СОГЛАСОВАНО

Генеральный директор ООО «НТЦ СОТСБИ»

В. Ю. Гойхман

М.П.

сотсьи»

«14» мая 2023 г.

Государственная система обеспечения единства измерений

ЗОНДЫ ПЕРИФЕРИЙНОГО УЗЛА СИСТЕМЫ КОНТРОЛЯ, МОНИТОРИНГА И УПРАВЛЕНИЯ ТРАФИКОМ ESR

МЕТОДИКА ПОВЕРКИ

МП5295-001-63525614-2023

Содержание

1	Общие положения	3
2	Перечень операций поверки	5
3	Требования к условиям проведения поверки	
4	Требования к специалистам, осуществляющим поверку	
5	Метрологические и технические требования к средствам поверки	
6	Требования (условия) по обеспечению безопасности проведения поверки	
7	Внешний осмотр	
8	Проверка программного обеспечения	
	8.1 Идентификация серийного номера	
	8.2 Идентификация программного обеспечения	
9	Подготовка к поверке и опробование средства измерений	
	9.1 Подготовка к поверке	
	9.2 Опробование	
10		
	10.1 Определение метрологических характеристик в режиме автоматизировани	
	поверки	
	10.2 Определение погрешности измерений количества переданной (принято	
	информации (данных)	
	10.3 Определение погрешности измерений продолжительности (длительности) сеано	
	передачи данных	
	10.4 Определение погрешности измерений пропускной способности канала переда	
	данных	
	информации	
	10.6 Определение абсолютной погрешности синхронизации шкалы време	ни
	относительно национальной шкалы времени UTC (SU)	.29
	10.7 Определение погрешности измерений средней задержки передачи пакетов данн	
	(PD)	
	10.8 Определение погрешности измерений вариации задержки передачи пакетов данн	
	(PDV)	.35
	10.9 Определение погрешности измерений коэффициента потерь пакетов данных (РL)
		.36
11)	
12		
	Приложение А	.39
	Характеристики прибора СИГМА-2	
	Математический аппарат обработки результатов	
	А.1 Формирователь – измеритель соединений универсальный СИГМА. Оби	
	сведения.	
	А.2 Математический аппарат обработки результатов	
	Приложение Б	.45
	Приложение В	.46
	Приложение Г	.4/

1 Общие положения

- 1.1 Настоящая методика поверки (далее также МП) распространяется на Зонды периферийного узла Системы контроля, мониторинга и управления трафиком ESR (далее зонды ESR), производства Общества с ограниченной ответственностью «Контроль ИТ», Московская обл., г. Химки, и устанавливает объем, методы и средства первичной и периодической поверок.
- 1.2 Зонды периферийного узла Системы контроля, мониторинга и управления трафиком ESR (версия ПО не ниже 1.12.2), производства ООО «Контроль ИТ», Московская обл., г. Химки, являются техническими системами с измерительными функциями, которые предназначены для измерений характеристик трафика в точках подключения к сети связи: количества переданной (принятой) информации (данных), продолжительности (длительности) сеансов передачи данных, пропускной способности канала передачи данных, скорости передаваемой информации, средней задержки передачи пакетов данных (PDV), коэффициента потерь пакетов данных (PL).
- 1.3 Настоящая методика поверки распространяется на Зонды периферийного узла Системы контроля, мониторинга и управления трафиком ESR, входящие в состав Системы контроля, мониторинга и управления трафиком (далее Система КМУТ) (регистрационный № 78350-20), следующих модификаций: ESR-10 KMUT, ESR-12V KMUT, ESR-15 KMUT, ESR-15R KMUT, ESR-21 KMUT.
- 1.4 Методика разработана в соответствии с требованиями приказа Минпромторга России № 2907 от 28.08.2020, рекомендацией РМГ 51-2002 «ГСИ Документы на методики поверки средств измерений. Основные положения» и ГОСТ Р 8.973-2019 «ГСИ. Национальные стандарты на методики поверки. Общие требования к содержанию и оформлению».
- 1.5 Прослеживаемость результатов измерений к Государственному первичному эталону единиц измерений объемов передаваемой цифровой информации по каналам Интернет и телефонии (ГЭТ 200-2023) при поверке зондов ESR обеспечена согласно ГОСТ Р 8.873-2014 «ГСИ. Государственная поверочная схема для технических систем и устройств с измерительными функциями, осуществляющих измерения объемов (количества) цифровой информации (данных), передаваемых по каналам интернет и телефонии», утвержденного Приказом Федерального агентства по техническому регулированию и метрологии от 11 июня 2014 г. N 666-ст.

Прослеживаемость результатов измерений к Государственному первичному эталону единиц времени, частоты и национальной шкалы времени (ГЭТ 1-2022) при поверке Зондов периферийного узла Системы контроля, мониторинга и управления трафиком обеспечена согласно документу «Государственная поверочная схема для средств измерений времени и частоты», утвержденная Приказом Федерального агентства по техническому регулированию и метрологии от 26 сентября 2022 г. № 2360.

- 1.6 По заявлению владельца зонда ESR или лица, предоставившего его на поверку, допускается проведение поверки для меньшего числа измеряемых величин с обязательным указанием в сведениях о поверке информации об объеме проведенной поверки.
- 1.7 В методике поверки приведены команды, их синтаксис и результат вывода в командной строке. В зависимости от версии внутреннего ПО поверяемого зонда, назначение

команд, их синтаксис и результат могут отличаться от приведенных в методике поверки, в связи с чем при проведении поверки следовать требованиям руководства по эксплуатации.

2 Перечень операций поверки

2.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 - Операции поверки

	Номер пункта	Проведение операции при		
Наименование операции	стандарта на методику поверки	первичной поверке	периодической поверке	
Внешний осмотр	7	Да	Нет	
Идентификация программного обеспечения	8.2	Да	Да	
Подготовка к поверке	9.1	Да	Да	
Опробование	9.2	Да	Да	
Определение метрологических характеристик: Определение метрологических характеристик в режиме автоматизированной поверки	10.1	Да	Да	
Определение погрешности измерений количества переданной (принятой) информации (данных)	10.2	Да	Да	
Определение погрешности измерений продолжительности (длительности) сеансов передачи данных	10.3	Да	Да	
Определение погрешности измерений пропускной способности канала передачи данных	10.4	Да	Да	
Определение относительной погрешности измерений скорости передаваемой информации	10.5	Да	Нет	
Определение абсолютной погрешности синхронизации шкалы времени относительно национальной шкалы времени UTC (SU)	10.6	Да	Да	
Определение погрешности измерений средней задержки передачи пакетов данных (PD)	10.7	Да	Да	
Определение погрешности измерений вариации задержки передачи пакетов данных (PDV)	10.8	Д <mark>а</mark>	Да	
Определение погрешности измерений коэффициента потерь пакетов данных (PL)		Дa	Нет	
Подтверждение соответствия средства измерений метрологическим требованиям	11	Да	Да	
Оформление результатов поверки	12	Да	Да	

2.2 При использовании средств поверки, указанных в таблице 2, норма времени на проведение поверки одного зонда ESR составляет не более 2-х часов. Прибор СИГМА-2 поддерживает режим многоканальной автоматизированной поверки зондов ESR с помощью набора специального интерфейсного ПО СИГМА-КМУТ-Контроль, которое включает в себя программные модули автоматической конфигурации и управления программным обеспечением СИГМА-СИПД, СИГМА-СИДС, СИГМА-РШВ, СИГМА-СПД, имитатором параметров сети передачи данных СИГМА-2.ИС и поверяемыми зондами ESR.

ПО СИГМА-КМУТ-Контроль не оказывает влияния на метрологическую значимую часть ПО СИГМА-2, а лишь автоматизирует действия пользователя по управлению ПО прибора, поверяемым зондом ESR и обработке результатов измерений.

При использовании интерфейсного ПО СИГМА-КМУТ-Контроль (далее – КМУТ-Контроль) количество одновременно поверяемых зондов ESR составляет от 1 до 99 шт.

- 2.3 Допускается проведение поверки меньшего числа измеряемых величин или на меньшем поддиапазоне измерений.
- 2.4 При проведении первичной поверки зонда ESR, установленного на сети связи, допускается проводить поверку в объеме периодической поверки.
- 2.5 В случае получения отрицательных результатов при выполнении любой из операций, приведенной в таблице 1, поверка прекращается, а владелец СИ извещается об отрицательных результатах поверки. Повторная поверка проводится в полном объеме после проверки параметров сети и зондов ESR, а также устранения неисправности, вызвавшей отрицательные результаты поверки. Допускается проведение повторной поверки в сокращенном объеме.

3 Требования к условиям проведения поверки

При проведении поверки должны соблюдаться следующие условия:

температура окружающей среды

 (25 ± 10) °C;

относительная влажность воздуха

от 45 % до 80 %;

атмосферное давление

от 84,0 до 106 кПа.

Контроль параметров условий проведения поверки осуществляется в месте установки средств поверки.

4 Требования к специалистам, осуществляющим поверку

К проведению поверки допускаются лица:

- изучившие документ РМБТ.466961.005 РЭ «Зонды периферийного узла Системы контроля, мониторинга и управления трафиком ESR. Руководство по эксплуатации», эксплуатационную документацию на основные и вспомогательные средства поверки и настоящую методику поверки;
- имеющие навык работы в операционной среде Linux, пакетах офисных программ;

обладающие знаниями в области телекоммуникаций, IP-технологий, сетей передачи данных.

5 Метрологические и технические требования к средствам поверки

- 5.1 При проведении поверки должны применяться средства поверки и эталоны, приведенные в таблице 2.
- 5.3 Для определения условий проведения поверки используют вспомогательные средства поверки, указанные в таблице 2.
- 5.4 Эталоны единиц величин должны быть утверждены в соответствии с пунктом 6 Положения об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений, утвержденного постановлением Правительства Российской Федерации от 23 сентября 2010 г. N 734.
 - 5.5 Средства измерений должны быть утвержденного типа.
- 5.6 Эталоны единиц величин и средства измерений, применяемые в качестве эталонов единиц величин, должны быть исправны и аттестованы (поверены) с присвоением соответствующего разряда по требованию государственных поверочных схем.
- 5.7 Результаты поверки применяемых средств измерений и эталонов должны быть подтверждены сведениями о результатах поверки средств измерений и эталонов, включенными в Федеральный информационный фонд по обеспечению единства измерений.

Таблица 2 - Средства поверки

Номер пункта документа по поверке	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки	Пример возможного средства поверки
9.2, 10.1 - 10.3, 10.5 - 10.7, 10.9	Диапазон измерений переноса эталонных единиц количества (объёмов) информации от 1 байта до 1 Тбайт, пределы допускаемой абсолютной погрешности измерений переноса единиц количества (объемов) информации 0 байт. Диапазон измерений количества (объёмов) информации от 1 байта до 1 Тбайт, пределы допускаемой абсолютной погрешности измерений единиц количества (объемов) информации, принимаемой в сеансе передачи данных ± 1 байт. Пределы допускаемой абсолютной погрешности формирования длительности сеанса передачи данных и телефонного соединения в диапазоне от 1 до 3600 с ±0,05 с. Пределы допускаемой абсолютной погрешности измерений длительности сеанса передачи данных и телефонного соединения в диапазоне от 1 до 3600 с ±0,05 с. Пределы допускаемой абсолютной погрешности измерений средны допускаемой абсолютной погрешности измерений средней задержки передачи пакетов данных в диапазоне от 0 до 2 · 10³ мкс ±0,05 мкс. Пределы допускаемой абсолютной погрешности измерений средны допускаемой абсолютной погрешности измерений средны допускаемой абсолютной погрешности измерений средны задержки передачи пакетов данных	Формирователь — измеритель соединений универсальный СИГМА-2 в комплекте с сервером хранения эталонных файлов СИГМА-2.СЭФ, имитатором параметров сети передачи данных СИГМА-2.ИС, приемником сигналов ГНСС СВТН.466961.004ТУ

Номер пункта документа по поверке	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки	Пример возможного средства поверки
	в диапазоне от $2 \cdot 10^3$ до $1,5 \cdot 10^6$ мкс ± 10 мкс. Пределы допускаемой абсолютной погрешности измерений вариации задержки передачи пакетов данных в диапазоне от 0 до $2 \cdot 10^3$ мкс $\pm 0,05$ мкс. Пределы допускаемой абсолютной погрешности измерений	
	вариации задержки передачи пакетов данных в диапазоне от $2\cdot 10^3$ до $1\cdot 10^5$ мкс ± 10 мкс. Пределы допускаемой абсолютной погрешности измерений коэффициента потерь пакетов данных в диапазоне от 0 до $1\pm 1,5\cdot 10^{-5}$	
	Пределы допускаемой относительной погрешности измерений пропускной способности канала передачи данных в диапазоне от $10\cdot 10^3$ до $4\cdot 10^9$ бит/с $\pm 0,5\%$	
9.2, 10.6	Пределы допускаемой абсолютной погрешности привязки шкалы времени относительно шкалы времени UTC(SU) по протоколу NTP через интерфейс Ethernet ± 100 мкс	Источники первичны точного времени УКУС ПИ 02ДМ
Зспомогательные	средства поверки	
9.2	Пределы допускаемой основной абсолютной погрешности (после введения поправок из паспорта) $\pm 0,2$ кПа, пределы допускаемой дополнительной абсолютной погрешности (после введения поправок из паспорта) $\pm 0,5$ кПа в диапазоне от 80 до 106 кПа	Барометр БАММ-1
9.2	Пределы допускаемой основной абсолютной погрешности измерений температуры при температуре воздуха в зоне измерений (20 ± 5) °C ±0.5 °C, пределы допускаемой дополнительной абсолютной погрешности измерений при изменении температуры на каждые 10 °C ±0.5 °C в диапазоне от 0 до 50 °C; Пределы допускаемой основной абсолютной погрешности измерений относительной влажности при температуре воздуха в зоне измерений (20 ± 5) °C ±5 %, пределы допускаемой дополнительной абсолютной погрешности при изменении температуры на каждые 10 °C ±5 % в диапазоне от 10 до 98 %	Измеритель температуры влажности ТКА-ПКМ
9.2, 10.1 - 10.3, 10.5 - 10.7, 10.9	Технология Ethernet, 10/100/1000 Base-T, не менее 5 портов	Сетевой коммутато уровня L2 (2 шт.)
9.2, 10.1 - 10.3, 10.5 – 10.7, 10.9 Аппаратно-программный комплекс		сервер системи контроля, мониторинга управления трафиков или зонд ESR

¹⁾ Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

²⁾ В приложении А приведены характеристики прибора СИГМА и математический аппарат, положенный в основу обработки результатов поверки (испытаний).

