СОГЛАСОВАНО

Первый заместитель генерального директора – заместитель по научной работе ФГУП «ВНИИФТРИ»

Государственная система обеспечения единства измерений

Осциллографы Infiniium Z

Методика поверки

651-21-088 МП

р.п. Менделеево 2022 г.

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Настоящая методика распространяется на осциллографы Infiniium Z (далее - осциллографы) модификаций DSOZ204A, DSAZ204A, DSOZ254A, DSAZ254A, DSOZ334A, DSAZ334A, DSOZ504A, DSAZ504A, DSOZ634A, DSAZ634A, изготовленные компанией «Keysight Technologies, Inc.», США производственная площадка «Keysight Technologies Malaysia Sdn. Bhd.», Малайзия, устанавливает методы, порядок и объем первичной и периодической поверок.

1.2 При проведении поверки должна быть обеспечена прослеживаемость к государственному первичному специальному эталону единицы импульсного электрического напряжения с длительностью импульса от 4·10⁻¹¹ до 1·10⁻⁵ с (ГЭТ 182-2010).

1.3 Методика поверки реализуется посредством методов прямых измерений.

1.4 Объем первичной и периодической поверок приведен в таблице 1.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 При поверке осциллографов выполнить работы в объеме, указанном в таблице 1.

Таблица 1

	Номер	Проведение операции при:		
Наименование операции	пункта ме- тодики поверки	первичной поверке (после ремонта)	периодиче- ской поверке	
Внешний осмотр	7	да	да	
Опробование	8	да	да	
Проверка программного обеспечения (далее – ПО) средства измерений	9	да	да	
Определение метрологических характери- стик средств измерений	10	да	да	
Определение абсолютной погрешности установки напряжения смещения	10.1	да	да	
Определение полосы пропускания	10.2	да	да	
Определение абсолютной погрешности установки коэффициента отклонения	10.3	да	да	
Определение относительной погрешности по частоте внутреннего опорного генератора	10.4	да	да	
Подтверждение соответствия средства измерений метрологическим требованиям	11	да	да	

2.2 Допускается проведение поверки на меньшем числе поддиапазонов измерений и меньшем количестве режимов измерений, которые используются при эксплуатации по соответствующим пунктам настоящей методики поверки. Соответствующая запись должна быть сделана в эксплуатационных документах и свидетельстве о поверке на основании решения эксплуатирующей организации.

2.3 При получении отрицательных результатов при выполнении любой из операций, приведенных в таблице 1, поверка прекращается и осциллограф признается непригодным к применению.

З ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

3.1 При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С

от 18 до 28;

- относительная влажность окружающего воздуха, %, не более

80: от 198 до 242:

питание от сети переменного тока частотой 50 Гц

3.2 Перед проведением поверки выполнить следующие подготовительные работы:

- проверить комплектность осциллографа в соответствии с руководством по эксплуатации (далее - РЭ);

- проверить наличие действующих свидетельств о поверке средств измерений;

- осциллограф и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К поверке допускаются лица со средним или высшим техническим образованием, аттестованные на право поверки средств измерений радиоэлектронных и радиотехнических величин, изучившие техническую и эксплуатационную документацию на осциллографы и используемые средства поверки.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 При проведении поверки применять средства измерений, указанные в таблице 2. Таблица 2

