СОГЛАСОВАНО

Заместитель ггенерального директора, Руководитель Метрологического центра ОО «Автопрогресс–М»

"Автопрогресс-М

В.Н. Абрамов

«28» марта 2023 г.

МП АПМ 15-23

«ГСИ. Машины универсальные испытательные HLE. Методика поверки»

1 Общие положения

Настоящая методика поверки применяется для поверки машин универсальных испытательных HLE (далее – машины), производства Hualong Test Co., Ltd, Китай, и устанавливает методику ее первичной и периодической поверки.

1.1 В результате поверки должны быть подтверждены следующие метрологические характеристики.

Таблица 1 – Метрологические характеристики

Модификации	Диапазон измерений силы*, кН	Пределы допускаемой относительной погрешности измерений силы, %
HLE-5C	от 0,0001 до 5	
HLE-5	от 0,0001 до 5	
HLE-10	от 0,0001 до 10	
HLE-20	от 0,0001 до 20	±0,5
HLE-50	от 0,002 до 50	10,5
HLE-100	от 0,002 до 100	
HLE-200	от 0,002 до 200	
HLE-300	от 0,002 до 300	
HLE-600	от 0,02 до 600	±1
HLE-1000	от 0,02 до 1000	±1

^{*} Минимально и максимально возможные значения, в зависимости от типа установленных датчиков силы. Значение наименьшего предела измерений силы указано в индивидуальных паспортах на машины.

Таблица 2 – Метрологические характеристики

Модификации	Диапазон измерений перемещений подвижной траверсы*, мм	Пределы допускаемой абсолютной погрешности измерений перемещений подвижной траверсы в диапазоне от 0,0001 до 10 мм включ.,	Пределы допускаемой относительной погрешности измерений перемещений подвижной траверсы в диапазоне св. 10 мм до верхнего предела измерений, %
111 D 40	0.0001 500	MM	10.5
HLE-5C	от 0,0001 до 500	±0,02	±0,5
HLE-5	от 0,0001 до 1000	±0,02	±0,5
HLE-10	от 0,0001 до 1000	±0,02	±0,5
HLE-20	от 0,0001 до 1000	±0,02	±0,5
HLE-50	от 0,0001 до 2000	±0,02	±0,5
HLE-100	от 0,0001 до 2000	±0,02	±0,5
HLE-200	от 0,0001 до 1500	±0,05	±1
HLE-300	от 0,0001 до 1500	±0,05	±1
HLE-600	от 0,0001 до 1500	±0,1	±1
HLE-1000	от 0,0001 до 1500	±0,1	±1
* Минимания	и максимали по возм	эжиме значения Значения г	иапазонов измерений

^{*} Минимально и максимально возможные значения. Значения диапазонов измерений перемещений подвижной траверсы указаны в индивидуальных паспортах на машины.

Таблица 3 - Метрологические характеристики

Наименование характеристики	Значение, мм
Диапазон измерений продольных перемещений (деформаций) *, мм	от 0,01 до 1000
Диапазон измерений поперечных перемещений (деформаций) *, мм	от 0,01 до 25
Пределы допускаемой абсолютной погрешности измерений перемещений	±0,001
(деформаций) в диапазоне от 0,01 мм до 0,125 мм включ., мм	
Пределы допускаемой относительной погрешности измерений перемещений	±1
(деформаций) в диапазоне св. 0,125 мм до наибольшего предела измерений, %	S = 1
* May was a superior of the posterior of the posterior of the posterior of the posterior	man nahanyanun

- * Минимально и максимально возможные значения в зависимости от типа датчиков деформации. Значения диапазонов измерений перемещений (деформаций) указаны в индивидуальных паспортах на машины.
- 1.2 Машины до ввода в эксплуатацию, а также после ремонта подлежат первичной поверке, в процессе эксплуатации периодической поверке.
 - 1.3 Первичной поверке подвергается каждый экземпляр машины.
- 1.4 Периодической поверке подвергается каждый экземпляр машины, находящейся в эксплуатации, через межповерочные интервалы.
- 1.5 Выполнение всех требований настоящей методики обеспечивает прослеживаемость поверяемого средства измерений к следующим государственным первичным эталонам:
 - ГЭТ32-2011 ГПЭ единицы силы;
 - ГЭТ2-2021 ГПЭ единицы длины метра.
- 1.6 В методике поверки реализован следующий метод передачи единиц: метод прямых измерений.
- 1.7 При проведении поверки по письменному заявлению владельца СИ допускается поверка отдельных измерительных каналов: измерений силы, измерений перемещений подвижной траверсы, измерений продольных перемещений (деформаций), измерений поперечных перемещений (деформаций) для меньшего числа измеряемых величин с обязательным указанием информации об объеме проведенной поверки.