6 Требования (условия) по обеспечению безопасности проведения поверки

- 6.1 Помещение для проведения поверки должно соответствовать правилам техники безопасности и производственной санитарии.
- 6.2 При проведении поверки необходимо соблюдать правила техники безопасности, определенные в эксплуатационных документах на средства поверки и поверяемые СИ.
 - 6.3 При проведении поверки запрещается:
 - проводить работы по монтажу и демонтажу применяемого в поверке оборудования;
 - производить работы по подключению соединительных кабелей при включенном питании прибора СИГМА-2.
- 6.5 Процесс проведения поверки не относится к работам с вредными или особо вредными условиями труда.
- 6.6 Безопасность поверителей и обслуживающего персонала при поверке Зондов ESR на месте установки должна обеспечиваться конструкцией оборудования в соответствии с требованиями ГОСТ 12.1.038, ГОСТ 12.1.045, ГОСТ 12.2.003, ГОСТ 12.2.007.0, ГОСТ 25861 и технической документацией на Зонды ESR.

7 Внешний осмотр

- 7.1 При проведении осмотра проверить:
 - отсутствие механических повреждений;
 - чистоту разъемов;
 - наличие маркировки согласно требованиям руководства по эксплуатации и техническим условиям.
- 7.2 Визуально проверить комплектность Зондов ESR на соответствие формуляру.
- 7.3 В случае удаленной поверки (при установке зонда ESR на сети связи) внешний осмотр допускается не проводить.

8 Проверка программного обеспечения

8.1 Идентификация серийного номера

Идентификация серийного номера осуществляется методом визуального осмотра на наличие заводского или серийного номера. Место нанесения заводского номера или серийного номера указано в описании типа.

Допускается идентификация заводского номера с использованием интерфейса командной строки с помощью команды:

hw serial

Пример индицирования заводского номера в командной строке приведен ниже: user@03_50820 \$ hw_serial VI6F050820

При использовании КМУТ-Контроль идентификация серийного номера осуществляется автоматически для всех зондов ESR, добавленных в список поверяемых зондов, при нажатии кнопки «Идентификация» на вкладке «Настройки окружения и опробование» или кнопки «Запрос конфигурации Зонда» в настройках зонда ESR, добавленного в список поверяемых зондов.

8.2 Идентификация программного обеспечения

8.2.1 Идентификационные данные программного обеспечения (идентификационное наименование ПО и номер версии ПО) определяются с использованием интерфейса командной строки с помощью команд:

os version

Пример индицирования в командной строке приведен ниже:

os_version

1.12.2-KMUT

build 13

Для проверки цифрового идентификатора ПО необходимо под учетной записью techsupport, обеспечивающей доступ к ядру ESR, ввести команду:

kmut-md5sum

Результаты поверки считать положительными, если идентификационные данные соответствуют данным, указанным в таблице 3.

Таблица 3 – Идентификационные данные ПО

	Зна	чение
Идентификационные данные (признаки)	ESR-10 KMUT, ESR- 12V KMUT, ESR-15 KMUT, ESR-15R KMUT	ESR-20 KMUT, ESR-21 KMUT
Идентификационное наименование ПО	Программное обеспечение маршрутизатора серии ESR-1x KMUT	Программное обеспечение маршрутизатора серии ESR-2x KMUT
Номер версии ПО	не ниже 1.12.2	не ниже 1.12.2
Цифровой идентификатор ПО	указывается в формуляре зонда ESR конкретную его модификацию	
Алгоритм вычисления цифрового идентификатора	md5	

При использовании ПО СИГМА-КМУТ-Контроль идентификация программного обеспечения осуществляется автоматически для всех зондов ESR, добавленных в список

поверяемых зондов, при нажатии кнопки «Идентификация» на вкладке «Настройки окружения и опробование» или кнопки «Запрос конфигурации Зонда» в настройках Зонда ESR, добавленного в список поверяемых зондов.

9 Подготовка к поверке и опробование средства измерений

9.1 Подготовка к поверке

- 9.1.1 При проведении проверки работоспособности руководствоваться требованиями (в части применения команд и анализа вывода результата в интерфейсе командной строки), изложенными в документе РМБТ.466961.005 РЭ «Зонды периферийного узла Системы контроля, мониторинга и управления трафиком ESR. Руководство по эксплуатации».
- 9.1.2 Перед проведением поверки необходимо провести следующие подготовительные работы:
 - 1. Проверить срок действия свидетельств о поверке на применяемые средства поверки.
 - 2. Собрать схему измерений, приведенную на рисунке 1.

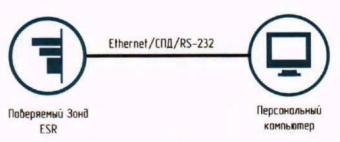


Рисунок 1 - Схема измерений для настройки сетевого интерфейса зонда ESR

- 3. Получить данные для подключения к зонду ESR. Для этого необходимо:
- при первичной поверке использовать данные, указанные в руководстве по эксплуатации;
- при периодической поверке получить у лица, предоставившего зонд ESR на поверку, логин, пароль и IP-адрес для доступа к поверяемому зонду ESR, а в случае поверки зонда ESR, установленного на сети связи, согласовать способ доступа к данной сети, сетевые настройки для подключения к сети связи средств поверки с целью обеспечения их связности с поверяемым зондом ESR. Все расходы на услуги связи для проведения поверки должно нести лицо, предоставившее зонд ESR на поверку.

В случае отсутствия данных для доступа к зонду ESR необходимо осуществить возврат к заводским настройкам в соответствии с документом РМБТ.466961.005 РЭ «Зонды периферийного узла Системы контроля, мониторинга и управления трафиком ESR. Руководство по эксплуатации».

- 4. При необходимости осуществить настройку сетевого интерфейса зонда ESR в соответствии с Приложением Б документа РМБТ.466961.005 РЭ «Зонды периферийного узла Системы контроля, мониторинга и управления трафиком ESR. Руководство по эксплуатации». Для этого:
 - настроить LAN-порт ПК и назначить IP-адрес из того же адресного пространства, что и IPадрес зонда ESR. Согласно руководству по эксплуатации при подключении сетевого

интерфейса управляющего ПК он должен получить сетевой адрес от сервера. Если IP-адрес не получен по какой-либо причине, то следует назначить адрес интерфейса вручную, используя любой адрес, кроме 192.168.1.1, в подсети 192.168.1.0/24;

- осуществить подключение к Зонду ESR и вход в режим администратора;
- осуществить настройку сетевого интерфейса зонда ESR, назначив IP-адрес, маску подсети и IP-адрес «шлюза по умолчанию», используемые в локальной вычислительной сети, для обеспечения прямой связи с эталонами, средствами измерений и вспомогательным оборудованием;
- результаты проверки считать положительными, если после применения команд просмотра настроек сетевого интерфейса, вывод соответствует установленным значениям. Для проверки настроек сетевых интерфейсов использовать команды:

esr# show ip interfaces

- 5. Возможно проведение первичной и периодической поверки зондов ESR в режиме многоканальной автоматизированной поверки с помощью набора специального интерфейсного ПО СИГМА-КМУТ-Контроль. Для этого необходимо получить у лица, предоставившего зонды ESR на поверку, список логинов, паролей и IP-адресов для доступа к поверяемым зондам ESR, согласовать сетевые настройки для подключения к сети связи эталонов и средств поверки с целью обеспечения их связности с поверяемыми зондами ESR. Для данного режима подпункты 2-4 п.9.1.2 не требуется проводить.
- 6. Допускается проведение первичной поверки зондов ESR одного типа при выпуске их из производства до ввода в эксплуатацию на основании выборки. Определение объема выборки осуществляется в соответствии с принятыми исходными данными по таблице 1, 2-А ГОСТ Р ИСО 2589-1-2007 «Статистические методы. Процедуры выборочного контроля по альтернативному признаку. Часть 1. Планы выборочного контроля последовательных партий на основе приемлемого уровня качества».

Принимается приемлемый уровень качества AQL=0,1. Тип контроля — нормальный, план контроля — одноступенчатый. Уровень контроля — общий, III (в виду важности принятия правильного решения). Приемочное число Ac = 0, браковочное число Re = 1.

При отсутствии в выборке непригодных зондов ESR всю партию принимают, а при наличии в выборке, хотя бы 1 непригодного зонда ESR всю партию бракуют и подвергают сплошному контролю.

Пример выбора плана контроля и количества поверяемых изделий в выборке для партий 100 и 1000 шт. приведены в Приложении Б и В, соответственно.

9.2 Опробование

9.2.1 Опробование в ручном режиме

Опробование проводят в несколько этапов.

I этап. Настройка общих параметров зондов ESR

1. При первичной и периодической поверке опробование проводят по схеме в соответствии с рисунком 2. В случае проведения периодической поверки зонда ESR, установленного на сети связи, опробование проводят по схеме в соответствии с рисунком 3. При этом необходимо согласовать с лицом, предоставившим зонд ESR на поверку, схему включения источника первичного точного времени для обеспечения связности между поверяемым зондом ESR и источником первичного точного времени. Источник первичного точного

времени обеспечивает выполнение функций сервера времени 1-го уровня (Stratum 1) и выдачу информации о текущих значениях времени и даты по протоколу NTP через интерфейс Ethernet.

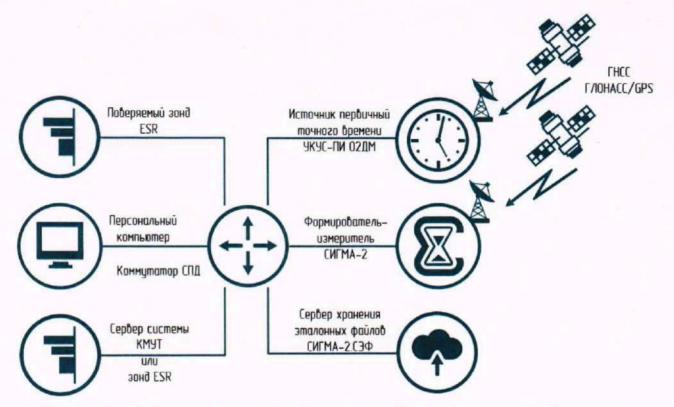


Рисунок 2 – Схема измерений для проведения опробования при первичной поверке

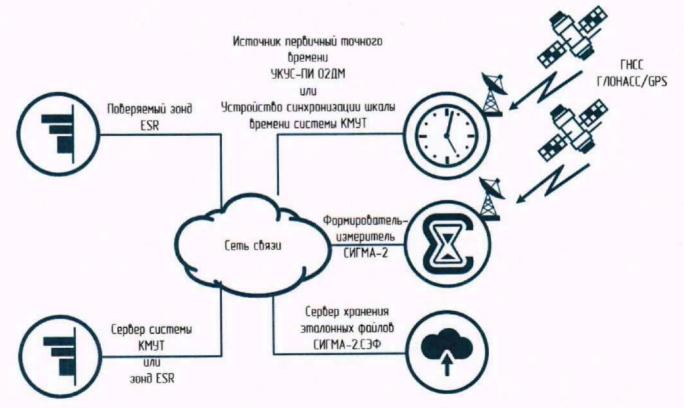


Рисунок 3 – Схема измерений для проведения опробования при периодической поверке

- 2. Расположить антенный блок источника первичного точного времени в месте уверенного приема сигналов точного времени, передаваемых ГНСС ГЛОНАСС/GPS.
- 3. По индикаторам отображения состояния устройства источника первичного точного времени убедиться, что источник вошел в режим нормальной работы, часы синхронизированы (состояние индикаторов: «Устройство» зеленый (мигает), «СРНС» зеленый (горит), «Частота» зеленый (горит), «Время» зеленый (горит)).
- 4. Произвести настройку общих параметров Зонда ESR в соответствии с руководством по эксплуатации.
- Осуществить настройку синхронизации времени по протоколу NTP от сервера времени согласно руководству по эксплуатации, указав IP-адрес сервера синхронизации времени (источника первичного точного времени) и интервал времени между отправкой сообщений NTP-серверу.
- Результаты проверки считать положительными, если после применения команд просмотра текущей конфигурацию протокола NTP и просмотра текущего состояние NTP-серверов (пиров), вывод соответствует установленным значениям.

