропитания и к интерфейсному модулю, проконтролировать включение индикаторов питания и коммуникационной активности;
- подключить блок преобразования напряжения Reference VT module к источнику электропитания и к интерфейсному модулю, проконтролировать включение индикаторов питания и коммуникационной активности.
- 8.2.2 Результаты поверки считаются положительными, если происходит включение индикаторов питания и наблюдается коммуникационная активность.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

При включении необходимо проверить номер версии программного обеспечения, установленного в блок преобразования тока Reference CT module и блок преобразования напряжения Reference VT module.

Результат операции считается положительным, если номер версии программного обеспечения, установленного в каждом из блоков, не ниже, чем 1.2.

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВ ИЗ-МЕРЕНИЙ

10.1 Определение погрешности измерений силы постоянного тока

- 10.1.1 Определение погрешности проводится с помощью прибора электроизмерительного эталонного многофункционального Энергомонитор-3.1КМ (далее Энергомонитор-3.1КМ).
 - 10.1.2 Определение погрешности проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 1;
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений силы постоянного тока;
 - задать с источника постоянного тока значение, силой 2 А;
- произвести одновременно измерения силы тока $I_{X=}$ на поверяемом комплексе и $I_{O=}$ на Энергомонитор-3.1КМ.
 - полученные результаты измерений занести в таблицу 3.
- 10.1.3 Повторить операции по п 10.1.2, задавая последовательно с источника тока значения силы, равной: 6, 10, 14 и 18 А.

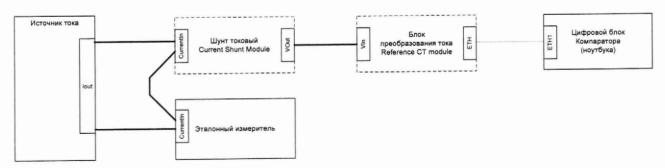


Рисунок 1 — Схема определения погрешности измерений силы постоянного и переменного тока

Таблица 3 – Результаты измерений силы постоянного тока

I _{HOM} , A	I _{O=} , A	I _{X=} , A	δΙ=, %	Допускаемые пределы $\delta I_{=доп}$, %
2				±0,1
6				±0,1
10				±0,1
14				±0,1
18				±0,1

10.2 Определение погрешности измерений силы переменного тока

- 10.2.1 Определение погрешности проводится с помощью прибора электроизмерительного многофункционального Энергомонитор-61850 (далее Энергомонитор-61850).
 - 10.2.2 Определение погрешности проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 1;
- блок преобразования тока Reference CT module и Энергомонитор-61850 подключить к источнику синхронизации с выходом 1PPS от Энергомонитор-61850.
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений силы переменного тока;
 - задать с источника постоянного тока значение, силой 2 А:
- произвести одновременно измерения силы тока $I_{X^{\sim}}$ на поверяемом комплексе и $I_{O^{\sim}}$ на Энергомонитор-61850.
 - полученные результаты измерений занести в таблицу 4.
- 10.2.3 Повторить операции по п 10.2.2, задавая последовательно с источника тока значения силы, равной: 6, 10, 14 и 17 А.

Таблица 4 – Результаты измерений величины переменного тока

I _{HOM} , A	I _{O~} , A	φο~, ΄	I _{X~} , A	φ _{X~} , '	δΙ~, %	Δφ~, ΄	Допускаемые предель	
							δІ~доп, %	Δφ~доп, ′
2							±0,1	±5
6							±0,1	±5
10							±0,1	±5
14							±0,1	±5
17							±0,1	±5

10.3 Определение погрешности измерений напряжения постоянного тока

- 10.3.1 Определение погрешности проводится с помощью калибратора универсального 9100 (далее калибратор), вторичного эталона напряжения постоянного тока (далее ВЭТ) и мультиметр 3458A (далее мультиметр).
- 10.3.2 Определение погрешности измерений напряжения постоянного тока с делителем напряжения ДНВ-2ИЭ
- 10.3.2.1 Определение погрешности до 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 2;
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения постоянного тока;
 - задать на калибраторе напряжение 2 В.
 - произвести измерения напряжения постоянного тока U_{X=} на поверяемом комплексе;

- полученные результаты измерений занести в таблицу 5.
- 10.3.2.2 Повторить операции по п 10.3.2.1, задавая последовательно с калибратора значения напряжения 10, 20 и 100 В.

