Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

СОГЛАСОВАНО Главный метролог

АО «ПриСТ»

А.Н. Новиков

🕠 февраля 2023 г.

«ГСИ. Измерители RLC АКИП-6112. Методика поверки»

МП-ПР-08-2023

1 ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика распространяется на измерители RLC АКИП-6112 (далее измерители) и устанавливает методы и средства их поверки.

Прослеживаемость при поверке измерителей обеспечивается в соответствии со следующими государственными поверочными схемами:

- государственной поверочной схемой, утвержденной приказом Росстандарта от 30 декабря 2019 г. № 3456, к государственному первичному эталону единицы электрического сопротивления ГЭТ 14-2014.
- ГОСТ 8.019-85 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений тангенса угла потерь» к государственному первичному эталону единицы угла потерь ГЭТ 143-85;
- ГОСТ 8.371-80 «ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений электрической емкости» к государственному первичному эталону елиницы электрической емкости ГЭТ 25-79;
- ГОСТ Р 8.732-2011 «ГСИ. Государственная поверочная схема для средств измерений индуктивности» к государственному первичному эталону единицы индуктивности ГЭТ 15-79.

Для обеспечения реализации методики поверки при определении метрологических характеристик по пунктам 9.1 – 9.5 применяется метод прямых измерений.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

Таблица 1 – Операции поверки

-	Обязате	Номер		
Наименование операции		аций поверки при	раздела (пункта)	
Transferrobatine oriepatini	первичной	периодической	методики	
	поверке	поверке		
1 Внешний осмотр средства	Да	Да	Раздел 6	
измерений	Да	да	т аздел о	
2 Подготовка к поверке и опробование	Да	Да	Раздел 7	
средства измерений	Да	Да		
3 Проверка программного обеспечения	Да	Да	Раздел 8	
4 Определение диапазона и				
абсолютной погрешности установки	Да	Да	9.1	
частоты тестового сигнала				
5 Определение диапазона и				
абсолютной погрешности установки	Да	Да	9.2	
уровня тестового сигнала				
6 Определение основной абсолютной	Да Да			
погрешности измерения		Да	9.3	
сопротивления переменному току				
7 Определение основной абсолютной				
погрешности измерения	Да	Да	9.4	
электрической емкости				
8 Определение основной абсолютной				
погрешности измерения	Да	Да	9.5	
индуктивности				
9 Определение основной абсолютной				
погрешности измерения	Да	Да	9.6	
сопротивления постоянному току ¹⁾				
10 Оформление результатов поверки	Да	Да	Раздел 10	
Примечание				
$^{1)}$ — для модификации АКИП-6112/2				

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (23±5) °С;
- относительная влажность от 20 % до 80 %;
- атмосферное давление от 84 до 106 кПа;
- напряжение питающей сети от 220 до 240 B;
- частота питающей сети от 47 до 63 Гц.

4 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

Таблица 2 – Средства поверки

I domina 2	средетви поверки	
Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
9.1	Диапазон измерения частот от 10 Γ ц до 400 М Γ ц; допускаемая относительная погрешность $\pm 1\cdot 10^{-6}$	Частотомер электронно-счетный АКИП-5201/1 рег. № 57319-14
9.2	Диапазон измерения напряжения переменного тока от 10 мВ до 750 В (в диапазоне частот 10 Γ ц до 300 к Γ ц); абсолютная погрешность от $\pm (0,0006 \cdot U_k + 0,0004 \ U_{np})$ до $\pm (0,006 \cdot U_k + 0,0008 \ U_{np})$.	Вольтметр универсальный В7-78/1 рег. № 52147-12
9.3, 9.6	Диапазон номинальных значений сопротивления от 1 Ом до 1 МОм (в диапазоне частот от 0 до 10 МГц); пределы отклонения действительного значения от 0,03 % до 0,3 %	Набор мер электрического сопротивления Н2-2 рег. № 76668-19
9.4	Мера емкости P597/7 номинальное значение 1000 пФ; предел абсолютной погрешности $\pm 0,02$ %; P597/19 номинальное значение 1 мкФ; предел абсолютной погрешности $\pm 0,05$ %	Меры емкости образцовые Р597 рег. № 2684-70
9.5	Мера индуктивности Р5113 номинальное значение $100~\text{м}\Gamma$ н; предел абсолютной погрешности $\pm 0,02~\%$; Р5115 номинальное значение $1~\Gamma$ н; предел абсолютной погрешности $\pm 0,02~\%$	Меры индуктивности P5101-P5115 per. № 9046-83

Примечание — Допускается использовать другие средства измерений утвержденного типа, поверенные и обеспечивающие соотношение погрешностей измерений не более 1/3 допускаемой погрешности определяемой метрологической характеристики СИ.