Для проверки настроек текущей конфигурацию протокола NTP использовать команду: esr# show ntp configuration

Для проверки настроек текущего состояние NTP-серверов (пиров) использовать команду: esr# show ntp peers

7. При периодической поверке вместо источника первичного точного времени допускается применять сервер точного времени, входящий в состав системы КМУТ, при условии, если он является средством измерения утвержденного типа, поверен, а погрешность синхронизации приборного системного времени сервера точного времени со шкалой времени РФ не превышает ±0,1 с.

II этап. Проверка работоспособности модуля метрологической поверки

1. Изменить параметры в конфигурационном файле /etc/kmut/main.conf, указав IP-адрес и порт сервера хранения эталонных файлов СИГМА-2.СЭФ.

Параметры настроек модуля метрологической поверки начинаются с префикса – ftp_proxy:

ftp_proxy_dst_ip=192.168.1.2 – необходимо указать IP адрес сервера хранения эталонных файлов СИГМА-2.СЭФ, на который будет происходить трансляция получаемых файлов эталонных объемов;

ftp_proxy_dst_port=8021 - необходимо указать TCP порт FTP сессии, которую необходимо транслировать;

ftp_proxy_dst_dataport=20000 - необходимо указать TCP порт FTP сессии, на который будет происходить трансляция сессии передачи данных (можно оставить значение по умолчанию).

ftp_proxy_RemoteFtpCtrlPort = 21 - необходимо указать tcp порт ftp сессии, по которой будет происходить управление сессией передачи данных.

После сохранения файла настроек необходимо либо перезагрузить зонд ESR, либо выполнить команду:

kmut-ftp-proxy restart

2. Провести проверку работоспособности модуля метрологической поверки. Чтобы удостовериться, что модуль метрологической проверки запущен, ввести команду:

ps axfu | grep ftp

3. Результат проверки считать положительным, если модуль запущен.

III этап. Проверка измерения коэффициента потерь пакетов, времени задержки передачи пакетов и вариации времени задержки

- 1. Использовать схему измерений, приведенную на рисунке 2 или 3;
- 2. Выполнить настройку модуля измерений. Для этого ввести команды:

esr# config

esr(config)# ip sla

esr(config)# ip sla mode kmut

esr(config)# exit

esr# commit

esr# confirm

esr# show ip sla configuration

Mode:

KMUT

State:

Enabled

Hostname:

esr-21

Portal:

--

UUID:

--

Logging:

-

3. Для настройки параметров измерения времени задержки передачи пакетов и вариации времени задержки необходимо изменить параметры в конфигурационном файле /etc/kmut/main.conf

qual_bind_address = 0.0.0.0

qual port = 2000

4. После изменения конфигурационного файла для применения настроек необходимо перезагрузить зонд ESR или выполнить команду перезапуска сервиса измерений:

kmut-qual restart

В качестве подтверждения выполнения перезапуска сервиса измерений будет выведено сообщение:

Stopping kmut-qual ... OK

Starting kmut-qual ... OK

5. Проверить работоспособность модуля kmut-qual следующей командой:

kmut-qual status

Проверка считается успешной, если получен вывод:

Вывод: Checking kmut-qual status ... ОК

 Запустить модуль и провести измерение двухсторонней задержки между зондами ESR или зондом ESR и сервером системы КМУТ, для этого выполнить команду:

kmut-qual -h <IP-адрес зонда ESR №2>

7. Проверить результата применения команды, он должен соответствовать примеру, приведенному ниже, где: 192.168.0.1 – это указанный IP-адрес зонда ESR №2. Измеренное значение двухсторонней задержки (rtt) может отличаться.

100 bytes 192.168.0.1 (192.168.0.1): rtt = 0.38 ms.

100 bytes 192.168.0.1 (192.168.0.1): rtt = 0.31 ms.

100 bytes 192.168.0.1 (192.168.0.1): rtt = 0.31 ms.

100 bytes 192.168.0.1 (192.168.0.1): rtt = 0.31 ms.

100 bytes 192.168.0.1 (192.168.0.1): rtt = 0.30 ms.

--- 192.168.0.1 UDP ping statistics 100 bytes

5 packets transmitted every 3000 ms

5 packets received, 0.0% packet lost

round trip time(RTT) min/avg/max = 0.30/0.32/0.38 ms

absolute deviation min/avg/max = 0.00/0.02/0.08 ms

8. Результат проверки считать положительным, если измерение проведено, а результат применения команды содержит результат измерений.

IV этап. Проверка измерения пропускной способности канала связи

- 1. Использовать схему измерений, приведенную на рисунке 2 или 3.
- 2. Для измерения пропускной способности канала использовать модуль kmut-band.
- 3. Проверить работоспособность модуля следующей командой:

kmut-band status

Проверка считается успешной, если получен вывод:

kmut-band is running

4. Провести проверку измерения пропускной способности к зонду ESR №2 командой:

kmut-band -T10 -R10M <IP адрес зонда ESR №2>

- 5. Проверить результат применения команды:
- 12.2500 MB / 10.06 sec = 9.9751 Mbps 98 %TX 0 %RX 0 retrans 23.70 msRTT
 - Результат проверки считать положительным, если модуль запущен, измерение проведено, а результат применения команды содержит результат измерений.

9.2.2 Опробование в режиме многоканальной автоматизированной поверки с использованием ПО СИГМА-КМУТ-Контроль

Набор специального интерфейсного ПО СИГМА-КМУТ-Контроль позволяет автоматизировать, значительно упростить и ускорить процесс проведения этапов опробования (п.9.2.1 настоящей МП) для всех зондов ESR, добавленных в список поверяемых зондов.

Для этого необходимо выполнить следующие действия:

- 1. Запустить ПО СИГМА-КМУТ-Контроль, откроется основное окно интерфейсного ПО СИГМА-КМУТ-Контроль (Рисунок 4).
- 2. На вкладке «Настройки окружения и опробование» осуществить следующие настройки:
 - 2.1. в разделе «Настройка серверов хранения эталонных файлов СИГМА-2.СЭФ» нажать кнопку «Добавить» и в появившемся окне (Рисунок 5) ввести необходимые параметры сервера хранения эталонных файлов: параметры подключения (IP-адрес, TCP-порт, каталог для загрузки ЭФ), а также добавить данные пользователей (имя пользователя, пароль). Для этого необходимо в подразделе «Управление пользователями» ввести имя пользователя и пароль в формате ftpuser<порядковый номер> в соответствующие поля и нажать кнопку «Добавить». После завершения настройки всех параметров сервера хранения эталонных файлов нажать кнопку «ОК». ВНИМАНИЕ! Количество добавленных FTP-пользователей определяет количество одновременно поверяемых зондов ESR.

Рисунок 4 – Основное окно интерфейсного ПО СИГМА-КМУТ-Контроль

Рисунок 5 – Окно настройки параметров сервера хранения эталонных файлов СИГМА-2.СЭФ

- 2.2. В разделе «Настройка параметров сервера синхронизации времени (NTP)» ввести ІРадрес Источника первичного точного времени в поле «Адрес NTP-сервера» и нажать «Применить».
- 2.3. В разделе «Настройка имитатора параметров сети передачи данных СИГМА-2.ИС» задать имена интерфейсов для проверки параметров имитатора, к которым подключен блок формирователя-измерителя СИГМА-2, и имена интерфейсов, к которым подключены сервер системы КМУТ и интерфейс сети (коммутатора) в сторону поверяемых зондов ESR.
- 2.4. В разделе «Список поверяемых Зондов системы КМУТ» добавить объекты поверки (зонды ESR). Добавление объектов поверки возможно, как в ручном режиме, так и автоматическом режиме путем загрузки файла, содержащего предварительно подготовленный список зондов ESR.
 - 2.4.1. Для добавления объекта поверки в ручном режиме нажать кнопку «Добавить», расположенную под списком поверяемых Зондов системы КМУТ. В появившемся окне (Рисунок 6) ввести данные для подключения к Зонду в разделе «Настройка параметров подключения» (IP-адрес поверяемого зонда ESR порт ssh, имя пользователя, пароль пользователя, пароль суперпользователя) после чего можно осуществить запрос конфигурации модуля метрологической поверки Зонда или нажать кнопку «ОК» для добавления в список поверяемых Зондов.
 - 2.4.2. В случае нажатия кнопки «Запрос конфигурации Зонда» выполняется подключение к Зонду с целью проверки введенных параметров подключения, проведения идентификации программного обеспечения и серийного номера, запроса настроек модуля метрологической поверки (указанного IP-адреса сервера эталонных файлов и

TCP-порта) параметров сервера синхронизации времени (NTP). Полученные данные индицируются в соответствующих разделах, если данные не получены, то необходимо проверить введенные данные подключения, удостовериться в том, что Зонд подключен к сети и повторить запрос конфигурации.

Рисунок 6 – Окно настройки параметров Зонда системы КМУТ

2.5. Для добавления объектов поверки списком необходимо предварительно подготовить соответствующий файл в формате csv (текстовый формат, предназначенный для представления табличных данных). Каждая строка текста соответствует строке таблицы, которая содержит несколько полей (IP-адрес Зонда;ssh-порт;имя пользователя;пароль пользователя;пароль суперпользователя), разделенных точкой с запятой. Пример записей приведен ниже:

192.168.14.154;8022;user;EchoZond;0000

192.168.14.155;8022;user;EchoZond;0000

- 2.6. Для загрузки подготовленного списка нажать кнопку «Импорт списка Зондов из файла .csv», выбрать файл и нажать кнопку «ОК». После успешного импорта файла в разделе «Список поверяемых Зондов системы КМУТ» появятся IP-адреса зондов ESR, которые необходимо поверить. Для проверки доступности, идентификации ПО и серийного номера нажать кнопку «Идентификация». После успешного выполнения запроса идентификации в разделе «Список поверяемых Зондов системы КМУТ» для каждого зонда ESR появится информация о серийном номере и идентификационных данных ПО. Если данные не получены, то отсутствует подключение к данному зонду и его поверку провести невозможно. Такой Зонд следует удалить из списка поверяемых Зондов.
- Провести идентификацию серийного номера и программного обеспечения для всех объектов поверки (зондов ESR) из списка поверяемых зондов системы КМУТ. Идентификационные данные программного обеспечения должны соответствовать данным, указанным в Таблице 3.
- Запустить процедуру опробования для всех объектов поверки из списка поверяемых зондов системы КМУТ. Результат опробования (успешно, неуспешно) будет отображен для каждого зонда ESR из Списка поверяемых зондов системы КМУТ в столбце «Опробование».

- 9.2.3 Оценить результаты опробования (успешно, неуспешно):
- а) при успешном результате опробования (результаты всех этапов положительные)
 поверка продолжается;
- б) при неуспешном результате (хотя бы один этап опробования завершен с отрицательным результатом), поверка прекращается до поиска и устранения неисправности.

10 Определение метрологических характеристик

- 1. Перед проведением поверки необходимо:
- проверить срок действия свидетельств о поверке применяемых эталонов и средств измерений;
- при локальной поверке зонда ESR собрать схему измерений, приведенную на рисунке 7.
 При сборке схемы необходимо использовать коммутационные шнуры (патч-корды) одинаковой длины и категории, чтобы минимизировать их влияние на результаты поверки.
- при поверке зонда ESR, установленного на сети связи, использовать схему измерений, приведенную на рисунке 8.