2 Перечень операций поверки средств измерений

Для поверки машин должны быть выполнены операции, указанные в таблице 4.

Таблица 4 – Операции поверки

Наименование операции поверки	Обязательность выполнения операции поверки при		Номер раздела (пункта) методики поверки, в
	первичной поверке	периодической поверке	соответствии с которым выполняется операция поверки
Внешний осмотр средства измерений	Да	Да	7
Подготовка к поверке и опробование средства измерений	Да	Да	8
Проверка программного обеспечения средства измерений	Да	Да	9
Определение метрологических характеристик	_	-	10
Определение диапазона и относительной погрешности измерений силы	Да	Да	10.1
Определение диапазона и погрешности измерений перемещений подвижной траверсы	Да	Да	10.2

*Определение погрешности продольных (деформаций) деформации	диапазона и измерений перемещений датчика	Да	Да	10.3
*Определение погрешности поперечных (деформаций) деформации	диапазона и измерений перемещений датчика	Да	Да	10.4
Подтверждение средства метрологическим	соответствия измерений требованиям	Да	Да	11

^{*} Поверка производится, если машина оснащена датчиками измерений продольных и/или поперечных перемещений (деформаций)

3 Требования к условиям проведения поверки

При проведении поверки должны соблюдаться, следующие условия измерений:

- температура окружающей среды, °С

от +15 до +35;

- относительная влажность воздуха, %, не более

80.

4 Требования к специалистам, осуществляющим поверку

К проведению поверки допускаются специалисты организации, аккредитованной в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации на проведение поверки средств измерений данного вида, имеющие необходимую квалификацию, ознакомленные с руководством по эксплуатации и настоящей методикой поверки.

5 Метрологические и технические требованиям к средствам поверки

При проведении поверки должны применяться эталоны и вспомогательные средства поверки, приведенные в таблице 5.

Таблица 5 – Средства поверки

	Наименование и тип (условное обозначение)	Пример возможного средства
	•	поверки с указанием
№ пункта	основного или вспомогательного средства	1 7
документа	поверки; обозначение нормативного документа,	наименования, заводского
по поверке	регламентирующего технические требования и	обозначения, а при наличии –
по поверке	(или) метрологические и основные технические	обозначения типа,
	характеристики средства поверки	модификации
	Основные средства поверки	
· .	Рабочий эталон единицы массы, по	Гиря класса точности F1
	Государственной поверочной схеме для средств	номинальной массой 10 г, рег. №
	измерений массы, утвержденной приказом	58020-14
	Росстандарта №1622 от 04.07.2022 г. – гиря	Гиря класса точности F1
		номинальной массой 100 г, рег.
		№ 58020-14
10.1		Гиря класса точности MI
10.1		номинальной массой 200 г, рег.
		Nº 58048-14
		Гиря класса точности МІ
		F
		номинальной массой 500 г, рег.
		№ 58048-14
		Гиря класса точности Ml