Таблица 3 – Вспомогательное оборудование

		Перечень
Измеряемая	Метрологические и технические требования к	рекомендуемых
величина	вспомогательным средствам поверки	вспомогательных
		средств поверки
	Диапазон измерений температуры от 0 до +50 °C. Пределы допускаемой абсолютной	
Температура окружающего воздуха, относительная влажность	погрешности измерений температуры ±0,25 °C. Диапазон измерений относительной влажности окружающего воздуха от 0 до +100 %. Пределы допускаемой абсолютной погрешности измерений относительной влажности окружающего воздуха ±2 %.	Термогигрометр Fluke 1620A (рег. № 36331-07)

Продолжение таблицы 3

Атмосферное давление	Диапазон измерений атмосферного давления от 30 до 120 кПа. Пределы допускаемой абсолютной погрешности измерений атмосферного давления ±300 Па.	Измеритель давления Testo 511 (рег. № 53431-13)
Напряжение питающей сети, частота питающей сети	Диапазон измерений переменного напряжения от 50 до 480 В. Пределы допускаемой относительной погрешности измерений переменного напряжения 0,2 %. Диапазон измерений частоты от 45 до 66 Гц. Пределы допускаемой относительной погрешности измерений частоты 0,1 %.	Прибор универсальный измерительный параметров электрической сети DMG 800 (рег. № 49072-12)

Примечание: Допускается использовать другие средства измерений утвержденного типа, поверенные и имеющие метрологические характеристики, аналогичные указанным в данной таблице

5 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 5.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.
- 5.3 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

6 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными:
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 7.2 Контроль условий проведения поверки по пункту 3 должен быть проведен перед началом поверки.
- 7.3 Опробование измерителя проводят путем проверки его на функционирование в соответствии с руководством по эксплуатации.

8. ПРОВЕРКА ИДЕНТИФИКАЦИОННЫХ ДАННЫХ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Проверка идентификационных данных программного обеспечения измерителей осуществляется путем вывода на дисплей прибора информации о версии программного обеспечения (ПО). Информация о версии ПО содержится в меню «SYSTEM INFO».

Результат считать положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Идентификационные данные (признаки)	Значение
Номер версии (идентификационный номер ПО)	не ниже V1.11

9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК И ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЯ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

Периодическая поверка измерителя, в случае его использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца измерителя, оформленного в произвольной форме.

9.1 Определение диапазона и абсолютной погрешности установки частоты тестового сигнала.

Определение диапазона и абсолютной погрешности установки частоты тестового сигнала проводить при помощи частотомера АКИП-5102/1 (далее по тексту – частотомер) методом прямых измерений в следующей последовательности:

- 9.1.1 Один штекер кабеля типа «BNC» подключить к гнезду HCUR измерителя, а второй штекер к гнезду частотомера.
- 9.1.2 На измерителе нажать кнопку «MEAS», далее кнопкой со стрелкой с направлением вниз выбрать параметр «FREQ» (он будет выделен желтой подсветкой).
- 9.1.3 Цифрами клавиатуры измерителя набрать нужное значение поверяемой отметки, а также единицу измерения «Hz/kHz».
- 9.1.4 Выбрать параметр «LEVEL» (он будет выделен желтой подсветкой). Установить значение 1 В.
- 9.1.5 На измерителе установить поочередно значения частоты тестового сигнала в соответствии с таблицей 5. Зафиксировать показания частотомера и занести их в таблицу 5.

Результаты поверки считать положительными, если показания измерителя находятся в пределах, приведенных в таблице 5.