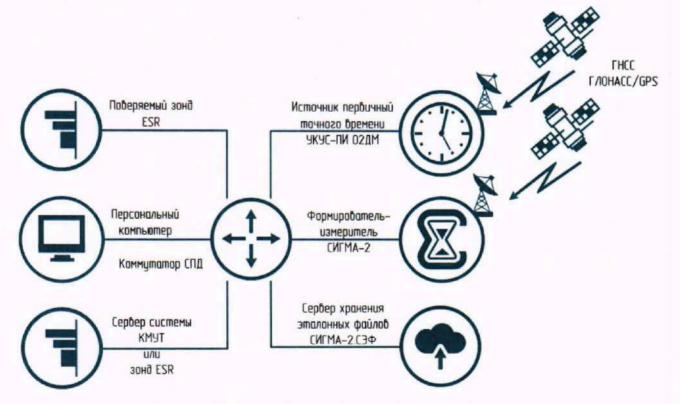


Рисунок 7 – Схема измерений при поверке зонда ESR

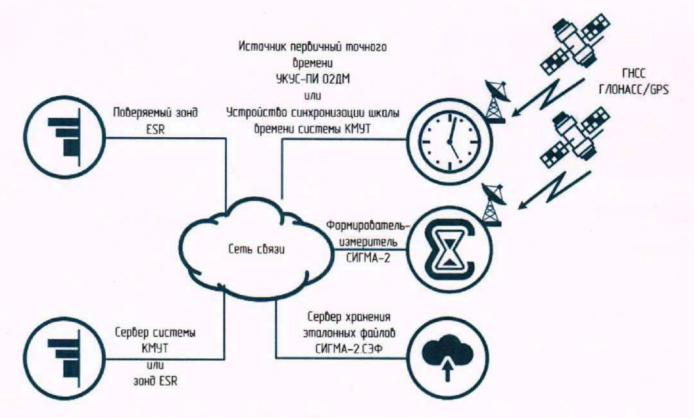


Рисунок 8 - Схема измерений при поверке зонда ESR, установленного на сети связи

- прибор СИГМА-2 поддерживает автоматизированное проведение поверки в многоканальном режиме с использованием интерфейсного ПО СИГМА-КМУТ-Контроль. Для проведения поверки в таком режиме необходимо получить у лица, предоставившего зонды ESR на поверку, файл с указанием с указанием данных для доступа к поверяемому зонду ESR (логин, пароль, IP-адрес, порт);
- расположить антенные блоки источника Формирователя-измерителя СИГМА-2 и источника первичного точного времени в месте уверенного приема сигналов точного времени, передаваемых ГНСС ГЛОНАСС/GPS;
- произвести синхронизацию шкалы времени прибора СИГМА-2 с национальной шкалой времени UTC (SU) с помощью приёмника временной синхронизации (приемника сигналов точного времени ГНСС ГЛОНАСС/GPS), входящего в его состав. Синхронизацию проводить в режиме Stratum 1 в течение не менее 2-х часов;
- по индикаторам отображения состояния устройства источника первичного точного времени убедиться, что источник вошел в режим нормальной работы, часы синхронизированы (состояние индикаторов: «Устройство» – зеленый (мигает), «СРНС» – зеленый (горит), «Частота» – зеленый (горит), «Время» – зеленый (горит).
- 2. При проведении поверки запрещается:
- проводить работы по монтажу и демонтажу оборудования;
- производить работы по подключению соединительных кабелей при включенном питании ПЭВМ и средств поверки.

10.1 Определение метрологических характеристик в режиме автоматизированной поверки

- 1. Выполнить запуск интерфейсного ПО СИГМА-КМУТ-Контроль, щелкнув на пиктограмму КМУТ-Контроль, расположенную на рабочем столе СИГМА-2.
- 2. Осуществить настройку сетевого окружения на вкладке «Настройки окружения и опробование» для обеспечения связности поверяемых зондов ESR с эталонами и средствами поверки (см. 9.2.2).
 - 2.1. Перейти в раздел «Настройка окружения и опробование» основного окна ПО СИГМА-КМУТ-Контроль . Удостовериться, что параметры настроек содержат корректный IP адрес и порт сервера хранения эталонных файлов СИГМА-2.СЭФ. Проверить настройки сервера синхронизации времени (NTP), а также настройки параметров имитатора сети передачи данных СИГМА-2 ИС.
 - 2.2. Подраздел «Список поверяемых Зондов системы КМУТ» должен содержать объекты поверки (зонды). Удостовериться, что для каждого из зондов ESR указан верный IP адрес, серийный номер и идентификаторы ПО.
 - Убедиться, что для каждого зонда из Списка поверяемых Зондов системы КМУТ результаты опробования «успешно».
 - 2.4. В случае, если подключение к зонду осуществить не удалось, то такой зонд следует удалить из списка поверяемых Зондов до устранения проблем с подключением.
- 3. Перейти в раздел «Поверка» основного окна ПО СИГМА-КМУТ-Контроль (Рисунок 9).
 - 3.1. В подразделе «Имя файла конфигурации поверки» ввести имя испытания (название каталога), в котором будет сохранена конфигурация. Для автоматического сохранения результатов по завершению поверки (результаты измерений и протоколы поверки) установить соответствующую галочку.
 - 3.2. Выбрать тип поверки: первичная или периодическая и нажать кнопку «Сохранить» для сохранения файла конфигурации поверки. Файл конфигурации это файл в формате csv, используемый для управления программой поверки, сохранения и изменения параметров поверки. Пример файла конфигурации приведен в Приложении Г.

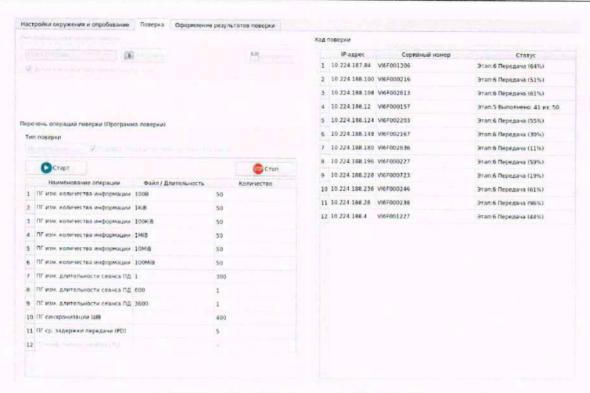


Рисунок 9 - Окно раздела «Поверка»

- 3.3. В случае проведения поверки зондов ESR, установленных на сети связи, установить галочку в поле «Поверка зонда, установленного на сети связи».
- 3.4. Удостовериться, что подраздел «Перечень операций поверки (Программа поверки)» содержит полный список операций поверки, которые должны быть выполнены. При необходимости проведения поверки в сокращенном объеме или исключения конкретных операций поверки из программы поверки нажать правой кнопкой мыши на соответствующей операции и выбрать «Запретить».
- Перейти в раздел «Оформление результатов поверки» и заполнить данные, необходимые для включения в протокол поверки.
 - 4.1. ПО СИГМА-КМУТ-Контроль поддерживает автоматическое заполнение полей подраздела «Нормативная база» при выборе модификации поверяемых зондов ESR в выпадающем списке «Модификация» (Рисунок 10). При необходимости данные могут быть изменены или дополнены.
 - 4.2. В подразделе «Условия проведения поверки» указать значения температуры окружающей среды, относительной влажности и атмосферного давления зафиксированные в месте установки средств поверки.
 - 4.3. В подразделе «Поверитель» указать ФИО поверителя, выполняющего поверку.

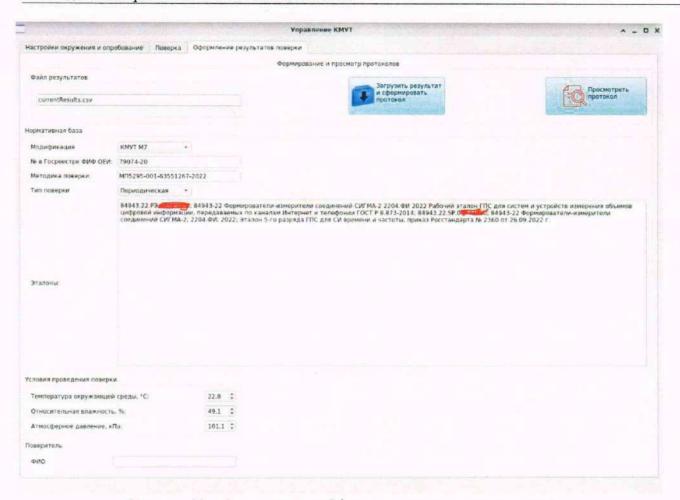


Рисунок 10 - Окно раздела «Оформление результатов поверки»

- 5. Перейти в раздел «Поверка». Для запуска автоматического выполнения всех операций программы поверки нажать кнопку «Старт». В подразделе «Ход поверки» будет отображаться статус поверки (этапы прохождения поверки и конечный результат) по каждому из поверяемых зондов ESR.
- По окончанию программы поверки, независимо от результата поверки (успешно или неуспешно), будет сформирован протокол поверки по каждому из поверенных зондов ESR, содержащий результаты поверки.

10.2 Определение погрешности измерений количества переданной (принятой) информации (данных)

1. Определение погрешности измерений количества переданной (принятой) информации (данных) в нормированном диапазоне проводят методом измерения объемов информации, проходящих через зонд ESR. Схема поверки состоит из последовательно осуществляемых опытов, в каждом из которых зонд ESR проводит измерение заведомо известного (эталонного) значения объема информации. Результатом каждого опыта, то есть наблюдаемым событием, будет погрешность измерения, то есть разность между измеренным и подаваемым на вход эталонным значением. Результат считается успешным, если погрешность измерения меньше или равна заданному предельно допустимому значению и неуспешным — в противном случае. Математический аппарат обработки результатов приведен в приложении А.

- 2. Определение погрешности измерений количества переданной (принятой) информации (данных) выполняется с использованием ПО СИГМА-СИПД под управлением ПО СИГМА-КМУТ-Контроль в автоматическом режиме.
- 3. Программа поверки с использованием файлов эталонных объемов.
 - 3.1. При локальной поверке зонда ESR в соответствии с таблицей Таблица 4.

Таблица 4 – Программа поверки при определении диапазона и погрешности измерений количества переданной (принятой) информации (данных) (локальная поверка зонда ESR)

Этап	Название файла (Объем информации)	Количество соединений
1	100В (100 байт)	50
2	1КіВ (1 Кбайт)	50
3	100КіВ (100 Кбайт)	50
4	1МіВ (1 Мбайт)	50
5	10МіВ (10 Мбайт)	50
6	100МіВ (100 Мбайт)	50
	Bcero:	300

- 3.2. При поверке зонда ESR, установленного на сети связи:
- необходимо предварительно провести приближенную оценку пропускной способности доступного канала связи между поверяемым зондом ESR и вспомогательным зондом ESR №2 или сервером системы КМУТ с использованием команды (см. подпункт 4 этапа IV п. 9.2):

kmut-band -T10 -R10M <IP адрес зонда ESR №2> Вывол:

12.2500 MB / 10.06 sec = 9.9751 Mbps 98 %TX 0 %RX 0 retrans 23.70 msRTT,

где 9.9751 Mbps – верхняя граница полосы пропускания доступного канала связи между поверяемым зондом ESR и вспомогательным зондом ESR №2 или сервером системы КМУТ.

 выбрать программу поверки с использованием файлов эталонных объемов в зависимости от верхней границы полосы пропускания доступного канала связи в соответствии с таблицей 5.

Таблица 5 – Программа поверки при определении диапазона и погрешности измерений количества переданной (принятой) информации (данных) (поверка зонда ESR, установленного

на сети связи)

		Пропускная способность канала связи, Мбит/с				
№	Название файла (Объем информации)	от 0,1 до 5 включ.	от 5 до 10 включ.	от 10 до 50 включ.	от 50 до 100 включ.	от 100 до 4000 включ.
		Количество соединений				
1	100В (1 байт)	50	50	50	50	50
2	1КіВ (1 Кбайт)	50	50	50	50	50
3	100КіВ (100 Кбайт)	184	170	150	150	150
4	1МіВ (1 Мбайт)	10	20	30	30	30
5	10МіВ (10 Мбайт)	3	5	10	20	20
6	100МіВ (100 Мбайт)	3	5	10	20	20
	Всего	300				

Изменение программы поверки при определении диапазона и погрешности измерений количества переданной (принятой) информации (данных) возможно путем внесения изменений в файл конфигурации поверки и дальнейшей его загрузке в разделе «Поверка» ПО СИГМА-КМУТ-Контроль в соответствии с руководством по эксплуатации.

- 3.3. При определении диапазона и погрешности измерений количества переданной (принятой) информации (данных) осуществляется передача файлов эталонных объемов с сервера хранения эталонных файлов СИГМА-2.СЭФ на сетевой интерфейс прибора СИГМА-2 через поверяемый Зонд ESR, который осуществляет трансляцию получаемых/передаваемых файлов эталонных объемов.
- 3.4. После выполнения заданной программы приема/передачи файлов эталонных объемов ПО СИГМА-КМУТ-Контроль автоматически запрашивает протокол измерений от зонда ESR, осуществляет автоматическое сравнение и расчет результатов поверки, а также формирует файл-результат в формате «csv», который содержит данные измерений прибора СИГМА-2, данные измерений зонда ESR и результаты расчетов.
- 4. Результаты поверки оцениваются автоматически (успешно, неуспешно):
- а) при результате, когда погрешность измерений зонда ESR для каждого сеанса передачи данных не превышает ± 10 байт в диапазоне измерений количества переданной (принятой) информации (данных) от 1 до 100 кбайт включительно, и $\pm 1\cdot 10^{-4}\cdot {\rm K}$ байт, где K количество измеренной информации, в диапазоне от 100 кбайт до 100 Мбайт, определение погрешности измерений количества переданной (принятой) информации (данных) считается завершенным успешно;
- б) при результате, когда погрешность измерений зонда ESR хотя бы для одной сессии превышает нормированного значения, поверка прекращается до устранения неисправности. Если устранение неисправности невозможно, то поверка считается завершенной неуспешно.

