ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «РАДИО, ПРИБОРЫ И СВЯЗЬ»

603009, Россия, г. Нижний Новгород, проспект Гагарина, д. 168, офис 310

СОГЛАСОВАНО

Главный метролог
ФБУ «Нижегородский ЦСМ»

______ Т.Б. Змачинская

« 27 » ноября 2023 г.

Государственная система обеспечения единства измерений

КАЛИБРАТОРЫ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА ШИРОКОПОЛОСНЫЕ Н5-9

Методика поверки

РПИС.411166.036МП

г. Нижний Новгород

2023г.

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика устанавливает методику первичной и периодической поверки калибраторов напряжения переменного тока широкополосных Н5-9 (далее калибраторы), выпускаемых в модификациях Н5-9/1 и Н5-9/2.
- 1.2 Калибраторы Н5-9/1 используются в качестве рабочего эталона 1-го разряда в диапазоне напряжений от 0,001 до 3 В и диапазоне частот от 10 МГц до 1500 МГц в соответствии с Государственной поверочной схемой для средств измерений переменного электрического напряжения, утверждённой приказом Росстандарта от 18.08.2023 № 1706 (ГПС от 18.08.2023 № 1706).
- 1.3 Калибраторы Н5-9/2 используются в качестве рабочего эталона 2-го разряда в диапазоне напряжений от 0,001 до 3 В и диапазоне частот от 30 МГц до 1500 МГц в соответствии с ГПС от 18.08.2023 № 1706.
- 1.4 При определении метрологических характеристик в рамках проводимой поверки обеспечена прослеживаемость результатов измерений к Государственному первичному эталону единицы электрического напряжения (вольта) в диапазоне частот от 10 до $3 \cdot 10^7$ Γ ц (Γ ЭТ 89-2008), Государственному первичному эталону единицы электрического напряжения (вольта) в диапазоне частот от $3 \cdot 10^7$ до $2 \cdot 10^9$ Гц (ГЭТ 27-2009).
- 1.5 При проведении поверки калибраторов используются методы прямого измерения и сличением с помощью компаратора согласно ГПС от 18.08.2023 № 1706.
 - 1.6 Интервал между поверками 1 год.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 При проведении первичной и периодической поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Таблица 1 – Операции поверки		2.4			
•	Номер	Обязательность выполнения операций поверки при			
Наименование операции поверки	пункта - методики	первичной поверке	периодической поверке		
Внешний осмотр	7	Да	Да		
Подготовка к поверке и опробование	8	Да	Да		
Проверка программного обеспечения средства измерения	9	Да	Да		
Определение метрологических характеристик средства измерений:	10				
Определение основной относительной погрешности воспроизведения напряжения	10.1	Да	Да		
Определение абсолютной погрешности установки частоты выходного напряжения	10.2	Да	Да		
Определение коэффициента гармоник выходного напряжения	10.3	Да	Нет		
Подтверждение соответствия метрологическим требованиям	11	Да	Да		

2.2 При первичной и периодической поверке все операции, указанные в таблице 1 обязательны. Проведение поверки для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений невозможно.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

3.1 Поверку калибраторов следует проводить при следующих условиях:

- температура окружающего воздуха, °С

20±5;

- относительная влажность воздуха, %

от 30 до 80;

- напряжение переменного тока, В

220±22;

- частота переменного тока, Гц

50±0,5.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К проведению поверки калибраторов допускаются поверители из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучившие настоящую методику поверки, руководство по эксплуатации на поверяемый калибратор, эксплуатационную документацию на средства поверки и имеющие стаж работы по данному виду измерений не менее 1 года.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 При проведении поверки применяют средства поверки, указанные в таблице 2

Таблица 2 – Средства измерений для поверки.

Операции поверки, требующие применение средств поверки п.10.1.1.1 Определение основной относительной погрешности воспроизведения напряжения калибратора Н5-9/2 на частотах от 10 кГц до 1500 МГц при	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки Вольтметр высокочастотный ВЗ-100 (1 разряд) рег. № 72902-18
значениях напряжения 3; 1; 0,3; 0,1 В п.10.1.1.2 Определение основной относительной погрешности воспроизведения напряжения калибратора Н5-9/1 на частотах от 10 кГц до 1500 МГц при значениях напряжения 3; 1; 0,3; 0,1 В	Вторичный эталон по ГПС от 18.08.2023 № 1706 в диапазоне частот от 30 до 1500 МГц; Рабочий эталон 1-го разряда по ГПС от 18.08.2023 № 1706 в диапазоне частот от 10 МГц до 1500 МГц. В диапазоне частот от 10 кГц до 10 МГц; и диапазоне измеряемого напряжения от 0,1 до 3 В, погрешность измерений ±(0,05–0,25) %	Вторичный эталон напряжения переменного тока диапазона частот 30 2000 МГц рег. № 58438-14; Вольтметр высокочастотный ВЗ-100/1 рег. № 88920-23