		номинальной массой 1 кг, рег. № 58048-14
	2407.	Гиря класса точности MI
		номинальной массой 2 кг, рег. № 58048-14
		Гиря класса точности MI
		номинальной массой 5 кг, рег. № 58048-14
	Рабочий эталон 2-го разряда по Государственной	Динамометр электронный ДМУ-
	поверочной схеме для средств измерений силы,	1/1-0,5MГ4, per. № 49913-12
	утвержденной приказом Федерального агентства по техническому регулированию и метрологии	Динамометр электронный ДМУ- 5/1-0,5МГ4, рег. № 49913-12
	от 22 октября 2019 г. № 2498 – динамометр	Динамометр электронный ДМС- 50/5-0,5МГ4, рег. № 49913-12
		Динамометр электронный ДМУ- 100/1-0,5МГ4-2, рег. № 49913-12
5		Динамометр электронный ДМР-
		1000/6-0,5МГ4, рег. № 49913-12 Динамометр электронный ДМР-
		1000/6-0,5MΓ4, per. № 49913-12
		Динамометр электронный ДМС- 2000/5-0,5МГ4, per. № 49913-12
	Рабочий эталон 2 разряда по Государственной	Система лазерная
	поверочной схеме для средств измерений длины	измерительная XL-80, рег. №
	в диапазоне от 1·10 ⁻⁹ до 100 м и длин волн в	35362-13
10.2	диапазоне от 0,2 до 50 мкм, утвержденной	
	приказом Федерального агентства по	
	техническому регулированию и метрологии №	**
	2840 от «29» декабря 2018 г. – микрометр	
	Рабочий эталон 2 разряда по Государственной	
	поверочной схеме для средств измерений длины в диапазоне от 1·10 ⁻⁹ до 100 м и длин волн в	измерительная XL-80, рег. № 35362-13
10.3-10.4	диапазоне от 0,2 до 50 мкм, утвержденной	
	приказом Федерального агентства по	деформаций КМГ-100, рег. №
	техническому регулированию и метрологии №	45796-10
	2840 от «29» декабря 2018 г. – микрометр	
	Вспомогательное оборудовани	
	Средство измерений температуры окружающей	Термогигрометр ИВА-6
	среды: диапазон измерений от +15 до +35 °C,	
	пределы допускаемой абсолютной погрешности	рег. № 46434-11
10.1-10.4	±0,3 °C	
	Средство измерений относительной влажности	
	воздуха: диапазон измерений от 0 до 80 %,	
	пределы допускаемой относительной	
Примачата	погрешности ±2 %	A ALDEDARISHULIS IN STREETORSHULIS
	 допускается использовать при поверке други единиц величин, средства измерений утверя 	
	ояющие метрологическим требованиям, указанным	
удовлетвор	лющие метрологи-теским треообаниям, указанным	D Invillation

6 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации на машину и средства поверки, правилам по технике безопасности, действующим на месте проведения поверки.

7 Внешний осмотр средства измерений

При внешнем осмотре должно быть установлено соответствие машин следующим требованиям:

- наличие маркировки с указанием модификации, заводского номера, года выпуска и предприятия изготовителя;
 - наличие эксплуатационной документации (руководство по эксплуатации, паспорт);
 - отсутствие механических повреждений и дефектов, влияющих на работоспособность;
 - наличие надёжного соединения корпуса машины с контуром заземления;
 - отсутствие перегибов и повреждений изоляции токопроводящих кабелей;
- отсутствие видимых повреждений, следов коррозии, пыли и грязи на щупах датчиков деформации;
 - соответствие комплектности эксплуатационной документации.

Если перечисленные требования не выполняются, машину признают непригодной к применению, дальнейшие операции поверки не производят.

8 Подготовка к поверке и опробование средства измерений

- 8.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- с помощью термогигрометра проверить соответствие условий окружающей среды требованиям, приведенным в п.3
 - проверить наличие действующих свидетельств о поверке на средства поверки;
- машину и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;
- машина и средства поверки должны быть установлены в условиях, обеспечивающих отсутствия механических воздействий (вибрация, деформация, сдвиги).
 - 8.2 При опробовании должно быть установлено соответствие следующим требованиям:
 - обеспечение режимов работы машины и отображения результатов измерений;
 - обеспечение нагружающим устройством равномерного без рывков приложения силы;
 - обеспечение автоматического останова привода машины при достижении подвижной траверсой заданных конечными выключателями положений;
 - -работоспособность кнопки аварийного отключения.

Если перечисленные требования не выполняются, машину признают непригодной к применению, дальнейшие операции поверки не производят.