10.3 Определение погрешности измерений продолжительности (длительности) сеансов передачи данных

- 1. Определение погрешности измерений продолжительности (длительности) сеансов передачи данных проводят методом измерения длительности осуществляемых сеансов передачи данных, проходящих через зонд ESR. Схема поверки состоит из последовательно осуществляемых опытов, в каждом из которых зонд ESR проводит измерение заведомо известного (эталонного) значения длительности. Результатом каждого опыта, то есть наблюдаемым событием, будет погрешность измерения, то есть разность между измеренным и подаваемым на вход эталонным значениями. Результат считается успешным, если погрешность измерения меньше или равна заданному предельно допустимому значению и неуспешным в противном случае. Математический аппарат обработки результатов приведен в приложении А.
- Определение погрешности измерений продолжительности (длительности) сеансов передачи данных выполняется с использованием ПО СИГМА-СИПД под управлением ПО СИГМА-КМУТ-Контроль в автоматическом режиме.
- Программа испытаний с указанием эталонных значений длительности в соответствии с таблицей Таблица 6.

Таблица 6 – Программа испытаний при определении диапазона и погрешности измерений продолжительности (длительности) сеансов передачи данных

Этап	Длительность	Количество соединений
1	1 c	300
2	600 c	1
3	3600 c	1
	Всего:	302

Изменение программы поверки при определении диапазона и погрешности измерений количества переданной (принятой) информации (данных) возможно путем внесения изменений в файл конфигурации поверки и дальнейшей его загрузке в разделе «Поверка» ПО СИГМА-КМУТ-Контроль в соответствии с руководством по эксплуатации.

- 4. При определении диапазона и погрешности измерений продолжительности (длительности) сеансов передачи данных прибор СИГМА-2 осуществляет с использованием протокола FTP установление и разрушение сеансов передачи данных калиброванной длительности с сервером хранения эталонных файлов СИГМА-2.СЭФ через поверяемый Зонд ESR, который осуществляет трансляцию получаемых/передаваемых команд управления сеансом передачи данных.
- 5. После выполнения заданной программы формирования сеансов передачи данных ПО СИГМА-КМУТ-Контроль автоматически запрашивает протокол измерений от зонда ESR, осуществляет автоматическое сравнение и расчет результатов поверки, а также формирует файл-результат в формате «csv», который содержит данные измерений прибора СИГМА-2, данные измерений зонда ESR и результаты расчетов.
- 6. Результаты поверки оцениваются автоматически (успешно, неуспешно):
- а) при результате, когда погрешность измерений зонда ESR для каждого сеанса передачи данных не превышает ±0,3 секунд в диапазоне измерений продолжительности (длительности) сеансов передачи данных измерений количества переданной (принятой) информации (данных) от 1 до 3600 с поверка считается завершенной успешно;
- б) при результате, когда погрешность измерений зонда ESR хотя бы для одной сессии превышает нормированного значения "поверка прекращается до устранения неисправности. Если устранение неисправности невозможно, то поверка считается завершенной неуспешно.

10.4 Определение погрешности измерений пропускной способности канала передачи данных

- 1. Определение погрешности измерений пропускной способности канала передачи данных проводится методом сравнения с использованием данных, полученных прибором СИГМА-2 и измеренных зондом при проведении операций по п.10.2.
- 2. Вычисление значения выполняется для каждого из результатов измерений из 4-6 этапов по формуле:

$$\left(1 - \frac{V_{30HД}}{V_{CИГМА-2}}\right) \cdot 100\%$$
, где:

 $V_{30\text{нд}}$ – значение, измеренное зондом ESR при определении погрешности измерений количества переданной (принятой) информации;

 $V_{\text{СИГМА}-2}$ — значение скорости передаваемой информации, зарегистрированное СИГМА-2 при определении погрешности измерений количества переданной (принятой) информации.

- 3. ПО СИГМА-КМУТ-Контроль осуществляет автоматический расчет результатов определения погрешности измерений пропускной способности канала передачи данных и индицирует его в протоколе поверки.
- 4. Оценить результаты поверки (успешно, неуспешно):
- а) при результате, когда погрешность измерений зонда ESR для каждого сеанса передачи данных не превышает $\pm 1~\%$ в заданном диапазоне измерений поверка считается завершенной успешно;
- б) при результате, когда погрешность измерений зонда ESR хотя бы для одной сессии превышает нормированное значение, поверка считается завершенной неуспешно.

10.5 Определение относительной погрешности измерений скорости передаваемой информации

- 1. Измерение относительной погрешности измерений скорости передаваемой информации сводится к переносу файла эталонного объема с сервера хранения эталонных файлов на прибор СИГМА-2 через поверяемый зонд. При переносе файла прибор СИГМА-2 осуществляет измерение объема принятой информации, длительности передачи объема информации и вычисляет скорость передачи данных, а поверяемый зонд проводит измерение скорости передаваемой информации. В связи с этим проведение определения относительной погрешности скорости передаваемой информации проводится в соответствие с п. 10.2 настоящей методики с учетом особенностей нижеизложенных пунктов.
- 2. Измерение относительной погрешности измерений скорости передаваемой информации для зондов ESR проводится в расчетных точках диапазона измерений, указанных в строках 1-5 таблицы 7. Точки устанавливаются исходя из объема эталонных файлов и времени передачи не менее 60 с. Прибор СИГМА-2 обеспечивает передачу эталонных файлов с заданной скоростью с использованием сервера хранения эталонных файлов, который настраивается согласно руководству по эксплуатации.
- 3. Провести не менее четырех измерений для каждой контрольной точки.

Таблица 7

№	Эталонные файлы	Объем эталонных файлов, байт	Расчётная длительность передачи, не менее, с	Расчётная скорость передачи информации, бит/с	Скорость передачи/приема данных сервером хранения эталонных файлов, Мбит/с
1	10 MiB	1 048 576	60	1 398 101	1,3
2	100 MiB	104 857 600	60	13 981 013	13
3	1 GiB	1 073 741 824	60	143 165 577	143
4	2 GiB	2 147 483 648	60	286 331 153	280
5	5 GiB	5 368 709 120	60	715 827 883	710

4. Для выбранных (с учетом модификации зонда ESR) точек диапазона определить относительную погрешность измерений скорости передаваемой информации по формуле:

$$\dot{\varepsilon}_{VESR}(i) = \frac{V_{\text{CM}\Gamma\text{MA}-2}(i) - V_{ESR}(i)}{V_{\text{CM}\Gamma\text{MA}-2}(i)} \cdot 100\%$$

- 5. Оценить результаты поверки (успешно, неуспешно):
 - а) при результате, когда относительная погрешность измерений скорости передаваемой информации для каждой выбранной точки диапазона измерений не превышает ± 1 % в установленном диапазоне измерений – поверка считается завершенной успешно;
 - б) при результате, когда погрешность измерений зонда ESR, хотя бы для одной точки диапазона превышает \pm 1 %, поверка считается завершенной неуспешно.

10.6 Определение абсолютной погрешности синхронизации шкалы времени относительно национальной шкалы времени UTC (SU)

- 1. Определение абсолютной погрешности синхронизации шкалы времени относительно национальной шкалы времени проводят методом измерения разности (расхождения) шкал времени (далее также ШВ), воспроизводимой зондом ESR, относительно национальной ШВ UTC (SU).
- 2. Определение абсолютной погрешности синхронизации шкалы времени относительно национальной шкалы времени UTC (SU) выполняется с использованием ПО СИГМА-РШВ под управлением ПО СИГМА-КМУТ-Контроль в автоматическом режиме.
- 3. При проведении измерений применяется прибор СИГМА-2, оснащенный приемником сигналов ГНСС ГЛОНАСС или ГЛОНАСС/GPS, обеспечивающим синхронизацию ШВ внутренних часов со ШВ ГЛОНАСС (UTC SU).
- 4. Синхронизация ШВ зондов ESR обеспечивается по протоколу NTP от NTP-сервера источника первичного точного времени УКУС-ПИ 02ДМ. При периодической поверке вместо источника первичного точного времени допускается применять сервер точного времени, обладающий функциями устройств синхронизации и коррекции времени, или источников точного времени, при условии, что он является средством измерения утвержденного типа и имеет действующее свидетельство о поверке.
- При проведении измерений ШВ прибора СИГМА-2 выбирается в качестве опорной (эталонной).
- 6. Поскольку погрешность передачи ШВ UTC(SU) с помощью сигналов ГНСС пренебрежительно мала по сравнению с нормируемым значением погрешности измерений разности (расхождения) шкал времени, то этой погрешностью можно в дальнейшем пренебречь, и при определении погрешности измерений считать ШВ, передаваемую сигналами ГНСС, соответствующей ШВ UTC(SU).
- 7. Измерения разности ШВ проводятся на основании прямых измерений. Метод измерения заключается в сравнении двух ШВ (прибора СИГМА-2 и зонда ESR), регистрации результата сравнения (разности ШВ), многократном автоматическом повторении измерений, вычислении среднего значения разности ШВ в одном измерении, вычислении среднего значения ШВ по сумме измерений, отображении окончательного результата

измерений и вердикта (соответствия полученного значения разности ШВ допустимому (нормированному) значению).

 При проведении измерений используются следующие параметры измерений СИГМА-РШВ:

число запросов измерения: 10

число измерений: 400

период измерений: 1 с

- 9. Обработку результатов измерений прибор СИГМА-2 выполняет в автоматическом режиме в несколько этапов:
 - вычисление мгновенного значение ΔT_i разности (расхождения) ШВ своих часов и часов зонда ESR по формуле:

$$\Delta T_i = T_{NTPi} - T_{\Gamma JOHACCi}$$

— вычисление результата измерения разности (расхождения) ШВ $\Delta T_{\text{изм}j}$, как отношения суммы всех измеренных мгновенных значений ΔT_i к количеству N запросов измерения по формуле:

$$\Delta T_{\text{\tiny MSM}j} = \frac{1}{N} \sum_{i=1}^{N} \Delta T_i$$

— вычисление результата измерения разности (расхождения) ШВ ΔT , как отношения суммы всех вычисленных измерений разности (расхождения) ШВ, как отношения результата измерений разности (расхождения) ШВ $\Delta T_{\rm изм}$ к количеству измерений $N_{\rm изм}$ по формуле:

$$\Delta T = \frac{1}{N} \sum_{j=1}^{N} \Delta T_{\text{изм}i}$$

- 10. После выполнения заданной программы ПО СИГМА-КМУТ-Контроль формирует файлрезультат в формате «csv», который содержит данные измерений прибора СИГМА-2.
- 11. Результаты поверки оцениваются автоматически (успешно, неуспешно):
- а) при успешном результате значение измерения разности (расхождения) ШВ не превышает 0,3 с.
- б) при неуспешном результате значение измерения разности (расхождения) ШВ превышает 0,3 с.

10.7 Определение погрешности измерений средней задержки передачи пакетов данных (PD)

- 1. Схему измерений при определении погрешности измерений средней задержки передачи пакетов данных выбирают исходя из условий применения поверяемого зонда ESR.
- 2. Для проведения первичной поверки или поверки зонда ESR, не установленного на сети связи, руководствоваться требованиями п. 10.7.1.
- 3. Для проведения поверки зонда ESR, установленного на сети связи, руководствоваться требованиями п. 10.7.2.

- 4. Определение диапазона и погрешности измерений средней задержки передачи пакетов данных проводят методом сравнения с использованием имитатора параметров сетей передачи данных СИГМА-2.ИС и прибора СИГМА-2. Схема поверки состоит из последовательно осуществляемых опытов, в каждом из которых прибор СИГМА-2 и зонд ESR проводят измерение заведомо известного (эталонного) значения средней задержки передачи пакетов данных.
- Определение погрешности измерений средней задержки передачи пакетов данных выполняется с использованием ПО СИГМА-СПД и имитатора параметров сети передачи данных СИГМА-2.ИС под управлением ПО СИГМА-КМУТ-Контроль в автоматическом режиме.
- 6. В ходе поверки имитатор СИГМА-2.ИС обеспечивает реализацию заданных параметров сети передачи данных (средняя задержка передачи пакетов данных, вариация задержки передачи пакетов данных, потери).
- 7. Исходными данными для проведения измерения являются следующие задаваемые данные:
 - -IP-адрес назначения;
 - -длина тестового пакета;
 - -интервал между тестовыми пакетами;
 - -количество тестовых пакетов.
- 8. Поверка длится с учетом заданных значений, в процессе которой производится формирование потока пакетов от исходящего сетевого адаптера СИГМА-2 через имитатор СИГМА-2.ИС к входящему сетевому адаптеру СИГМА-2.
- 9. Во время передачи фиксируется время отправки (на исходящей стороне) и время приема (на входящей стороне) каждого пакета, синхронизированное с ШВ прибора СИГМА-2. Разность между временами приема пакета и его отправки фиксируется, как время задержки пакета. Вычисляется и фиксируется среднее значение всех задержек прохождения пакетов потока. Это значение индицируется, как средняя задержка передачи пакетов данных (PD).