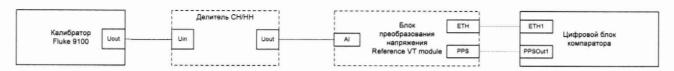


Рисунок 2 – Схема определения погрешности измерений напряжения постоянного и переменного тока до 1000 B

- 10.3.2.3 Определение погрешности свыше 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 3;
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения постоянного тока;
 - задать на источнике высокого напряжения значение напряжение 2000 В.
- произвести одновременные измерения напряжения постоянного тока $U_{X=}$ на поверяемом комплексе и $U_{O=}$ на BЭT;
 - полученные результаты измерений занести в таблицу 5.
- 10.3.2.4 По окончании измерений снимите высокое напряжение, отключите и заземлите установку.

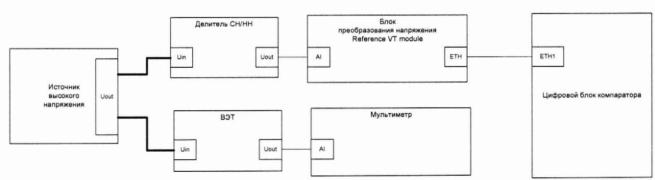


Рисунок 3 — Схема определения погрешности измерений напряжения постоянного тока свыше 1000 В

Таблица 5 – Результаты измерений напряжения постоянного тока при работе с делите-

лем ДНВ-2ИЭ

JICH ATTO TITO				
U _{HOM} , B	U _{O=} , B	$U_{X=}$, B	δU=, %	Допускаемые пределы δU _{=доп} , %
2	2			±2
10	10			±1
20	20			±0,5
100	100			±0,05
2000				±0,05

- 10.3.3 Определение погрешности измерений напряжения постоянного тока с делителем напряжения ДНВ-20ИЭ
- 10.3.3.1 Определение погрешности до 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 2;

- включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения постоянного тока;
 - задать на калибраторе напряжение 15 В.
 - произвести измерения напряжения постоянного тока U_X= на поверяемом комплексе;
 - полученные результаты измерений занести в таблицу 6.
- 10.3.3.2 Повторить операции по п 10.3.2.1, задавая последовательно с калибратора значения напряжения 75, 150 и 750 В.
- 10.3.3.3 Определение погрешности свыше 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 3;
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения постоянного тока;
 - задать на источнике высокого напряжения значение напряжение 5000 В.
- произвести одновременные измерения напряжения постоянного тока $U_{X=}$ на поверяемом комплексе и $U_{O=}$ на $B \ni T$;
 - полученные результаты измерений занести в таблицу 6.
- 10.3.3.4 Повторить операции по п 10.3.3.3, задавая последовательно с источника высокого напряжения значения, равные 10000 и 18000 В.
- 10.3.3.5 По окончании измерений снимите высокое напряжение, отключите и заземлите установку.

Таблица 6 - Результаты измерений напряжения постоянного тока при работе с делите-

лем ДНВ-20ИЭ

ка

JICM ATID-ZOTIO				
U _{HOM} , B	U _{O=} , B	$U_{X=}$, B	δU=, %	Допускаемые пределы δU=доп, %
15	15			±2
75	75			±1
150	150			±0,5
750	750			±0,05
5000				±0,05
10000				±0,05
18000				±0,05
10000				

10.4 Определение основной погрешности измерения напряжения переменного то-

- 10.4.1 Определение погрешности проводится с помощью ГПСЭ единицы электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до $500~\mathrm{kB}$ с гармоническими составляющими от $0.3~\mathrm{до}$ 50 порядка, в диапазоне частот от $15~\mathrm{дo}$ 2500 Гц ГЭТ 191-2019 (далее ГЭТ).
- 10.4.2 Определение погрешности измерений напряжения переменного тока с делителем напряжения ДНВ-2ИЭ
- 10.4.2.1 Определение погрешности до 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 2;
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения переменного тока;
 - задать на калибраторе напряжение 14 В.
 - произвести измерения напряжения переменного тока U_{X^\sim} на поверяемом комплексе;

- полученные результаты измерений занести в таблицу 7.
- 10.4.2.2 Повторить операции по п 10.4.2.1, задавая с калибратора значение напряжения 70 В.
- 10.4.2.3 Определение погрешности свыше 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 4;
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения переменного тока;
 - задать на источнике высокого напряжения значение напряжение 1680 В.
- произвести одновременные измерения напряжения переменного тока $U_{X^{\sim}}$ на поверяемом комплексе и $U_{O^{\sim}}$ на $\Gamma \ni T$;
 - полученные результаты измерений занести в таблицу 7.
- 10.4.2.4 По окончании измерений снимите высокое напряжение, отключите и заземлите установку.