Операции по-	Метрологические и технические требования к	Перечень рекомендуе-					
верки, требую-	средствам поверки, необходимые для проведения	мых средств поверки					
щие применение	поверки						
средств поверки							
10.2	Генератор сигналов: диапазон частот от 250 кГц до 40 ГГц, пределы допускаемой относительной по- грешности установки частоты ±7,5·10 ⁻⁸ ; макси- мальный уровень выходной мощности не менее 10 дБ/мВт, пределы допускаемой относительной по-	Генератор сигналов E8257D (опция 540), per. №53941-13					
	грешности установки уровня мощности ±1,2 дБ						
10.2	Ваттметр, диапазон измерений уровня мощности от минус 35 до плюс 23 дБм, в диапазоне частот до 67 ГГц.	Ваттметр E1914A рег. № 44731-10 с измери- тельными преобразова- телями N8485A, N8487A, N8488A, рег. № 58375-14					
10.1, 10.3	Вольтметр напряжения постоянного тока, пределы допускаемой абсолютной погрешности измерений ±(1,5·10 ⁻⁶ D+0,3·10 ⁻⁶ E) в диапазоне от 0,1 до 1 В, ±(0,5·10 ⁻⁶ D+0,05·10 ⁻⁶ E) в диапазоне от 1 до 10 В, где D – показания мультиметра, E – верхний предел диапазона измерений	Мультиметр 3458А, рег. № 77012-19					
10.4	Частотомер: диапазон измерений частоты от 10 Гц до 46 ГГц, пределы основной допускаемой абсо- лютной погрешности измерений ±(F·10 ⁻⁷ + ΔF), где F – частота сигнала, ΔF – разрешение по частоте	Частотомер электрон- но-счетный 53152А, рег. №61967-15 Стандарт частоты ру- бидиевый FS725, рег. № 31222-06					
* рег. № регистрационный номер в Федеральном информационном фонде по обеспече-							

нию единства измерений.

5.2 Вместо указанных в таблице 2 средств поверки разрешается применять другие приборы, обеспечивающие определение соответствующих параметров с требуемой точностью.

5.3 Применяемые средства поверки должны быть исправны поверены и иметь действующие свидетельства о поверке.

6 ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 При проведении поверки необходимо соблюдать:

- требования по технике безопасности, указанные в эксплуатационной документации (далее - ЭД) на используемые средства поверки;

- правила по технике безопасности, действующие на месте поверки;

- ГОСТ 12.3.019-80, «Правилами техники безопасности при эксплуатации электроустановок потребителей».

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

7.1 При внешнем осмотре проверить:

- отсутствие механических повреждений и ослабление элементов, четкость фиксации их положения;

- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;

- наличие маркировки согласно требованиям эксплуатационной документации.

7.2 Результаты поверки считать положительными, если выполняются все перечисленные в п. 7.1 требования. В противном случае осциллограф бракуется.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

8.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- выполнить операции, оговоренные в документации изготовителяна поверяемый осциллограф по его подготовке к работе;

- выполнить операции, оговоренные в РЭ на применяемые средства поверки по их подготовке к измерениям;

- осуществить прогрев приборов для установления их рабочих режимов.

8.2 Опробование

8.2.1 Подготовить осциллограф к работе в соответствии с технической документацией изготовителя. Проверить отсутствие сообщений о неисправности в процессе загрузки осциллографа.

8.2.2 Соединить встроенный калибратор с каналом 1 с помощью калибровочного кабеля и переходников «SMA-прецизионный BNC». Нажать клавишу «DefaultSetup» на передней панели. После короткой паузы установится по умолчанию конфигурация осциллографа.

8.2.3 Нажать клавишу Autoscale на передней панели. После короткой паузы устанавливается коэффициент развертки и масштаб по вертикали. На экране появляется меандр с размахом примерно 5 делений, при этом на экране отображаются около четырех периодов сигнала. Если эта осциллограмма отсутствует, следует проверить параметры и правильность процедуры включения электропитания, правильность присоединения пробника к входному соединителю BNC и калибровочному выходу пробника.

8.2.4 Перемещая «мышь» по коврику, убедиться в том, что указатель «мыши» на экране отслеживает ее перемещение.

8.2.5 Прикоснуться стилусом к экрану и, перемещая его, убедиться в том, что указатель отслеживает его перемещение.