10.7.1 Определение погрешности измерений средней задержки передачи пакетов данных (PD) при первичной поверке и поверке зонда ESR, не установленного на сети связи

- Для проведения первичной поверки или поверки зонда ESR, не установленного на сети связи, используется схема измерений, приведенная на рисунке 7. При сборке схемы необходимо использовать коммутационные шнуры (патч-корды) одинаковой длины и категории, чтобы минимизировать их влияние на результаты поверки.
- Учитывая, что поверка проводится в локальной сети, в которой отсутствует сторонний трафик, то значение средней задержки, вносимой коммутаторами СПД и линиями связи, можно считать постоянным, а организуемый канал связи симметричным.
- Настройки параметров имитатора параметров сети передачи данных СИГМА-2.ИС при определении диапазона и погрешности измерений средней задержки передачи пакетов приведены в ниже приведенной таблице.

Таблица 8 – Настройки параметров имитатора параметров сети передачи данных СИГМА-2.ИС при определении диапазона и погрешности измерений средней задержки передачи дакетор

		0	Испытание			
Значені	ия настроек	Опробование	<i>№</i> 1	№2	N₂3	Nº4
	средняя задержка передачи пакетов данных	0 мс	5 мс	20 мс	200 мс	1000 мс
Имитатора	вариация задержки пакетов	0 мкс				
СИГМА-2.ИС	коэффициент потерь пакетов	0				
	полоса пропускания	100/1000 Мбит/с полный дуплекс				
	Длина пакета	1500 байт				
Формирователя- измерителя	Задержка между тестовыми пакетами	10 мс				
СИГМА-2 Зонда ESR	Количество тестовых пакетов	6000				
	Продолжительность одного измерения			≥ 60 c		

Допускается использовать другие значения параметров из расчета общего времени проведения одного измерения не менее 60 с и количества тестовых пакетов не менее 400.

- 4. ПО СИГМА-КМУТ-Контроль обеспечивает автоматическую настройку параметров имитатора СИГМА-2.ИС, их проверку с использованием ПО СИГМА-СПД прибора СИГМА-2, управление Зондом ESR и получение результатов измерений с Зонда ESR в следующем порядке:
 - проводится измерение с помощью прибора СИГМА-2 средней задержки передачи пакетов для опробования. Полученный результат ($t_{PD \text{ схемы}}$) представляет собой совокупностью односторонних средних задержек передачи пакетов, вносимых каждым из элементов схемы измерений, и используется как поправочный коэффициент при установке значения вносимой задержки передачи пакетов имитатором СИГМА-2.ИС:

$$t_{PD$$
схемы = t_{PD} Имитатор + t_{PD} коммутатор СПД + $\sum_{i=1}^{n} t_{PD}$ линий связи (i)

— на имитаторе СИГМА-2.ИС устанавливается значение вносимой имитатором сети задержки ($t_{PD\ U_{MUTATOP}}$) с учетом поправочного коэффициента для контрольной точки N01:

$$t_{PD$$
уст.Имитатор $(i) = t_{PD}(i) - t_{PD$ схемы

где $t_{PD}(i)$ – значение средней задержки передачи пакетов в i-испытании.

- проводится измерение с помощью прибора СИГМА-2 средней задержки передачи пакетов для контрольной точки №1, воспроизводимое имитатором СИГМА-2.ИС.
- с помощью поверяемого Зонда ESR проводится измерение средней задержки передачи пакетов, реализуемых имитатором СИГМА-2.ИС, для контрольной точки №1 (см. Таблица 8) с использованием команды:

kmut-qual -h <IP-адрес сервера Системы КМУТ> -s 100 -i 1000 -c 5

где ключи «-s» — размер тестового пакета, «-i» — интервал следования между пакетами, «-c» — кол-во пакетов в тестовой последовательности.

Управлением Зондом ESR и получение результатов измерений осуществляется ПО СИГМА-КМУТ-Контроль в автоматическом режиме.

- вышеперечисленные действия повторяются для оставшихся контрольных точек.
- После выполнения заданной программы ПО СИГМА-КМУТ-Контроль осуществляет автоматическое сравнение и расчет результатов поверки, а также формирует файлрезультат в формате «csv», который содержит данные измерений прибора СИГМА-2 и данные измерений зонда ESR.
- 6. Результаты поверки оцениваются автоматически (успешно, неуспешно):
- а) при успешном результате для каждой контрольной точки должно выполняться условие:

$$t_{PDCИГМA-2}(i) - t_{PDCИГМA-2}(i) \cdot 1\% \le (t_{PDESR}(i) - t_{PDCХЕМЫ}) \le t_{PDCИГМA-2}(i) + t_{PDCИГМA-2}(i) \cdot 1\%$$

б) если хотя бы для одной контрольной точки условие не выполняется, результат считается неуспешным.

10.7.2 Определение погрешности измерений средней задержки передачи пакетов данных (PD) при поверке зонда ESR установленного на сети связи

- 1. Для проведения поверки зонда ESR, установленного на сети связи, используется схема измерений, приведенная на рисунке 8.
- 2. Поверка проводится на сети связи оператора связи, в которой присутствует сторонний трафик, в связи с этим поверку рекомендуется проводить в режиме эксплуатации сети без перегрузок, сбоев, вне периодов аномальной нагрузки на сеть связи, вызванной нетипичным профилем использования услуг (технические работы, техногенные происшествия, праздничные дни и т.п.).
- Перед началом поверки выбираются контрольные точки, распределенные по диапазону измерений, в которых необходимо будет определять погрешность измерений поверяемого зонда ESR. Для этого необходимо определить начальную точку доступного диапазона измерений.
- 4. ПО СИГМА-КМУТ-Контроль обеспечивает автоматическую настройку параметров имитатора СИГМА-2.ИС, их проверку с использованием ПО СИГМА-СПД прибора СИГМА-2, управление Зондом ESR и получение результатов измерений с Зонда ESR в следующем порядке:
 - проводится с помощью поверяемого зонда ESR многократное (не менее пяти) измерение средней задержки передачи пакетов между поверяемым зондом ESR и сервером системы КМУТ (зондом ESR), подключенном к имитатору СИГМА-2.ИС для этапа опробования (см. Таблица 9) с использованием команды:

kmut-qual -h <IP-адрес сервера Системы КМУТ> -s 100 -i 1000 -c 5

Таблица 9 - Настройки испытаний при определении диапазона и погрешности измерений средней задержки передаци пакетов

Значени	ія настроек	Опробование, Испытание	
	средняя задержка передачи пакетов данных	0 мс	
Имитатор	вариация задержки пакетов данных	0 мкс	
СИГМА-2.ИС	коэффициент потерь пакетов данных	0	
	полосы пропускания	100/1000 Мбит/с полный дуплекс	
	Длина пакета	1500 байт	
Формирователь- измеритель	Задержка между тестовыми пакетами	10 мс	
СИГМА-2 Зонд ESR	Количество тестовых пакетов	6000	
	Продолжительность одного измерения	\geq 60 c	

Допускается использовать другие значения параметров из расчета общего времени проведения одного измерения не менее 60 с и количества тестовых пакетов не менее 400.

- вычисляется усредненное значение двухсторонней задержки $t_{PD\Sigma}$ по формуле:

$$t_{PD\Sigma} = \frac{\sum_{i=1}^{n} t_{PD\Sigma}(i)}{n}$$

 с помощью прибора СИГМА-2 измеряется средняя задержка передачи пакетов, вносимых опытной зоной. Полученный результат t_{PDсхемы} будет являться совокупностью односторонних средних задержек, вносимых каждым из элементов схемы измерений, и должен использоваться как поправочный коэффициент при установке значения вносимой задержки передачи пакетов имитатором СИГМА-2.ИС:

$$t_{PD$$
схемы = t_{PD} Имитатор + $\sum_{i=1}^{n} t_{PD}$ линий связи (i)

- Полученные значения $t_{PD\Sigma}$ и $t_{PDcxemb}$ используются для выбора значений контрольных точек, в которых должна проводится поверка зонда ESR.
- выбор контрольных точек осуществляется в соответствие с таблицей 10, при этом если полученное значение контрольной точки не удовлетворяет неравенству, то в качестве контрольной точки выбирается наибольшее допустимое значение для данной точки. В случае, если значение начальной контрольной точки превышает верхнюю границу диапазона измерений (≥1,5 с) определение погрешности средней задержки передачи пакетов данных (PD) допускается не проводить.

Таблица 10

$№$ контрольной точки $t_{PD}(i)$	Значение средней задержки передачи пакетов данных для имитатора СИГМА-2.ИС
1	$(t_{PD\Sigma} - 2 \cdot t_{PD \text{ схемы}}) \cdot 5 \le 200 \text{ мс}$
2	$200 \ \mathrm{Mc} < (t_{PD\Sigma} - 2 \cdot t_{PD \ \mathrm{CXEMbl}}) \cdot 15 \le 500 \ \mathrm{Mc}$

 $500 \text{ mc} < (t_{PD\Sigma} - 2 \cdot t_{PD \text{ cxeMbJ}}) \cdot 20 \le 1000 \text{ mc}$

— на приборе СИГМА-2.ИС устанавливаются значения параметров испытаний (см. Таблица 9) и значение вносимой имитатором сети задержки $t_{PD\ Имитатор}$ с учетом поправочного коэффициента и усреднённого значения задержки сети для контрольной точки №1:

$$t_{PD\text{yct.}\text{Имитатор}}(i) = t_{PD}(i) - t_{PD\Sigma}$$

где $t_{PD}(i)$ – значение средней задержки передачи пакетов в выбранной i-контрольной точке.

 с целью проверки значения воспроизводимой средней задержки передачи пакетов проводится измерение с помощью прибора СИГМА-2 средней задержки передачи пакетов для контрольной точки №1, воспроизводимое имитатором СИГМА-2.ИС в течение не менее 10 с. Проверка считается успешной, если в контрольной точке выполняется следующее условие:

$$(t_{PD\text{уст.Имитатор}}(i) - t_{PD\text{уст.Имитатор}}(i) \cdot 0,5\%) \leq t_{PD\text{СИГМA}-2}(i) \leq (t_{PD\text{уст.Имитатор}}(i) + t_{PD\text{уст.Имитатор}}(i) \cdot 0,5\%).$$

 с помощью поверяемого Зонда ESR проводится измерение средней задержки передачи пакетов, реализуемых имитатором СИГМА-2.ИС, для контрольной точки №1 с учетом требований, изложенных в таблицах (см. Таблица 9, Таблица 10):

kmut-qual -h <IP-адрес сервера Системы КМУТ> -s 100 -i 1000 -c 5

где ключи «-s» — размер тестового пакета, «-i» — интервал следования между пакетами, «-c» — кол-во пакетов в тестовой последовательности.

Управлением Зондом ESR и получение результатов измерений осуществляется ПО СИГМА-КМУТ-Контроль в автоматическом режиме.

- вышеперечисленные действия повторяются для оставшихся контрольных точек.
- После выполнения заданной программы ПО СИГМА-КМУТ-Контроль осуществляет автоматическое сравнение и расчет результатов поверки, а также формирует файлрезультат в формате «csv», который содержит данные измерений прибора СИГМА-2 и данные измерений зонда ESR.
- 6. Результаты поверки оцениваются автоматически (успешно, неуспешно):
- а) при успешном результате для каждой контрольной точки должно выполняться условие:

$$(t_{PDCИГМA-2}(i) - t_{PDCИГMA-2}(i) \cdot 1\%) \le (t_{PDESR}(i) - t_{PD\Sigma} + t_{PD \text{ схемы}}) \le$$
 $\le (t_{PDCИГМA-2}(i) + t_{PDCИГМA-2}(i) \cdot 1\%)$

 б) если хотя бы для одной контрольной точки условие не выполняется, результат считается неуспешным.