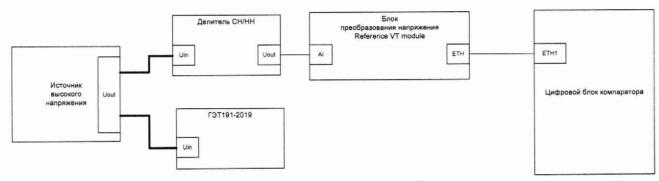


Рисунок 4 — Схема определения погрешности измерений напряжения переменного тока свыше 1000 B

Таблица 7 – Результаты измерений напряжения переменного тока при работе с делитепем ЛНВ-2ИЭ

JIOM ATTO DITE				
U _{HOM} , B	Uo~, B	U _{X∼} , B	δU~, %	Допускаемые пределы δU _{~доп} , %
14				±0,5
70				±0,2
1680				±0,2

- 10.4.3 Определение погрешности измерений напряжения переменного тока с делителем напряжения ДНВ-20ИЭ
- 10.4.3.1 Определение погрешности до 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 2;
 - включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения переменного тока;
 - задать на калибраторе напряжение 120 В.
 - произвести измерения напряжения переменного тока U_{X^\sim} на поверяемом комплексе;
 - полученные результаты измерений занести в таблицу 8.
- 10.4.3.2 Повторить операции по п 10.4.2.1, задавая с калибратора значение напряжения 600 В.
- 10.4.3.3 Определение погрешности свыше 1000 В проводить в следующей последовательности:
 - собрать схему измерений, приведенную на рисунке 4;

- включить питание приборов и дать им прогреться;
- на приборах включить режим измерений или воспроизведений напряжения переменного тока;
 - задать на источнике высокого напряжения значение напряжение 7000 В.
- произвести одновременные измерения напряжения переменного тока $U_{X^{\sim}}$ на поверяемом комплексе и $U_{O^{\sim}}$ на $\Gamma \ni T$;
 - полученные результаты измерений занести в таблицу 8.
- 10.4.3.4 Повторить операции по п 10.4.3.3, задавая с источника высокого напряжения значение, равнее 14400 В.
- 10.4.3.5 По окончании измерений снимите высокое напряжение, отключите и заземлите установку.

Таблица 8 – Результаты измерений напряжения переменного тока при работе с делителем ДНВ-20ИЭ

U _{HOM} , B	Uo∼, B	U _{X~} , B	δU~, %	Допускаемые пределы δU-доп, %
120				±0,5
600				±0,2
7000				±0,2
14400				±0,2

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРО-ЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

11.1 Для каждого измеренного значения $I_{X=}$ из таблицы 3 рассчитайте полученные значения погрешности $\delta I_{=}$ по формуле:

$$\delta I_{=} = 100 \cdot (I_{X=} - I_{O=}) / I_{O=}$$
 (1).

Результаты расчетов занесите в таблицу 3 для каждого вида напряжения.

11.2 Для каждого измеренного значения $I_{X^{\sim}}$ и $\phi_{X^{\sim}}$ из таблицы 4 рассчитайте полученные значения погрешностей δI_{\sim} и $\Delta \phi_{\sim}$ по формулам:

$$\delta I_{\sim} = 100 \cdot (I_{X\sim} - I_{O\sim}) / I_{O\sim}$$
 (2);

$$\Delta \varphi_{\sim} = \varphi_{X\sim} - \varphi_{O\sim} \tag{3}.$$

Результаты вычислений занесите в таблицу 4.

11.3 Для каждого измеренного значения $U_{X=}$ из таблиц 5 и 6 рассчитайте полученные значения погрешности $\delta U_{=}$ по формуле:

$$\delta U_{=} = 100 \cdot (U_{X=} - U_{0=}) / U_{0=}$$
 (3).