8.2.6 Результаты поверки считать положительными, если выполняются процедуры, приведенные в пп. 8.2.1 – 8.2.5.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

Проверку соответствия заявленных идентификационных данных ПО осциллографа провести в следующей последовательности:

- проверить наименование ПО;

проверить идентификационное наименование ПО;

- проверить номер версии (идентификационный номер) ПО;

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Infiniium Oscilloscope Software
Номер версии (идентификационный номер) ПО	не ниже 06.70.00101
Цифровой идентификатор ПО	-

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВ ИЗМЕРЕНИЙ

10.1 Определение абсолютной погрешности установки напряжения смещения

10.1.1 Абсолютную погрешность установки напряжения смещения определять по формуле (1):

 $\Delta_{cM} = \pm (\Delta_{\delta a3} + \Delta_0)$;

(1)

где $\Delta_{6a3} = - 6a30bas составляющая погрешности установки напряжения смещения;$

 Δ_0 = -составляющая погрешности установки напряжения смещения из-за дрейфа«нуля».

10.1.2 Определение составляющей погрешности установки напряжения смещения изза дрейфа «нуля»

10.1.2.1 Прогреть осциллограф в течении 30 минут.

10.1.2.2 Установить значение входного импеданса 50 Ом.

10.1.2.3 Отсоединить все кабели от входов осциллографа.

10.1.2.4 Нажать клавишу DEFAULTSETUP для настройки осциллографа:

- нажать программную клавишу SETUP>ACQUISITION....;

- когда отобразится меню ACQUISITION, сделать установки в соответствии с рисунком 1.

10.1.2.5 Настроить осциллограф для измерения напряжения следующим образом:

- установить коэффициент отклонения канала 1 равным 10 мВ/дел;

- перейти на вкладку Vertical Meass левой стороне экранаиперетащить значок Средняя измерения на канал 1 сигнала

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2).

Когда отобразиться программное окно ENTERMEASUREMENTINFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

Рисунок 1

Рисунок 2

				<u> </u>				-2.00
	-500 ns -400 ns	-300 ns	-200 ns -100 ns	0.0 s	100 ns 200 n	s 300 ns	400 ns	500 ns
0	100 ns/ 0.0	0 s) (9 🕦 🖪					
Results				- and - and		you water		
Measurement	Current	Mean	Min	Max	Range (Max-Min)	Std Dev	Count	
O V avo(1)	-243.492 mV	-239.645 mV	-257.289 mV	-94.2947 mV	162.994 mV	9,41220 mV	1505	

Рисунок 3

10.1.2.6 Нажать клавишу CLEARDISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.1.2.7 Записать полученное значение среднего напряжения U_{cp} (определяется как «Mean» на экране осциллографа) в таблицу 4.

Таблица4 Измеренные значения U_{ср}, мВ Значение ко-Допустимые канал 4 эффициента значения U_{ср} канал 1 канал 2 канал 3 отклонения (Δ₀), мВ 3 4 5 6 2 5мВ/дел ± 1.8 ± 1.8 10 мВ/дел 20 мВ/дел ± 2.6 50 мВ/дел ± 5 ± 9 100 мВ/дел 200 мВ/дел ± 17 500 мВ/дел ± 41 ± 81 1 В/дел

 $\Pi p u m e ч a н u e$ - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEARDISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.1.2.8 Изменить значение коэффициента отклонения канала 1 на 10 мВ/дел, нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256, затем записать полученное значение среднего напряжения U_{cp} (определяется как «Mean» на экране осциллографа) в таблицу 4.

10.1.2.9 Повторить операции п. 10.1.2.8 для всех значений коэффициента отклонения канала 1 из таблицы 4.

10.1.2.10 Нажать клавишу DefaultSetup, отключить канал 1 и включить канал 2.

10.1.2.11 Настроить осциллограф для измерения значения U_{ср} на канале 2:

- нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION;

- когда отобразится меню ACQUISITION SETUP, установить значение #Avgs равным 256:

изменить значение коэффициента отклонения канала 2 на 5 мВ/дел;

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2);

- когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 2

Measurement area = Entire Display

и нажать программную клавишу ОК (рисунок 3).