10.8 Определение погрешности измерений вариации задержки передачи пакетов данных (PDV)

1. Так как средняя задержка передачи пакетов данных измеряется, как сумма задержек всех переданных пакетов, деленная на количество пакетов, то погрешность измерения средней задержки передачи пакетов равна сумме всех погрешностей измерений задержки каждого

- переданного пакета, то есть количеству переданных пакетов. Согласно требованиям п. 10.7 минимальное количество тестовых пакетов, используемых для определения погрешности измерений средней задержки передачи пакетов данных, составляет не менее 60.
- 2. Вариация задержки передачи пакетов данных представляет собой разность только двух независимо измеренных значений задержки передачи пакетов данных: максимальной и минимальной. Следовательно, погрешность измерения вариации задержки передачи пакетов данных равна суммарному значению погрешностей всего двух измерений задержки передачи пакетов данных и можно утверждать, что погрешность измерения вариации задержки передачи пакетов не может превыплать погрешность измерения средней задержки передачи пакетов данных, определяемой в п. 10.7.
- 3. В виду однородности причин возникновения погрешностей при измерении средней задержки и вариации задержки передачи пакетов и с учетом вышеуказанного определение погрешности измерения вариации задержки передачи пакетов данных проводят косвенным методом по результатам определения погрешности средней задержки передачи пакетов данных следующим образом:
- а) успешно, если оценка результата определения погрешности измерений средней задержки передачи пакетов данных завершена успешно (погрешность измерений средней задержки передачи пакетов данных не превышает 1%);
- б) неуспешно, если результат определения погрешности измерений средней задержки передачи пакетов данных превышает 1%).

10.9 Определение погрешности измерений коэффициента потерь пакетов данных (PL)

- 1. Определение погрешности измерений коэффициента потерь пакетов данных проводят методом сравнения с использованием имитатора параметров сетей передачи данных СИГМА-2.ИС и прибора СИГМА-2.
- 2. Для проведения поверки используется схема измерений, приведенная на рисунке 7.
- Учитывая, что поверка проводится в локальной сети, в которой отсутствует сторонний трафик, то можно принять, что потери, вносимые активным оборудованием и линиями связи, отсутствуют.

Таблица 11 – Настройки испытаний при определении диапазона и погрешности измерений коэффициента потерь пакетов данных

Значения настроек		Опробование	Испытание		
			Nº1	Nº2	Nº3
Имитатора СИГМА-2.ИС	средняя задержка передачи пакетов данных	0 мс			
	вариация задержки пакетов	0 мкс			
	коэффициента потерь пакетов	0	0,01	0,1	0,9
	полосы пропускания	100 Мбит/с полный дуплекс			
	Длина пакета	1500 байт			

2		0	Испытание		
Значения настроек		Опробование	N21	N <u>°</u> 2	Nº3
Формирователя-	Задержка между тестовыми пакетами	6 мс			
измерителя СИГМА-2 Зонда ESR	Количество тестовых пакетов	не менее 100 000			
	Максимальное время ожидания прихода пакета	3 c			

- 4. ПО СИГМА-КМУТ-Контроль обеспечивает автоматическую настройку параметров имитатора СИГМА-2.ИС, их проверку с использованием ПО СИГМА-СПД прибора СИГМА-2, управление Зондом ESR и получение результатов измерений с Зонда ESR в следующем порядке:
 - с помощью прибора СИГМА-2 и зонда ESR измеряется коэффициент потерь пакетов данных, воспроизводимый имитатором СИГМА-2.ИС, для опробования. Опробование считается успешным, если значение коэффициента потерь пакетов равно установленному значению (0) с учетом МХ прибора СИГМА-2 и зонда ESR, в противном случае увеличивается значение задержки между тестовыми пакетами и измерение повторяется;
 - с помощью прибора СИГМА-2 проводится измерение коэффициента потерь пакетов данных, воспроизводимого имитатором СИГМА-2, для каждой из контрольных точек (см. Таблица 11), в качестве значения задержки между тестовыми пакетами используется значение, полученное при успешном опробовании для прибора СИГМА-2.
 - с помощью Зонда ESR проводится измерение коэффициента потерь пакетов данных, воспроизводимых имитатором СИГМА-2.ИС, для каждой из контрольных точек (см. Таблица 11), в качестве значения задержки между тестовыми пакетами используется значение, полученное при успешном опробовании для зонда ESR с использованием команды:

kmut-qual -h <IP-адрес сервера Системы КМУТ> -s 100 -i 1000 -c 5

где ключи «-s» — размер тестового пакета, «-i» — интервал следования между пакетами, «-c» — кол-во пакетов в тестовой последовательности.

Управлением Зондом ESR и получение результатов измерений осуществляется ПО СИГМА-КМУТ-Контроль в автоматическом режиме.

- вышеперечисленные действия повторяются для оставшихся контрольных точек.
- 5. Результаты определения погрешности измерений коэффициента потерь пакетов данных будут сохранены и отражены в протоколе поверки.
- 6. Результаты поверки оцениваются автоматически (успешно, неуспешно):
 - а) при успешном результате разность полученных значений не должна превышать $3 \cdot 10^{-5}$;
 - б) при неуспешном результате разность полученных значений превышает $3 \cdot 10^{-5}$.

11 Подтверждение соответствия средства измерений метрологическим требованиям

- 11.1 Обработка результатов измерений и определение МХ для части операций поверки проводится полностью автоматически в приборе СИГМА-2 по соответствующей программе.
- 11.2 Результаты поверки зонда ESR считаются положительными, если оценка результата всех операций поверки успешны.
- 11.3 Результаты поверки зонда ESR считаются отрицательными, если хотя бы одна операция поверки проведена неуспешно.
 - 11.4 Зонды ESR не применяются в качестве эталонов.

12 Оформление результатов поверки

- 12.1 Результаты поверки подтверждаются сведениями, включенными в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком, установленным действующим законодательством.
- 12.2 В случае организации поверки в сокращенном объеме, в сведениях о поверке должны быть отражены сведения об объеме проведенной поверки.
- 12.3 В случае положительных результатов поверки по заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке, оформленное по установленной форме.
- 12.4 В случае отрицательных результатов поверки (не подтверждено соответствие средств измерений метрологическим требованиям) выдается извещение о непригодности к применению средства измерений по форме, установленной в соответствии с действующим законодательством.
- 12.5 По заявлению владельца средства измерений или лица, представившего его на поверку, результаты поверки могут быть оформлены протоколом поверки по произвольной форме.
- 12.6 После выполнения поверки ПО СИГМА-КМУТ-Контроль осуществляет сравнение и расчет результатов поверки, а также формирует файл-результат в формате «csv» и протокол, которые содержат данные измерений прибора СИГМА-2, данные измерений зонда ESR и результаты расчетов в автоматическом режиме.
- 12.7 В связи с условиями эксплуатации знак поверки на зонды ESR не наносится. Знак поверки наносится на свидетельство о поверке в виде наклейки, оттиска поверительного клейма или иным способом изготовленного условного изображения (в случае наличия заявления о выдачи свидетельства владельцу СИ или лицу, представившему их на поверку).

Приложение А

(справочное)

Характеристики прибора СИГМА-2

Математический аппарат обработки результатов

А.1 Формирователь – измеритель соединений универсальный СИГМА. Общие сведения.

Формирователи – измерители соединений СИГМА-2 (далее – Приборы) предназначены для:

- формирования и измерений длительности телефонных соединений, сеансов передачи данных, объемов переданной и принятой информации (данных);
- статистического анализа информации, полученной из систем измерений длительности соединений (далее – СИДС) или систем измерений передачи данных (далее – СИПД) оборудования связи;
- измерения разности (расхождения) шкал времени в сетях операторов связи относительно национальной шкалы времени Российской Федерации UTC (SU);
- хранения и воспроизведения внутренней шкалы времени, синхронизированной с национальной шкалой времени Российской Федерации UTC (SU) по сигналам глобальных навигационных спутниковых систем (далее – ГНСС) ГЛОНАСС/GPS или по сети Интернет путем установления связи с серверами точного времени, используя протокол NTP;
- измерения параметров сетей передачи данных, выполняемых при обеспечении целостности и устойчивости функционирования сети связи общего пользования.

Метрологические характеристики

Наименование характеристики	Значение
Пределы допускаемой абсолютной погрешности измерений разности (расхождения) шкал времени относительно национальной шкалы времени Российской Федерации UTC (SU) в режиме синхронизации по сигналам ГНСС ГЛОНАСС/GPS, в диапазоне от 1·10 ⁻⁷ до 86400 с, мс	±0,5
Пределы допускаемой абсолютной погрешности расхождения шкалы времени Прибора со шкалой времени Российской Федерации UTC (SU) при отсутствии синхронизации по сигналам ГНСС ГЛОНАСС/GPS, мс/сутки, не более	±150
Пределы допускаемой абсолютной погрешности формирования длительности сеанса передачи данных и телефонного соединения в диапазоне от 1 до 3600 с, с	±0,05
Пределы допускаемой абсолютной погрешности измерений длительности сеанса передачи данных и телефонного соединения в диапазоне от 1 до 3600 с, с	±0,05
Пределы допускаемой абсолютной погрешности измерений длительности телефонного соединения с использованием таксофона в диапазоне от 1 до 600 с, с	±0,05
Пределы допускаемой абсолютной погрешности измерений переноса единиц объемов (количества) информации в диапазоне от 1 байта до 1 Тбайт, байт	±0
Погрешность измерений единиц объемов (количества) информации, принимаемой в сеансе передачи данных в диапазоне от 1 байта до 1 Тбайт, байт	±1
Пределы допускаемой абсолютной погрешности измерений средней задержки передачи пакетов данных в диапазоне от 0 до 2 · 10 ³ мкс, мкс	±0,05
Пределы допускаемой абсолютной погрешности измерений средней задержки передачи пакетов данных в диапазоне от $2 \cdot 10^3$ до $1.5 \cdot 10^6$ мкс, мкс	±10

Наименование характеристики	Значение
Пределы допускаемой абсолютной погрешности измерений вариации задержки передачи пакетов данных в диапазоне от 0 до 2 · 10 ³ мкс, мкс	±0,05
Пределы допускаемой абсолютной погрешности измерений вариации задержки передачи пакетов данных в диапазоне от 2 · 10 ³ до 1 · 10 ⁵ мкс, мкс	
Пределы допускаемой абсолютной погрешности измерений коэффициента потерь пакетов данных в диапазоне от 0 до 1	±10 ±1,5·10 ⁻⁵
Пределы допускаемой относительной погрешности измерений пропускной способности канала передачи данных в диапазоне от $10 \cdot 10^3$ до $4 \cdot 10^9$ бит/с, %	±0,5

А.2 Математический аппарат обработки результатов

1. Исходные данные

 Δt — предельно допустимое значение погрешности измерения длительности;

 ΔV – предельно допустимое значение погрешности измерения количества переданной (принятой) информации;

 $P_{\text{ДОВ}}$ – доверительная вероятность (принимается 0,95);

 P_0 — предельно допустимая вероятность превышения допустимых значений погрешности измерений — 10^{-2} (выбирается из компромиссным соображений, так чтобы обеспечить репрезентативность выборки и одновременно минимизировать ее объем).

2. Модель испытаний:

Проводимые испытания представляет собой последовательность независимых друг от друга опытов, в которых вероятность успеха -p, вероятность неуспеха (отказа) q=(1-p). Причем эти вероятности независимы и одинаковы для каждого опыта. Тогда, число успехов S из n проводимых опытов - является случайной величиной, распределенной по биномиальному закону:

$$P(S < s) = \sum_{k=0}^{S} {k \choose n} p^k (1-p)^{n-k}, \tag{1}$$

где P(S < s) – вероятность того, что число успехов не превысит величины s.

В модели событием (успешным или неуспешным) будет каждый результат измерения контролируемого параметра.

Событие (измерение) считается успешным событие, если погрешность измерения меньше или равна установленному нормативным документом предельно допустимому значению погрешности, в противном случае событие (измерение) считается неуспешным. Неуспешным, также считается измерение, результат которого не зафиксирован.

Тогда, p — вероятность появления успешного события, а q — вероятность появления неуспешного события (отказа).

3. Критерии завершения испытаний:

В ходе проведения испытаний требуется проверить, что оцениваемое значение $\overline{q} < P_0$ при выбранном значении доверительной вероятности.

Вероятность P(S < s) можно рассматривать, как вероятность попадания оцениваемой величины \overline{q} в заданный интервал [0,q].

Т.е. должно выполняться соотношение $P(S < S) = P_{\text{лов}}$, или, исходя из (1):

$$\sum_{k=0}^{S} {k \choose n} (1 - P_0)^k P_0^{n-k} \ge P_{\text{dob}}$$
 (2)

Из соотношения (2) находим s. Фактически это означает, что при вероятности отказа (ошибки измерения), равной P_0 , с вероятностью $P_{\text{дов}}$ будут успешными не более s измерений.

Иначе говоря, если в серии из п испытаний число отказов составит не более, чем y = (n-s), то можно утверждать, вероятность неправильной работы меньше предельно допустимой. Обозначим это значение $y_{\rm H}$.