9 Проверка программного обеспечения средства измерений

- 9.1 Идентификация программного обеспечения «TestWorld2020», (далее –ПО) выполняется в следующем порядке:
 - включить персональный компьютер с установленным ПО
 - запустить ПО «TestWorld2020»;
 - выбрать меню «Помощь»;
 - выбрать раздел «Информация».

Идентификационные данные программного обеспечения должны соответствовать данным, приведённым в таблице 6.

Таблица 6 – Идентификационные данные программного обеспечения

Наименование характеристики	Значение
Идентификационное наименование ПО	TestWorld2020
Номер версии (идентификационный номер ПО)	1.0.0.0

Если перечисленные требования не выполняются, машину признают непригодной к применению, дальнейшие операции поверки не производят.

10 Определение метрологических характеристик средства измерений 10.1 Определение диапазона и относительной погрешности измерений силы

Определение диапазона и относительной погрешности измерений силы производить в следующей последовательности:

- установить эталонный динамометр между плитами сжатия, согласно эксплуатационной документации на динамометр;
- нагрузить эталонный динамометр три раза силой, равной меньшему из значений: верхнему пределу измерений динамометра или наибольшей предельной нагрузке датчика силы машины. При этом скорость нагружения необходимо устанавливать таким образом, чтобы достижение требуемой нагрузки осуществлялось за 40-60 секунд. При первом нагружении выдержать динамометр под нагрузкой не менее 10 минут; при втором и третьем нагружении от 1 до 1,5 минут;
- разгрузить эталонный динамометр. После разгрузки отсчетные устройства эталонного динамометра и поверяемой машины обнулить;
- провести измерения не менее чем в 10 точках равномерно распределенных по интервалу измерений силы в выбранном направлении (растяжение или сжатие), начиная с наименьшего и заканчивая наибольшим пределом измерений силы машины. Измерения проводить не менее трех раз для каждой выбранной точки диапазона;
- в каждой задаваемой точке при достижении требуемой силы произвести отсчеты показаний с эталонного динамометра и с машины. Если невозможно произвести проверку по всем диапазонам измерений силоизмерительного устройства машины с использованием одного динамометра, то следует использовать другие динамометры, диапазон измерений которых обеспечит проверку по всем диапазонам измерений силоизмерительного устройства машины. В случае, если нижнее значение измерений силы машины меньше, чем диапазон динамометра, для измерений силы необходимо использовать гири.

Примечание: Ускорение свободного падения (g) определяется в зависимости от места установки машины.

10.2 Определение диапазона и погрешности измерений перемещений подвижной траверсы

Определение диапазона и погрешности измерений перемещений подвижной траверсы производить с помощью системы лазерной измерительной XL-80 в следующей последовательности:

- установить поворотное зеркало и ретрорефлектор, входящие в комплект системы лазерной измерительной с помощью магнитных опор на верхней плоскости основания станины и подвижной траверсы машины соответственно;
- переместить подвижную траверсу в крайнее нижнее (режим растяжения) или верхнее (режим сжатия) положение;
- обнулить показания на отсчетном устройстве машины и отсчетном устройстве системы лазерной измерительной;
- по отсчетному устройству машины установить подвижную траверсу в положение, соответствующее величине наибольшего значения диапазона измерений перемещений;

- показания наибольшего предела диапазона измерений по отсчетному устройству машины и соответствующие показания со шкалы показывающего устройства системы лазерной измерительной занести в протокол;
- провести аналогичные измерения в прямом и обратном направлении не менее чем в 5 точках равномерно распределенных по интервалу измерений от 0 до 10 мм включ. и не менее чем в 5 точках равномерно распределенных по интервалу измерений св. 10 мм до верхнего предела измерений. Измерения проводить не менее трех раз для каждой выбранной точки.

10.3 Определение диапазона и погрешности измерений продольных перемещений (деформаций) датчика деформации

10.3.1 Определение диапазона и погрешности измерений продольных перемещений (деформаций) датчика деформации производить с помощью системы лазерной измерительной XL-80 или калибратора датчиков деформаций KMF-100.

10.3.2 Измерения провести тремя сериями измерений.