10.1.2.12 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256.

Записать полученное значение среднего напряжения Ucp (определяется как «Mean» на

экране осциллографа) в таблицу 4.

Повторить пункт 10.1.2.10 для всех значений коэффициента отклонения канала 2 из таблицы 4.

10.1.2.13 Повторить операции п.п. 10.1.2.10 – 10.1.2.12 для каналов 3 и 4.

10.1.2.14 Результаты поверки считать положительными, если значения U_{cp} находятся в пределах, приведенных в графе 2 таблицы4. В противном случае осциллограф бракуется и направляется в ремонт.

10.1.3 Определение базовой составляющей погрешности установки напряжения смещения

10.1.3.1 Подключить калибровочный выход осциллографа через тройник ко входу 1 осциллографа и входу цифрового мультиметра.

10.1.3.2 Нажать клавишу DEFAULTSETUP для настройки осциллографа - нажать программную клавишу SETUPMENU и выбрать значение ACQUISITION; когда отобразится меню ACQUISITION SETUP, сделать установки в соответствии с рисунком 1.

10.1.3.3 Установить коэффициент отклонения 1 канала 10 мВ/дел. В меню ACQUISITION выбрать ENABLED AVERAGING и ввести количество усреднений равное 256.Когда отобразиться программное окно ENTERMEASUREMENTINFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК.

10.1.3.4 Нажать клавишу Clear Display на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

- ручкой регулировки постоянного смещения установить его равным 400 мВ;

- в меню CALIBRATION в выпадающем списке выбрать DC - постоянное напряжение на выходе калибратора, затем установить напряжение 400 мВ в строке LEVEL;

10.1.3.5 Включить на осциллографе функцию автоматического измерения среднего значения напряжения Vavg, и в окне измерения выбрать MEASURMENT AREA - ENTIRE DISPLAY.

10.1.3.6 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра Uм+ и показания U_{ocu+} (V_{avg}) осциллографа в таблицу 5.

10.1.3.7 Ручкой регулировки постоянного смещения установить его равным минус 400 мВ. В меню CALIBRATION в выпадающем списке выбрать DC - постоянное напряжение на выходе калибратора, затем установить напряжение минус 400 мВ в строке LEVEL.

10.1.3.8 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_м. и показания осциллографа U_{оси}. в таблицу 5.

10.1.3.9 Ручкой регулировки постоянного смещения установить его равным 0. В меню CALIBRATION в выпадающем списке выбрать DC - постоянное напряжение на выходе калибратора, затем установить напряжение минус 0 в строке LEVEL.

10.1.3.10 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_0 и показания осциллографа U_{ocu0} в таблицу 5.

Таблица	.5							
Установлен-	Напряжение	По-	По-	Пока-	Пока-	Пока-	Пока-	Значение
ный коэффи-	на выходе	каза-	каза-	зания	зания	зания	зания	коэффи-
циент откло-	встроенного	ния	ния	муль-	осцил-	осцил-	осцил-	циента
нения	калибрато-	муль-	муль-	ти-	логра-	логра-	логра-	К _{баз} , %
	ра/установл	ти-	ти-	метра	фа	фа	фа	
	ен-ное по-	метра	метра	U _{M0}	U _{ocu+}	U _{ocu} -	U _{ocu0}	
	стоянное	U _{M+}	U _M .					
	смещение,							
	В							
1 В/ дел	±2,4							
500 мВ/ дел	±2,4							
200 мВ/ дел	±2,2							
100 мВ/ дел	±1,2							
50 мВ/ дел	±0,7							
20 мВ/ дел	±0,4							
10 мВ/ дел	±0,4							

10.1.3.11 Повторить операции пп. 10.1.3.2 – 10.1.3.10, изменяя напряжение на выходе встроенного калибратора и коэффициент отклонения канала 1 в соответствии с таблицей 5.