Аналогично, из соотношения (3), можно определить значение s и, соответственно, y = (n-s), при котором вероятность неправильной работы контролируемой системы измерений – окажется больше предельно допустимой. Обозначим его $y_{\rm B}$.

$$\sum_{k=0}^{s} {k \choose n} (1 - P_0)^{n-k} \ge P_{\text{дов}}$$
 (3)

Таким образом, в процессе проведения испытаний, в соответствующие моменты времени, проводится анализ зафиксированного количества ошибок (отказов) y на соответствие границам $y_{\rm H}$ и $y_{\rm B}$,определенным, в соответствие с (2) и (3).

Если $y < y_{\rm H}$, то испытания закончены, результат **УСПЕШНО**;

Если $y < y_B$, то испытания закончены, результат **НЕУСПЕШНО**;

Если $y_H < y < y_H$, то испытания следует продолжать, **ДАННЫХ НЕДОСТАТОЧНО**;

Результаты расчетов, определяющие соотношения необходимого числа испытаний и зафиксированного числа ошибок (измерений, превышающих допустимую погрешность) приведены в Таблице А.1.

Таблица А.1

Вероятность	ошибки P_0	0,01
Число испытаний	Успешно если ошибок	Неуспешно если ошибок
	меньше или равно	больше
300	1	6
473	2	9
628	3	11
773	4	13
913	5	14
1049	6	16
1182	7	18
1312	8	19
1441	9	21
1568	10	22
1693	11	24
1818	12	25
1941	13	27
2064	14	28
2185	15	30
2306	16	31

Т.е, если проведено 300 испытаний (измерений) и число ошибок (превышения допустимой погрешности) не более 1, то вероятность безотказной работы контролируемого зонда не превосходит P_0 . Если же число ошибок превысило 6, то вероятность отказа для данного зонда заведомо превышает P_0 .

4. Точечные и интервальные оценки погрешности

Оцениваемая погрешность измерений – это случайная величина, обозначим её Х.

Набор значений этой величины мы можем вычислить для каждого измерения, как разность между эталонным (задаваемым прибором СИГМА-2) значением и значением, измеренным контролируемым оборудованием.

$$X_i = \mathfrak{I}_{\mathsf{T}_i} - \mathsf{Изм}_i$$

Таким образом, после n измерений получим набор значений погрешности измерений от X_1 до X_n .

Нашей задачей является оценка математического ожидания и дисперсии погрешности, их интервальных оценок с доверительной вероятностью 0,95.

Погрешность измерений является случайной величиной. На практике, принимают, что эти погрешности имеют нормальное распределение. Это обусловлено тем, что погрешности измерений складываются из большого числа небольших воздействий, ни одно из которых не является преобладающим. Согласно же центральной предельной теореме сумма бесконечно большого числа взаимно независимых бесконечно малых случайных величин с любыми распределениями имеет нормальное распределение.

Реально, даже воздействие ограниченного числа воздействий, приводит к нормальному распределению погрешностей результатов измерений.

Вычисление точечных и интервальных оценок проводится после окончания испытаний, на основе данных о погрешностях, зафиксированных в каждом измерении.

4.1 Систематическая составляющая погрешности — это матожидание. При многократных измерениях эффективной оценкой математического ожидания для группы из n наблюдений является среднее арифметическое \overline{x} :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{4}$$

4.2 Оценка СКО (среднего квадратического отклонения) систематической погрешности:

$$S = \frac{\sigma_{\rm B}}{\sqrt{n}} \tag{5}$$

$$\sigma_{\rm B} = \sqrt{\frac{1}{(n-1)} \cdot \sum_{i}^{n} (x_i - \bar{x})^2} \tag{6}$$

4.3 Доверительный (95 %) интервал систематической составляющей погрешности:

$$a = \bar{x} \pm 1,96 \cdot s \tag{7}$$

Значение 1,96 (обратная функция Лапласа для значения доверительной вероятности 0,95) выбирается ввиду того, что при выбранном нами объеме испытаний, распределение Стьюдента аппроксимируется нормальным распределением.

4.4 Доверительный (95 %) интервал для СКО систематической погрешности (при больших выборках):

$$\frac{\sqrt{2n}}{\sqrt{2n-3}+1.96} \cdot s \le \sigma \le \frac{\sqrt{2n}}{\sqrt{2n-3}-1.96} \cdot s \tag{8}$$

4.5 Доверительный (95 %) интервал, в котором находится значение суммарной погрешности:

$$X_{min} \le X_{\text{CYM}} \le X_{max} \tag{9}$$

min и max — это минимальное и максимальное значения погрешности соответствующего измерения.

4.6 Доверительный интервал вероятности ошибки (отказа).

Доверительный (95 %) интервал вероятности ошибки оценивается на основе соотношения между значениями количества ошибок (отказов) n и объемом проведенных испытаний (количеством сеансов/соединений) N.

Эти оценки для количества ошибок n, в диапазоне от 0 до 5 просчитаны заранее и представлены в таблице A.2.

Таблица А.2.

Количество ошибок, N	P_{min}	P_{max}
0	0,00017	0,009
1	0,0012	0,016
2	0,0027	0,02
3	0,005	0,03
4	0,006	0,03
5	0,009	0,04

Для значений n > 5 доверительный интервал для вероятности ошибки рассчитывается по формулам 10 и 11.

$$P_{min} = \omega - 1.96 \cdot \sqrt{\frac{\omega(1 - \omega)}{n}}$$
 (10)

$$P_{max} = \omega + 1,96 \cdot \sqrt{\frac{\omega(1-\omega)}{n}}$$

$$\omega = \frac{n}{n}$$
(11)

где:

$$\omega = \frac{n}{N}$$

Примечание: если при расчете получаются отрицательные значения СКО или вероятностей - эти значения следует заменить на ноль.

Приложение Б

(справочное)

ПРИМЕР ВЫБОРА ПЛАНА КОНТРОЛЯ И КОЛИЧЕСТВА ПОВЕРЯЕМЫХ ИЗДЕЛИЙ В ВЫБОРКЕ, В СООТВЕТСТВИИ С ГОСТ Р ИСО 2859-1-2007 ДЛЯ ПАРТИИ 100 ШТ.

Принятые обозначения

N – объем контролируемой партии (шт);

п – объем выборки;

AQL – приемлемый уровень качества – процент несоответствующих изделий в контролируемой партии;

Ac – приемочное число – допустимое количество несоответствующих изделий в выборке Re – браковочное число – количество несоответствующих изделий в выборке, по достижению которого партия бракуется.

Принимаемые исходные данные

Тип контроля - нормальный;

план контроля - одноступенчатый;

уровень контроля – общий, III (ввиду важности принятия правильного решения);

AQL = 0,1;

Ac = 0:

Re = 1.

Определение объема выборки

Определение объема выборки осуществляется, в соответствие с принятыми исходными данными, по таблицам 1, 2-А ГОСТ Р ИСО 2859-1-2007.

По таблице 1 определяется код объема выборки. Исходя из объема партии 100 шт и уровня контроля – нормальный, определяется код объема выборки – G

По таблице 2-A, исходя из принятых исходных данных: AQL=0.1, Ac=0, Re=1 и выбранного кода объема выборки – G, определяется необходимый объем выборки – 32.

Контроль выборки

В соответствии с полученными данными производиться контроль выборки, т.е поверка случайно извлеченных 32 изделий из партии 100 шт., на соответствие настоящей методике поверки.

При отсутствии в выборке несоответствующих изделий всю партию принимают, а при наличии в выборке, хотя бы, несоответствующего изделия – всю партию бракуют.

Приложение В

(справочное)

ПРИМЕР ВЫБОРА ПЛАНА КОНТРОЛЯ И КОЛИЧЕСТВА ПОВЕРЯЕМЫХ ИЗДЕЛИЙ В ВЫБОРКЕ, В СООТВЕТСТВИИ С ГОСТ Р ИСО 2859-1-2007 ДЛЯ ПАРТИИ 1000 ШТ.

Принятые обозначения

N – объем контролируемой партии (шт);

п – объем выборки;

AQL – приемлемый уровень качества – процент несоответствующих изделий в контролируемой партии;

Ac – приемочное число – допустимое количество несоответствующих изделий в выборке Re – браковочное число – количество несоответствующих изделий в выборке, по достижению которого партия бракуется.

Принимаемые исходные данные

Тип контроля – нормальный;

план контроля - одноступенчатый;

уровень контроля – общий, III (ввиду важности принятия правильного решения);

AQL = 0,1;

Ac = 0;

Re = 1.

Определение объема выборки

Определение объема выборки осуществляется, в соответствие с принятыми исходными данными, по таблицам 1, 2-А ГОСТ Р ИСО 2859-1-2007.

По таблице 1 определяется код объема выборки. Исходя из объема партии 1000 шт и уровня контроля – нормальный, определяется код объема выборки - К.

По таблице 2-A, исходя из принятых исходных данных: AQL=0,1, Ac=0, Re=1 и выбранного кода объема выборки — K, определяется необходимый объем выборки — 125.

Контроль выборки

В соответствии с полученными данными производится контроль выборки, т.е поверка случайно извлеченных 125 изделий из партии 1000 шт., на соответствие настоящей методике поверки.

При отсутствии в выборке несоответствующих изделий всю партию принимают, а при наличии в выборке, хотя бы, несоответствующего изделия – всю партию бракуют.

Приложение Г

(справочное)

ПРИМЕР ФАЙЛА КОНФИГУРАЦИИ ПОВЕРКИ ПО СИГМА-КМУТ-Контроль ADDITIONAL INFO

END

KMUT INFO

kmutAddress=10.224.185.132

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.185.156

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.186.156

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.186.196

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.186.236

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.186.252

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.186.60

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.12

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.132

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.140

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.148

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.164

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.188

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.4

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.187.76

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.193.100

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.193.108

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.193.36

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.193.76

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000

kmutProxiAddress=10.100.69.2

kmutProxiPort=9021

kmutAddress=10.224.193.92

kmutSSHPort=8022

kmutUser=user

kmutPassword=EchoZond

kmutRootPassword=0000 kmutProxiAddress=10.100.69.2 kmutProxiPort=9021 END

NTP SERVER INFO address=10.100.69.2 port=123 END

FTP SERVER DATA

address=192.168.0.26

port=9021

path=/home/ftpuser/download/

login=ftpuser1

password=ftpuser1

login=ftpuser2

password=ftpuser2

login=ftpuser3

password=ftpuser3

login=ftpuser4

password=ftpuser4

login=ftpuser5

password=ftpuser5

login=ftpuser6

password=ftpuser6

login=ftpuser7

password=ftpuser7

login=ftpuser8

password=ftpuser8

login=ftpuser9

password=ftpuser9

login=ftpuser10

password=ftpuser10

login=ftpuser11

password=ftpuser11

login=ftpuser12

password=ftpuser12

login=ftpuser13

password=ftpuser13

login=ftpuser14

password=ftpuser14

login=ftpuser15

password=ftpuser15

login=ftpuser16

password=ftpuser16

login=ftpuser17

password=ftpuser17

login=ftpuser18

password=ftpuser18 login=ftpuser19 password=ftpuser19 login=ftpuser20 password=ftpuser20 END

APPROVE PROGRAM enable=yes approveType=ftpTransfer fileName=100B counter=50 duration=0 kmutSenderAddress= kmutTargetAddress= realNetMode=yes enable=yes approveType=ftpTransfer fileName=1KiB counter=50 duration=0 kmutSenderAddress= kmutTargetAddress= realNetMode=yes enable=yes approveType=ftpTransfer fileName=100KiB counter=50 duration=0 kmutSenderAddress= kmutTargetAddress= realNetMode=yes enable=yes approveType=ftpTransfer fileName=1MiB counter=50 duration=0 kmutSenderAddress= kmutTargetAddress=

realNetMode=yes
enable=yes
approveType=ftpTransfer
fileName=10MiB
counter=50
duration=0
kmutSenderAddress=
kmutTargetAddress=
realNetMode=yes

enable=yes

approveType=ftpTransfer

fileName=100MiB

counter=50

duration=0

kmutSenderAddress=

kmutTargetAddress=

realNetMode=yes

enable=yes

approveType=ftpSession

fileName=

counter=300

duration=1

kmutSenderAddress=

kmutTargetAddress=

realNetMode=yes

enable=yes

approveType=ftpSession

fileName=

counter=1

duration=600

kmutSenderAddress=

kmutTargetAddress=

realNetMode=yes

enable=yes

approveType=ftpSession

fileName=

counter=1

duration=3600

kmutSenderAddress=

kmutTargetAddress=

realNetMode=yes

enable=yes

approveType=timeScaleShift

fileName=

counter=400

duration=0

kmutSenderAddress=

kmutTargetAddress=

realNetMode=yes

enable=yes

approveType=avgDelay

fileName=

counter=5

duration=0

kmutSenderAddress=

kmutTargetAddress=

realNetMode=yes

enable=no

approveType=coefLost fileName= counter=4 duration=0 kmutSenderAddress= kmutTargetAddress= realNetMode=yes END

APPROVE SETTINGS

END