Таблица 5 – Поверяемые значения частоты тестового сигнала

Значения установленной	Значения измеренной	Нижний предел допускаемых	Верхний предел допускаемых
частоты	частоты	значений	значений
50,000 Гц		49,995 Гц	50,005 Гц
100,00 Гц		99,99 Гц	100,01 Гц
1,0000 кГц		0,9999 кГц	1,0001 кГц
10,000 кГц		9,999 кГц	10,001 кГц
100,00 кГц		99,99 кГц	100,01 кГц
200,00 κΓιι ¹⁾		199,98 кГц	200,02 кГц
Примечание:			
1) Значение частоты т	ест-сигнала для АКИП-611	2/2	

9.2 Определение диапазона и абсолютной погрешности установки уровня тестового сигнала.

Определение диапазона и абсолютной погрешности установки уровня тестового сигнала проводить при помощи вольтметра универсального B7-78/1 (далее по тексту – вольтметр) методом прямых измерения в следующей последовательности:

- 9.2.1 Штекер BNC кабеля типа «BNC-банан» подключить к гнезду HCUR измерителя, а штекер «банан» к вольтметру в соответствии с РЭ вольтметра B7-78/1. На вольтметре установить режим измерения напряжения переменного тока.
- 9.2.2 На измерителе нажать кнопку «MEAS», далее кнопкой со стрелкой с направлением вниз выбрать параметр «LEVEL» (он будет выделен желтой подсветкой).
- 9.2.3 Цифрами клавиатуры измерителя набрать нужное значение поверяемой отметки, а также единицу измерения «mV/V».

- 9.2.4 Выбрать параметр «FREQ» (он будет выделен желтой подсветкой). Установить значение 1 кГц.
- 9.2.5 На измерителе установить поочередно значения напряжения тестового сигнала в соответствии с таблицей 6. Зафиксировать показания вольтметра и занести их в таблицу 6.

Результаты поверки считать положительными, если показания измерителя находятся в пределах, приведенных в таблице 6.

Таблица 6 – Поверяемые значения напряжения тестового сигнала

Значения	Значения	Нижний предел	Верхний предел
установленного	измеренного	допускаемых	допускаемых
напряжения	напряжения	значений	значений
10 мВ		7 мВ	13 мВ
100 мВ		88 мВ	112 мВ
500 мВ		448 мВ	552 мВ
1,000 B		0,898 B	1,102 B
2,000 B		1,798 B	2,202 B

9.3 Определение основной абсолютной погрешности измерения сопротивления переменному току

Определение основной абсолютной погрешности измерения сопротивления переменному току проводить при помощи мер сопротивления H2-2 методом прямых измерений в следующей последовательности:

- 9.3.1 На измерителе нажать кнопку «SET» и выбрать вкладку «CORRECTION». Произвести калибровку нуля согласно РЭ измерителя.
- 9.3.2 Кабелями типа «BNC» подключить меру сопротивления к измерителю по четырехпроводной схеме.
- 9.3.3 На измерителе нажать кнопку «MEAS», далее кнопкой со стрелкой с направлением вниз выбрать параметр «FUNC» (он будет выделен желтой подсветкой). Установить режим «Rs-Q». Кнопкой со стрелкой с направлением вправо выбрать параметр «SPEED», установить скорость измерения «SLOW» или «МЕD».
- 9.3.4 Измерить поочередно значения сопротивления при соответствующей частоте и напряжении в соответствии с таблицей 7. Зафиксировать показания и занести их в таблицу 7.

Результаты поверки считать положительными, если показания измерителя находятся в пределах, приведенных в таблице 7.

Таблица 7 – Поверяемые значения сопротивления переменному току

Значения сопротивления	Значения частоты сигнала	Значения установленного напряжения	Значения измеренного сопротивления	Пределы допускаемой абсолютной погрешности
1	2	3	4	5
	50 Гц	1 B		±0,003897 Ом
	50 Гц	2 B		±0,004155 Ом
	100 Гц	1 B		±0,0017 Ом
	100 Гц	2 B		±0,0021 Ом
1 Ом	1 кГц	1 B		±0,0017 Ом
1 OM	1 кГц	2 B		±0,0021 Ом
	100 κΓц ¹⁾	1 B		±0,0032 Ом
	100 κΓц ¹⁾	2 B		±0,0041 Ом
	200 κΓц ²⁾	1 B		±0,0032 Ом
	200 κΓιι ²⁾	2 B		±0,0041 Ом