10.1.3.12 Рассчитать значение коэффициента Кбаз, используя формулы (2) и (3):

$$K_{\text{da3}} = \left[(U_{\text{ocu}^+} - U_{\text{ocu}^0}) / (U_{\text{M}^+} - U_{\text{M}^0}) - 1 \right] \cdot 100 \% \quad , \tag{2}$$

 $K_{\text{fag}} = \left[(U_{\text{ocu}} - U_{\text{ocu}}) / (U_{\text{M}} - U_{\text{M}}) - 1 \right] \cdot 100 \% \quad . \tag{3}$

10.1.3.13 Повторить п.п. 10.1.3.2 - 10.1.3.12 для каналов 2, 3 и 4.

10.1.3.14 Результаты испытаний считать положительными, если значения коэффициента К_{баз} находятся в пределах ±2 %. В противном случае результат испытаний отрицательный.

10.1.4 Вычислить по формуле (1) значение абсолютной погрешности установки напряжения смещения.

10.2 Определение полосы пропускания

10.2.1 Собрать измерительную схему в соответствии с рисунком 4.

Рисунок 4

10.2.2 Установить коэффициент отклонения канала 1 осциллографа равным 10 мВ/дел, а коэффициент развертки равным 16 нс/дел.

10.2.3 Нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION. Когда отобразится меню ACQUISITION SETUP, установить следующие значения параметров осциллографа:

Memory Depth = Automatic;

Sampling rate = Maximum (160 GSa/s);

Sin(x)/x Interpolation =Auto;

Averaging = Disabled.

10.2.4 Установить значение измеряемого осциллографом напряжения как V_{ms}(в соответствии с рисунком 5).

Add Measuren	nent		a since			? X
Measuremen	t —			Description	1	ОК
All Peak-Peak Time E V Min Vertical V Max		Ô			Apply	
Clock Data Mixed	¥	RMS Amplitude Race	v		V	Cancel
Setup	: 1					
Measureme	nt Ar	ea		RMS Type	Units	
O Single (Cycle			O AC	O Volt	
O Entire D	Displa	y		O DC	🔵 dBm	
Thresholds S	Setup	10, 50, 90% of To	p, Base			
Limit	Test	Setup				

Рисунок 5

10.2.5 Установить следующие значения параметров осциллографа в программном окне «EnterMeasurementInfo»:

Source = Channel 1;

Measurement Area = Entire Display;

RMSType = AC.

10.2.6 Установить на генераторе выходной сигнал частотой 50 МГц и амплитудой, равной 4 делениям на экране осциллографа.

10.2.7 Измерить уровень выходной мощности сигнала генератора Р_{изм}с помощью ваттметра и пересчитать его в среднеквадратическое значение (СКЗ) напряжения по формуле (4): U_{вх50МГц} = (Р_{изм}· 50 Ом)^{1/2}. (4)

Записать полученное значение в соответствующую колонку таблицы 6. Таблица 6

Значение коэффициента от-	Измеряемые параметры					
клонения осциллографа	U _{вх50МГц}	U _{вых50МГц}	АЧХ _{50МГц}	U _{вх.максf}	U _{вых.максf}	АЧХ _{максf}
		Канал 1				
10 мВ/дел						
20 мВ/дел						
50 мВ/дел						
100 мВ/дел						
200 мВ/дел						
500 мВ/дел						
1 В/дел						