Диапазон измерений продольных перемещений (деформаций) делится на два интервала от 0,01 мм до 0,125 мм вкл. и св. 0,125 мм до наибольшего предела измерений. В первом интервале измерения провести не менее чем в 5 точках равномерно распределенных по интервалу измерений, включая точку наибольшего значения интервала, во втором интервале не менее чем в 5 точках равномерно распределенных по интервалу измерений включая точку наибольшего значения интервала.

Если датчик используется как в положительном (растяжение) так и в отрицательном (сжатие) направлениях, то измерения выполнить в обоих направлениях.

- 10.3.3 Определение диапазона и погрешности измерений продольных перемещений (деформаций) с применением системы лазерной измерительной XL-80 проводить в следующей последовательности:
 - установить в захваты машины разрезанный испытуемый образец;
- измерительные щупы датчика деформации установить на верхнюю и нижнюю части испытуемого образца;
- оптические элементы для измерений линейных перемещений системы лазерной измерительной XL-80 на магнитных опорах установить на подвижный и неподвижный захваты испытательной машины. Подготовить систему лазерную измерительной XL-80 к проведению измерений в соответствии с руководством по эксплуатации. Обнулить показания продольной деформации на дисплее модуля управления машины и показания системы лазерной измерительной XL-80. Перемещения до измеряемой точки производить путём перемещения подвижной траверсы машины по показаниям системы лазерной измерительной XL-80, для чего выбрать оптимальную скорость перемещения подвижной траверсы исходя из технических возможностей машины;
- в каждой измеряемой точке считать показания с дисплея модуля управления машины;
 - аналогично выполнить операции для каждой измеряемой точки.
- 10.3.4 Определение диапазона и погрешности измерений продольных перемещений (деформаций) с применением калибратора датчиков деформаций KMF-100 проводить в следующей последовательности
 - калибратор установить на лабораторном столе или с помощью соответствующих адаптеров на установочный фланец машины;
- закрепить щупы датчика деформации на подвижном и неподвижном штоках калибратора;
- обнулить показания продольной деформации на дисплее модуля управления машины и отсчётном устройстве калибратора;
 - задать на калибраторе перемещение до первой измеряемой точки;

- произвести отсчёт показаний продольной деформации на дисплее модуля управления машины;
 - аналогично выполнить операции для каждой измеряемой точки.

10.4 Определение диапазона и погрешности измерений поперечных перемещений (деформации) датчика деформации

10.4.1 Определение диапазона, абсолютной и относительной погрешности измерений поперечных перемещений (деформаций) датчика деформации производить с помощью системы лазерной измерительной XL-80 или калибратора датчиков деформаций KMF-100.

10.4.2 Измерения провести тремя сериями измерений.

Диапазон измерений продольных перемещений (деформаций) делится на два интервала от 0,01 мм до 0,125 мм вкл. и св. 0,125 мм до наибольшего предела измерений. В первом интервале измерения провести не менее чем в 5 точках равномерно распределенных по интервалу измерений, включая точку наибольшего значения интервала, во втором интервале не менее чем в 5 точках равномерно распределенных по интервалу измерений включая точку наибольшего значения интервала.

Если датчик используется как в положительном (растяжение) так и в отрицательном (сжатие) направлениях, то измерения выполнить в обоих направлениях.

- 10.4.3 Определение диапазона и погрешности измерений поперечных перемещений (деформаций) с применением системы лазерной измерительной XL-80 проводить в следующей последовательности:
- установить в захваты машины адаптеры, имитирующие подвижный и неподвижный штоки калибратора;
 - закрепить щупы датчика деформации на адаптеры;
- оптические элементы для измерений линейных перемещений системы лазерной измерительной XL-80 на магнитных опорах установить на подвижный и неподвижный захваты испытательной машины. Подготовить систему лазерную измерительной XL-80 к проведению измерений в соответствии с руководством по эксплуатации. Обнулить показания продольной деформации на дисплее модуля управления машины и показания системы лазерной измерительной XL-80. Перемещения до измеряемой точки производить путём перемещения подвижной траверсы машины по показаниям системы лазерной измерительной XL-80, для чего выбрать оптимальную скорость перемещения подвижной траверсы исходя из технических возможностей машины;
- в каждой измеряемой точке считать показания с дисплея модуля управления машины;
 - аналогично выполнить операции для каждой измеряемой точки.
- 10.4.4 Определение диапазона и погрешности измерений поперечных перемещений (деформаций) с применением калибратора датчиков деформаций KMF-100 проводить в следующей последовательности
 - калибратор установить на лабораторном столе или с помощью соответствующих адаптеров на установочный фланец машины;
- закрепить щупы датчика деформации на подвижном и неподвижном штоках калибратора;
- обнулить показания продольной деформации на дисплее модуля управления машины и отсчётном устройстве калибратора;
 - задать на калибраторе перемещение до первой измеряемой точки;
- произвести отсчёт показаний продольной деформации на дисплее модуля управления машины;
 - аналогично выполнить операции для каждой измеряемой точки.