Продолжение таблицы 7

1	2	3	4	5
	50 Гц	1 B		±0,01289 Ом
	50 Гц	2 B		±0,01765 Ом
	100 Гц	1 B		±0,0062 Ом
	100 Гц	2 B		±0,0111 Ом
	1 кГц	1 B		±0,0062 Ом
10 Ом	1 кГц	2 B		±0,0111 Ом
	100 кГц ¹⁾	1 B		±0,0122 Ом
	100 кГц1)	2 B		±0,0221 Ом
	200 кГц ²⁾	1 B		±0,0122 Ом
	200 κΓιι ²⁾	2 B		±0,0221 Ом
	50 Гц	1 B		±0,103 Ом
	50 Гц	2 B		±0,152 Ом
	100 Гц	1 B		±0,0513 Ом
	100 Гц	2 B		±0,101 Ом
	1 кГц	1 B		±0,0513 Ом
100 Ом	1 кГц	2 B		±0,101 Ом
	100 κΓц ¹⁾	1 B		±0,102 Ом
	100 κΓц ¹⁾	2 B		±0,202 Ом
	200 κΓц ²⁾	1 B		±0,102 Ом
	200 κΓ μ ²⁾	2 B		±0,202 Ом
	50 Гц	1 B		±0,001005 кОм
	50 Гц	2 B		±0,0015 кОм
	100 Гц	1 B		±0,000512 кОм
	100 Гц	2 B		±0,00101 кОм
	1 кГц	1 B		±0,000512 кОм
1 кОм	1 кГц	2 B		±0,00101 кОм
	100 κΓц ¹⁾	1 B		±0,001 кОм
	100 κΓ μ ¹	2 B		±0,002 кОм
	200 κΓιμ²)	1 B		±0,001 кОм
		2 B		±0,002 кОм
	200 κΓц ²⁾	1 B		±0,0103 кОм
	50 Гц	2 B		±0,0152 кОм
	50 Гц			±0,00607 кОм
	100 Гц	1 B		±0,00007 кОм
	100 Гц	2 B		±0,00607 кОм
10 кОм	1 кГц	1 B		±0,00007 kON
	1 кГц	2 B		±0,01103 кОм
	100 κΓц ¹⁾	1 B		±0,0103 кОм ±0,0203 кОм
	100 κΓμ1)	2 B		
	200 κΓιι ²⁾	1 B		±0,0103 кОм
	200 κΓιι ²⁾	2 B		±0,0203 кОм
	50 Гц	1 B		±0,126 кОм
	50 Гц	2 B		±0,175 кОм
	100 Гц	1 B		±0,157 кОм
	100 Гц	2 B		±0,203 кОм
100 кОм	1 кГц	1 B	,	±0,157 кОм
TOUROM	1 кГц	2 B		±0,203 кОм
	100 кГц ¹⁾	1 B		±0,132 кОм
	100 κΓц ¹⁾	2 B		±0,231 кОм
	200 κΓιμ ²⁾	1 B	*	±0,132 кОм
	200 κΓιι ²⁾	2 B		±0,231 кОм

Примечания:

- 1) Значение частоты тест-сигнала для АКИП-6112/1;
- 2) Значение частоты тест-сигнала для АКИП-6112/2.

9.4 Определение основной абсолютной погрешности измерения электрической емкости.

Определение основной абсолютной погрешности измерения электрической емкости проводить при помощи мер емкости Р597 методом прямых измерений в следующей последовательности:

- 9.4.1 Кабели типа «BNC-банан» подключить к измерителю. Произвести калибровку нуля согласно РЭ измерителя.
 - 9.4.2 Штекерами «банан» подсоединить меру емкости.
- 9.4.3 На измерителе нажать кнопку «MEAS», далее кнопкой со стрелкой с направлением вниз выбрать параметр «FUNC» (он будет выделен желтой подсветкой). Установить режим «Cs-D». Кнопкой со стрелкой с направлением вправо выбрать параметр «SPEED», установить скорость измерения «SLOW» или «МЕD».
- 9.4.4 Измерить поочередно значения емкости при соответствующей частоте и напряжении в соответствии с таблицей 8. Зафиксировать показания и занести их в таблицу 8.