Продолжение таблицы 6

Значение коэффициента от-		Измеряемые параметры				
клонения осциллографа	U _{вх50МГц}	U _{вых50МГц}	АЧХ _{50МГц}	U _{вх.максf}	U _{вых.максf}	АЧХ _{максf}
		Канал 2			1	
10 мВ/дел						
20 мВ/дел						
50 мВ/дел						
100 мВ/дел					E	
200 мВ/дел						
500 мВ/дел						
1 В/дел						
		Канал 3				
10 мВ/дел						
20 мВ/дел						
50 мВ/дел						
100 мВ/дел			-			
200 мВ/дел						
500 мВ/дел						
1 В/дел						
		Канал 4				
10 мВ/дел						
20 мВ/дел						
50 мВ/дел						
100 мВ/дел						
200 мВ/дел						
500 мВ/дел						
1 В/дел						
		Канал 1R				
10 мВ/дел						
20 мВ/дел						
50 мВ/дел						
100 мВ/дел						
		Канал 3R				
10 мВ/дел						
20 мВ/дел						
50 мВ/дел						
100 мВ/дел						

10.2.8 Измерить СКЗ напряжения U_{вых50МГц} с помощью осциллографа и записать полученное значение в соответствующую колонку таблицы 6.

10.2.9 Рассчитать значение амплитудно-частотной характеристики (АЧХ) осцилло-графа на частоте 50 МГц по формуле (5):

$$AYX_{50M\Gamma\mu} = U_{Bbix50M\Gamma\mu} / U_{Bx50M\Gamma\mu}$$
(5)

Записать полученное значение в соответствующую колонку таблицы 6.

10.2.10 Установить значение частоты выходного сигнала генератора и значения параметров осциллографа в соответствии с таблицей 7.

10.2.11 Измерить уровень выходной мощности сигнала генератора Р_{изм} с помощью ваттметра и пересчитать его в СКЗ напряжения по формуле (6):

11

$$U_{\text{BXMAKCf}} = (P_{\mu_{3M}} \cdot 50 \text{ Om})^{1/2} . \tag{6}$$

Записать полученное значение в соответствующую колонку таблицы 6.

10.2.12 Измерить СКЗ напряжения U_{вых.максf}с помощью осциллографа и записать полученное значение в соответствующую колонку таблицы 5.

10.2.13 Рассчитать значение АЧХ осциллографа на максимальной частоте пропускания по формуле (7):

$$A \, \mathcal{H} X_{\text{Makef}} = 20 \, \lg \left(\frac{U_{\text{suxmakef}}}{A \, \mathcal{H} X_{50 \, M\Gamma y}} \right). \tag{7}$$

10.2.14 Повторить операции п.п. 10.2.2 – 10.2.13 для всех значений коэффициента отклонения из таблицы 7 и для всех каналов осциллографа.

Таблица 7

	Установки					
Модификация осциллографа	значение коэффициента раз-	верхняя граничная частота				
	вертки, пс/дел	полосы пропускания, ГГц				
DSOZ204A, DSAZ204A	50	20				
DSOZ254A, DSAZ254A		25				
DSOZ334A, DSAZ334A		32				
DSOZ504A, DSAZ504A (кана-	16	50				
лы 1R, 3R)						
DSOZ594A, DSAZ594A		59				
(каналы 1R, 3R)						
DSOZ634A, DSAZ634A (кана-		62				
лы 1R, 3R)						

10.3 Определение абсолютной погрешности установки коэффициента отклонения

10.3.1 Собрать измерительную схему в соответствии с рисунком 4.

10.3.2 Убедиться, что напряжение на входе каналов осциллографа не превышает значений ± 5 В.

10.3.3 Прогреть осциллограф в течении 30 минут.

10.3.4 Отсоединить все кабели от входов осциллографа.

10.3.5 Нажать клавишу Default Setup для настройки осциллографа - нажать программную клавишу Setup menu и выбрать значение Acquisition; когда отобразится меню Acquisition Setup, сделать установки в соответствии с рисунком 1.

10.3.6 Установить на встроенном калибраторе осциллографа (CALOUT) напряжение плюс 30 мВ, для чего (рисунок 8):

- выбратьнастройку «Utilities = Calibration Output»;

- выбрать выходной сигнал DC (в левом верхнем углу рисунка 6);

- установить уровень 30 мВ;

- нажать кнопку CLOSE.