11 Подтверждение соответствия средства измерений метрологическим требованиям

11.1 Определение относительной погрешности измерений силы

Относительную погрешность измерений силы бі вычислить по формуле:

$$\delta_i = rac{F_{ ext{\tiny 9TCP}} - F_{ ext{\tiny YCTAH}_i}}{F_{ ext{\tiny YCTAH}_i}} \cdot 100$$
 %, где

 $F_{{
m yctah}_i}$ — значение силы, установленное по отсчетному устройству машины в і-ой точке, кH:

 $F_{_{^{3}T_{CD}}}$ – среднее значение силы по динамометру эталонному в i-ой точке, кH;

$$F_{\text{этср}} = \frac{\sum F_{\text{эт}i}}{n}$$
, где

n - количество измерений, выполненных в і-точке диапазона измерений.

За окончательный результат относительной погрешности измерений силы принять наибольшее полученное значение величины по всем результатам вычислений.

Значения диапазона и относительной погрешности измерений силы должны соответствовать значениям, приведённым в Таблице 1.

Если требования данного пункта не выполняются, машину признают непригодной к применению.

- 11.2 Определение относительной и абсолютной погрешности измерений перемещений подвижной траверсы
- 11.2.1 Абсолютную погрешность измерений перемещений подвижной траверсы Δ_i вычислить по формуле:

$$\Delta_i = l_{ ext{ycr}_i} - l_{ ext{этср}i}$$
, где

 $l_{\text{уст}_i}$ – значение перемещения, установленное по отсчетному устройству машины в i-ой точке, мм;

 $l_{{}_{\rm ЭТСР}i}$ — среднее значение перемещения по системе лазерной измерительной XL-80 в i-ой, мм.

11.2.2 Относительную погрешность измерений перемещений подвижной траверсы Δ_i вычислить по формуле:

$$\delta_i = rac{l_{ ext{ycr}_i} - l_{ ext{этср}i}}{l_{ ext{этср}i}} \cdot 100 \ \%,$$
 где

 $l_{{
m ycr}_i}$ – значение перемещения, установленное по отсчетному устройству машины в i-ой точке, мм;

 $l_{
m этср}i$ — среднее значение перемещения по системе лазерной измерительной XL-80 в i-ой точке, мм,

$$l_{_{2mcp_{i}}}=rac{\sum l_{_{2m_{i}}}}{n}$$
, где

n – количество измерений, выполненных в і-точке диапазона измерений.

За окончательный результат абсолютной и относительной погрешности измерений перемещений подвижной траверсы принять наибольшее полученное значение величины по всем результатам вычислений.

Значения диапазона, абсолютной и относительной погрешности измерений перемещений подвижной траверсы должны соответствовать значениям, приведённым в Таблице 2.

Если требования данного пункта не выполняются, машину признают непригодной к применению.

11.3 Определение относительной и абсолютной погрешности продольных перемещений (деформаций)

11.3.1 Абсолютную погрешность измерений продольных перемещений (деформаций)

 Δ_i вычислить по формуле:

$$\Delta_i = l_{\text{этср}i} - l_{\text{уст}_i}$$
, где

 $\Delta_i = l_{ ext{этср}i} - l_{ ext{yct}_i}$, где $l_{ ext{yct}_i}$ – значение перемещения, установленное по отсчетному устройству машины в i-ой точке, мм;

 $l_{
m этср}i$ — среднее значение перемещения по системе лазерной измерительной XL-80 или калибратора датчиков деформаций КМГ-100 в і-ой точке, мм.