Результаты поверки считать положительными, если показания измерителя находятся в пределах, приведенных в таблице 8.

Таблица 8 – Поверяемые значения электрической емкости

Значения емкости	Значения частоты сигнала	Значения установленного напряжения	Значения измеренной емкости	Пределы допускаемой абсолютной погрешности
1 нФ	1 кГц	1 B		±0,0005 нФ
1 мкФ	1 кГц	1 B		±0,00803 мкФ

9.5 Определение основной абсолютной погрешности измерения индуктивности.

Определение основной абсолютной погрешности измерения индуктивности проводить при помощи мер P5113 и P5115 в следующей последовательности:

- 9.5.1 Кабели типа «ВNС-банан» подключить к измерителю. Произвести калибровку нуля согласно РЭ измерителя.
 - 9.5.2 Штекерами «банан» подсоединить меру индуктивности.
- 9.5.3 На измерителе нажать кнопку «MEAS», далее кнопкой со стрелкой с направлением вниз выбрать параметр «FUNC» (он будет выделен желтой подсветкой). Установить режим «Ls-Q». Кнопкой со стрелкой с направлением вправо выбрать параметр «SPEED», установить скорость измерения «SLOW» или «МЕD».
- 9.5.4 Измерить поочередно значения индуктивности при соответствующей частоте и напряжении в соответствии с таблицей 9. Зафиксировать показания и занести их в таблицу 9.

Результаты поверки считать положительными, если показания измерителя находятся в пределах, приведенных в таблице 9.

Таблица 9 – Поверяемые значения индуктивности

Значения индуктивности	Значения частоты сигнала	Значения установленного напряжения	Значения измеренной индуктивности	Пределы допускаемой абсолютной погрешности
100 мГн	1 кГц	1 B		±0,0508 мГн
1 Гн	1 кГц	1 B		±0,00056 Гн

9.6 Определение основной абсолютной погрешности измерения сопротивления постоянному току

Определение основной абсолютной погрешности измерения сопротивления постоянному току проводить при помощи мер сопротивления H2-2 методом прямых измерений в следующей последовательности:

9.6.1 На измерителе нажать кнопку «SET» и выбрать вкладку «CORRECTION». Произвести калибровку нуля согласно РЭ измерителя.

9.6.2 Кабелями типа «BNC» подключить меру сопротивления к измерителю по четырехпроводной схеме.

9.3.3 На измерителе нажать кнопку «MEAS», далее кнопкой со стрелкой с направлением вниз выбрать параметр «FUNC» (он будет выделен желтой подсветкой). Установить режим «DCR». Кнопкой со стрелкой с направлением вправо выбрать параметр «SPEED», установить скорость измерения «SLOW» или «МЕD».

9.3.4 Измерить поочередно значения сопротивления в соответствии с таблицей 10. Зафиксировать показания и занести их в таблицу 10.

Результаты поверки считать положительными, если показания измерителя находятся в пределах, приведенных в таблице 10.

Таблица 10 – Поверяемые значения сопротивления постоянному току

Значения сопротивления	Значения установленного напряжения	Значения измеренного сопротивления	Пределы допускаемой абсолютной погрешности
1 Ом			±0,0005 Ом
10 Ом			±0,005 Ом
100 Ом			±0,05 Ом
1 кОм	1 B		±0,0005 кОм
10 кОм			±0,005 кОм
100 кОм			±0,05 кОм

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 10.1 Результаты поверки подтверждаются сведениями, включенными в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком, установленным действующим законодательством.
- 10.2 По заявлению владельца или лица, представившего СИ на поверку, положительные результаты поверки оформляют свидетельством о поверке, содержащем информацию в соответствии с действующим законодательством, и (или) нанесением на СИ знака поверки.
- 10.3 По заявлению владельца или лица, представившего СИ на поверку, отрицательные результаты поверки оформляют извещением о непригодности к применению средства измерений, содержащем информацию в соответствии с действующим законодательством.
- 10.4 Протоколы поверки оформляются по произвольной форме по заявлению владельца или лица, представившего СИ на поверку.

Jul J

Начальник отдела испытаний AO «ПриСТ»

О. В. Котельник

Ведущий инженер по метрологии отдела испытаний АО «ПриСТ»

Е. Е. Смердов