Calibration Out	put	? ×
Signal Output		
DC		Aux Out Risetime
		O Fast
Level		Slow
30.0 mV		
and the second s		

Рисунок 6

10.3.7 Настроить осциллограф для измерений среднего значения напряжения следующим образом:

- установить коэффициент отклонения канала 1 равным 10 мВ/дел;

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2).

Когда отобразиться программное окно ENTERMEASUREMENTINFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

10.3.8 Нажать клавишуCLEARDISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.3.9 Записать полученные значения среднего напряжения, измеренные мультиметром (U_{м+}) и осциллографом (U_{осц+}) (определяется как «Mean» на экране осциллографа) в таблицу 8.

 $\Pi p u m e u a + u e$ - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEARDISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.3.10 Установить на встроенном калибраторе осциллографа (CALOUT) напряжение минус 30 мВ аналогично п. 8.6.6.

10.3.11 Нажать клавишу CLEARDISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.3.12 Записать полученные значения среднего напряжения, измеренные мультиметром (U_м.) и осциллографом (U_{осц}.) (определяется как «Mean» на экране осциллографа) в таблицу 8.

10.3.13 Вычислить относительную погрешность установки коэффициента отклонения δ_{K_0} (в процентах) по формулам (8) и (9):

- для коэффициентов отклонения менее 1 В/дел:

$$\delta_{\rm Ko} = \left[(U_{\rm ocu+} - U_{\rm ocu-}) / (U_{\rm M+} - U_{\rm M-}) - 1 \right] \cdot 75 ; \qquad (8)$$

- для коэффициентов отклонения 1 В/дел и более:

$$\delta_{\text{Ko}} = \left[(U_{\text{ocu}+} - U_{\text{ocu}-}) / (U_{\text{M}+} - U_{\text{M}-}) - 1 \right] \cdot 60 . \tag{9}$$

Таблица 8

Значение ко-	Значение	Измере	нные знач	ения напр	яжения	Вычисленное	Пределы до-
эффициента	напряжения	U _{M+}	U _M .	U _{ocu-}	U _{ocu+}	значение по-	пускаемой по-
отклонения	на выходе					грешности	грешности
осциллогра-	осциллогра-					коэффициента	установки ко-
фа	фа CalOut					отклонения	эффициента
-	Setting					δ _{Ko}	отклонения,%
			Ка	нал 1			
10 мВ/дел	±30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	±150 мВ						
100 мВ/дел	±300 мВ						±2
200 мВ/дел	±600 мВ						
500 мВ/дел	±1,5 B						
1 В/дел	±2,4 B						

Продолжение таблицы 8

Значение ко-	Значение	Измерен	ные знач	ения напр	яжения	Вычисленное	Пределы до-
эффициента	напряжения	U _{M+}	U _M -	U _{ocu-}	U _{ocu+}	значение по-	пускаемой по-
отклонения	на выходе					грешности	грешности
осциллогра-	осциллогра-					коэффициента	установки ко-
фа	фа CalOut					отклонения	эффициента
	Setting					δ _{Ko}	отклонения,%
			Ка	нал 2			
10 мВ/дел	±30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	±150 мВ						
100 мВ/дел	±300 мВ						±2
200 мВ/дел	±600 мВ						
500 мВ/дел	±1,5 B						
1 В/дел	±2,4 B						
			Ка	анал 3			
10 мВ/дел	±30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	±150 мВ						
100 мВ/дел	±300 мВ						±2
200 мВ/дел	±600 мВ						
500 мВ/дел	±1,5 B						
1 В/дел	±2,4 B						
			Ка	анал 4			
10 мВ/дел	±30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	±150 мВ						
100 мВ/дел	±300 мВ						±2
200 мВ/дел	±600 мВ						
500 мВ/дел	±1,5 B						
1 В/дел	±2,4 B						
			Ка	нал 1R			
10 мВ/дел	±30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	±150 мВ						
100 мВ/дел	±300 мВ						±2
200 мВ/дел	±600 мВ						
500 мВ/дел	±1,5 B						
1 В/дел	±2,4 B						
			Ка	нал 3R			
10 мВ/дел	±30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	±150 мВ						
100 мВ/дел	±300 мВ						±2
200 мВ/дел	±600 мВ						
500 мВ/дел	±1,5 B						
1 В/дел	±2,4 B						