11.3.2 Относительную погрешность измерений продольных перемещений (деформаций) Δ_i вычислить по формуле:

$$\delta_i = rac{l_{\scriptscriptstyle \mathrm{ЭТСР}i} - l_{\scriptscriptstyle \mathrm{УСТ}i}}{l_{\scriptscriptstyle \mathrm{VCT}i}} \cdot 100$$
 %, где

 $l_{{
m ycT}_i}$ – значение перемещения, установленное по отсчетному устройству машины в i-ой точке, мм;

 $l_{
m 3TCp}i$ — среднее значение перемещения по системе лазерной измерительной XL-80 или калибратора датчиков деформаций КМГ-100 в і-ой точке, мм.

$$l_{\tiny \textit{этср}_i} = \frac{\sum l_{\tiny \textit{эт}_i}}{n}$$
, где

n – количество измерений, выполненных в i-точке диапазона измерений.

За окончательный результат абсолютной и относительной погрешности измерений продольных перемещений (деформаций) принять наибольшее полученное значение величины по всем результатам вычислений.

Значения диапазона, абсолютной и относительной погрешности измерений продольных перемещений (деформаций) должны соответствовать значениям, приведённым в Таблице 3.

данного пункта не выполняются, требования признают непригодной к применению.

11.4 Определение относительной и абсолютной погрешности поперечных перемещений (деформаций)

11.4.1 Абсолютную погрешность измерений поперечных перемещений (деформаций)

 Δ_i вычислить по формуле:

$$\Delta_i = l_{\text{этср}i} - l_{\text{уст}_i}$$
, где

 $\Delta_i = l_{{\scriptscriptstyle {
m 3TCP}}i} - l_{{
m ycT}_i}$, где $l_{{
m ycT}_i}$ – значение перемещения, установленное по отсчетному устройству машины в i-ой точке, мм;

 $l_{
m этср}i$ — среднее значение перемещения по системе лазерной измерительной XL-80 или калибратору датчиков деформаций КМГ-100 в і-ой точке, мм.

11.4.2 Относительную погрешность измерений поперечных перемещений (деформаций) Δ_i вычислить по формуле:

 $\delta_i = rac{l_{ ext{\tiny 3TCP}i} - l_{ ext{\tiny YCT}i}}{l_{ ext{\tiny YCT}i}} \cdot 100$ %, где

 $l_{{
m ycr}_i}$ – значение перемещения, установленное по отсчетному устройству машины в i-ой

 $l_{
m этср}i$ — среднее значение перемещения по системе лазерной измерительной XL-80 или калибратору датчиков деформаций КМГ-100 в і-ой точке, мм.

$$l_{_{\supset mcp_i}} = \frac{\sum l_{_{\supset m_i}}}{n}$$
, где

n – количество измерений, выполненных в i-точке диапазона измерений.

За окончательный результат абсолютной и относительной погрешности измерений поперечных перемещений (деформаций) принять наибольшее полученное значение величины по всем результатам вычислений.

Значения диапазона, абсолютной и относительной погрешности измерений поперечных перемещений (деформаций) должны соответствовать значениям, приведённым в Таблице 3.

Если требования данного пункта не выполняются, машину признают непригодной к применению

12 Оформление результатов поверки

12.1 Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту разделов 7 - 11 настоящей методики поверки.

12.2 Сведения о результатах поверки средств измерений в целях подтверждения поверки должны быть переданы в Федеральный информационный фонд по обеспечению единства измерений.

12.3 При положительных результатах поверки машина признается пригодной к применению и по заявлению владельца средств измерений или лица, представляющего средства измерений на поверку, выдается свидетельство о поверке установленной формы. Нанесение знака поверки на средство измерений не предусмотрено.

12.4 При отрицательных результатах поверки, машина признается непригодной к применению и по заявлению владельца средств измерений или лица, представляющего средства измерений на поверку, выдаётся извещение о непригодности установленной формы с указанием основных причин.

Инженер 1 категории ООО «Автопрогресс – М»

Р.С. Ибрагимов