Результаты вычислений занесите в таблицы 5 и 6 соответственно.

11.4 Для каждого измеренного значения U_{X^\sim} из таблиц 7 и 8 рассчитайте полученные значения погрешности δU_\sim по формуле:

$$\delta U_{\sim} = 100 \cdot (U_{X\sim} - U_{O\sim}) / U_{O\sim}$$
 (4).

Результаты вычислений занесите в таблицы 7 и 8 соответственно.

- 11.5 Результаты операции поверки считаются удовлетворительными, если полученные значения δI =, δI -, δV -, δV и δV не превышают допустимых пределов, указанных в таблицах с 3 по 8, соответственно.
- 11.6 Критериями принятия специалистом, проводившим поверку, решения по подтверждению соответствия средства измерений метрологическим требованиям, установленным при утверждении типа, являются:
- обязательное выполнение всех процедур, перечисленных в пунктах 8.2, 9, 10 и соответствие действительных значений метрологических характеристик комплекса измерительного КМБТ.141 требованиям, указанным в пункте 11.5 настоящей методики поверки;
- обеспечение прослеживаемости поверяемого комплекса к государственным первичным эталонам единиц величин в соответствии с:
- государственной поверочной схемой для средств измерений электрического напряжения постоянного тока в диапазоне от 1 до 500 кВ, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «30» декабря 2022 г. № 3344;
- государственной поверочной схемой для средств измерений электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до 500 кВ с гармоническими составляющими от 0,3 до 50 порядка, в диапазоне частот от 15 до 2500 Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2316;
- государственной поверочной схемой для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от 1·10-1 до 2·109 Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «03» сентября 2021 г. № 1942;
- государственной поверочной схемой для средств измерений постоянного электрического напряжения и электродвижущей силы, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «30» декабря 2019 г. № 3457;
- государственной поверочной схемой для средств измерений силы постоянного электрического тока в диапазоне от 1·10-16 до 100 A, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «01» октября 2018 г. № 2091;
- государственной поверочной схемой для средств измерений электроэнергетических величин в диапазоне частот от 1 до 2500 Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «23» июля 2021 г. № 1436.
- 11.7 Критериями принятия специалистом, проводившим поверку, решения по подтверждению соответствия комплекса измерительного КМБТ.141 требованиям к рабочим эталонам и указания такого решения в протоколе и свидетельстве о поверке, являются:
- соответствие действительных значений метрологических характеристик комплекса измерительного КМБТ.141 требованиям, указанным в пункте 11.5 настоящей методики поверки;
- применение при поверке эталонов соответствующего разряда по требованию государственных поверочных схем;
- соответствие метрологических характеристик комплекса требованиям, предъявляемым к рабочим эталонам по государственным поверочным схемам:

государственной поверочной схемой для средств измерений электрического напряжения постоянного тока в диапазоне от 1 до 500 кВ, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «30» декабря 2022 г. № 3344;

государственной поверочной схемой для средств измерений электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до 500 кВ с гармоническими составляющими от 0,3 до 50 порядка, в диапазоне частот от 15 до 2500 Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2316.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 В соответствии с действующим законодательством в области обеспечения единства измерений сведения о положительных и отрицательных результатах поверки комплекса передаются в Федеральный информационный фонд по обеспечению единства измерений.
- 12.2 Комплекс, прошедший поверку с положительным результатом, признаётся годными и допускается к применению. На основании письменного заявления владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке, оформленное на бумажном носителе.
- 12.3 При отрицательных результатах поверки комплекс признаётся не годными и не допускается к применению. На основании письменного заявления владельца средства измерений или лица, представившего его на поверку, выдается извещение о непригодности, оформленное на бумажном носителе.
- 12.4 В случае, если периодическая поверка была проведена для меньшего числа величин или на меньшем числе поддиапазонов измерений, то делается запись с указанием поддиапазонов измерений или числа величин, при которых была поведена поверка.

Shuuf

Начальник отдела 206.1 ФГБУ «ВНИИМС» С.Ю. Рогожин

Начальник сектора отдела 206.1 ФГБУ «ВНИИМС» А.В. Леонов