10.3.14 Повторить измерения по п.п. 10.3.7 – 10.2.11 для всех значений коэффициента отклонения из таблицы 8. При каждом измерении устанавливать положительное и отрицательное значение напряжения на выходе CALOUT из таблицы 8.

10.3.15 Повторить измерения по п.п. 10.3.7 – 10.3.12 для всех каналов осциллографа.

10.4 Определение относительной погрешности по частоте внутреннего опорного генератора

10.4.1 Собрать измерительную схему в соответствии с рисунком 9. При этом выход опорного сигнала (10 МГц REF) на задней панели осциллографа подключить к входу А частотомера.

Рисунок 8

10.4.2 На частотомере установить: режим измерения частоты по входу А; входное сопротивление частотомера 50 Ом, переключатель X1/X10 в положение X1; вход открытый.

10.4.3 На осциллографе нажать клавишу Utility и программируемые клавиши Options, RearPanel, RefsignalOutput, 10MHzoutput.

10.4.4 Измерить частотомером частоту опорного сигнала осциллографа и определить относительную погрешность осциллографа по частоте внутреннего опорного генератора по формуле (10):

$$\delta_{\rm or} = (10^7 - F_{\rm q})/10^7 , \qquad (10)$$

где F_ч – показания частотомера, Гц.

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

11.1 Определение абсолютной погрешности установки напряжения смещения

Результаты поверки считать положительными, если значения абсолютной погрешности установки напряжения смещения не превышают значений, рассчитанных по выражениям: ±(0,02 · U_{смещ} + 0,01 · 8 · [дел] · К_{откл}) при напряжении входного сигнала до 3,5 B; ±(0,02 · U_{смещ} + 0,01 · 8 · [дел] · К_{откл} + 1 мВ) при напряжении входного сигнала свыше 3,5 В. В противном случае осциллограф бракуется и направляется в ремонт.

11.2 Определение полосы пропускания

Результаты поверки считать положительными, если значения АЧХ_{максf} находятся в пределах ± 3 дБ. В противном случае осциллограф бракуется и направляется в ремонт

11.3 Определение абсолютной погрешности установки коэффициента отклонения

Результаты поверки считать положительными, если значения погрешности установки коэффициентов отклонения находятся в пределах ± 2 %. В противном случае осциллограф бракуется и направляется в ремонт.

11.4 Определение относительной погрешности по частоте внутреннего опорного генератора

11.4.1 Результаты поверки считать положительными, если значение относительной погрешности осциллографа по частоте внутреннего опорного генератора находится в пределах ± (0,1·10⁻⁶+ 0,5·T₃·10⁻⁶), где T₃ – количество лет эксплуатации осциллографа; δ_{опк} – относи-

тельная погрешность опорного генератора по результатам последней поверки.В противном случае осциллограф бракуется и направляется в ремонт.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

12.1 Результаты поверки осциллографов подтверждаются сведениями о результатах поверки средств измерений включенными в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца осциллографов, и (или) лица, представившего его на поверку, выдается свидетельство о поверке средств измерений, и (или) в паспорт осциллографов вносится запись о проведенной поверке, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки, или выдается извещение о непригодности к применению средств измерений.

12.2 Результаты поверки оформить по установленной форме.

Начальник отделения ФГУП «ВНИИФТРИ»

О.В.Каминский