Продолжение таблицы 2

Продолжение таблицы 2		
Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
п.10.1.2 Определение основной относительной погрешности воспроизведения напряжения на частотах 10; 100 кГц;1; 10; 30 и 100 МГц при значениях напряжения 30; 10; 3 и 1 мВ	Установка для измерения ослабления, диапазон частот от 10 кГц до 100 МГц; пределы измерения ослабления (0–100) дБ; погрешность измерений от 0,002 до 0,1 дБ	Установка эталонная для поверки мер ослабления и магазинов затухания ЭО-01 рег. № 54367-13
п.10.1.3 Определение основной относительной погрешности воспроизведения на частотах 600; 1000 и 1500 МГц при значениях 30; 10; 3 и 1 мВ	Анализатор спектра, диапазон частот от 0,1 МГц до 5 ГГц; уровень собственных шумов 100 дБ/мВт; погрешность нелинейности шкалы ±0,2 дБ	Анализаторы спектра R&S FSP per. № 26744-04
п.10.2 Определение абсолютной погрешности установки частоты выходного напряжения	Частотомер с диапазоном измерения от $10~\mathrm{к}\Gamma$ ц до $1500~\mathrm{M}\Gamma$ ц, погрешность измерений не более $\pm 1\cdot 10^{-6}f$	Частотомер электронно-счётный Ч3-63/1 рег. № 9084-90
п.10.3 Определение коэффициентов гармоник выходного напряжения	Измеритель нелинейных искажений с диапазоном частот от 10 до 100 кГц; диапазон измеряемых коэффициентов гармоник от 0,01 %; Анализатор спектра, диапазон частот от 0,1 МГц до 5 ГГц; уровень собственных шумов 100 дБ/мВт;	Измеритель нелинейных искажений C6-22 рег. № 69447-17; Анализаторы спектра R&S FSP рег. № 26744-04
Примечание - Доп	ускается использовать при поверке други	e VTRenwijeuulie u arraara

Примечание - Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице.

^{5.2} Все средства измерений, применяемые при поверке, должны иметь действующую запись о результатах поверки в Федеральном информационном фонде по обеспечению единства измерения.

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 При проведении поверки должны быть соблюдены требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также должны быть соблюдены требования безопасности, изложенные в эксплуатационных документах на поверяемые калибраторы и применяемые средства поверки.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

7.1 При внешнем осмотре проверяется:

- соответствие внешнего вида и маркировки калибратора описанию типа и эксплуатационной документации на него;
- отсутствие внешних повреждений поверяемого калибратора, которые могут повлиять на его метрологические характеристики.
- 7.2 Калибратор, не отвечающий перечисленным выше требованиям, дальнейшей поверке не подлежит.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 Порядок установки калибратора на рабочее место, включения, управления приведены в руководстве по эксплуатации РПИС.411166.036РЭ.
- 8.2 Выдержать калибратор в условиях проведения поверки не менее двух часов, если он находился в отличных от них условиях.
- 8.3 Определение метрологических характеристик должно проводиться после времени установления рабочего режима калибратора и средств поверки, указанного в соответствующий эксплуатационной документации.
- 8.4 Опробование (проверка функционирования) калибратора заключается в проведении проверки функционирования дисплея, органов управления калибратора, проведении калибровки.
- 8.5 Калибратор допускается к дальнейшей поверке, если дисплей, органы управления функционируют и результат калибровки положительный.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

9.1 Проверку идентификационных данных встроенного программного обеспечения (далее - ПО), проводят путем их сравнения с идентификационными данными, приведенными в таблице 3.

Таблица 3 Идентификационные данные программного обеспечения прибора

аблица 3 Идентификационные данные программно	Значение			
Идентификационные данные (признаки)	H5-9/1	H5-9/2		
Идентификационное наименование ПО	N5-9/1	N5-9/2		
Номер версии (идентификационный номер) ПО	не ниже 1.0.0	не ниже 1.0.0		

- 9.2 Идентификационные данные ПО калибратора отображаются в информационном окне меню «Сведения о приборе». В окне «Сведения о приборе» указаны наименование ПО, версия ПО и заводской номер.
- 9.3 Результаты проверки ПО считают положительными, если установлено полное соответствие идентификационных данных встроенного ПО калибратора данным, приведенным в таблице 3.

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА **ИЗМЕРЕНИЙ**

- 10.1 Определение основной относительной погрешности воспроизведения напряжения проводят на соединителе « С→ II» на всех фиксированных частотах при значениях напряжения 3; 1; 0,3; 0,1 В и на частотах 10; 100 кГц; 1; 10; 30; 100; 600; 1000; 1500 МГц при значениях напряжения 30; 10; 3; и 1 мВ.
- 10.1.1 Определение основной относительной погрешности воспроизведения напряжения на частотах от 10 кГц до 1500 МГц при значениях напряжения 3; 1; 0,3; 0,1 В проводят:

- для калибратора Н5-9/2 методом прямых измерений с помощью вольтметра В3-100, по-

веренного в качестве рабочего эталона 1 -го разряда (п.10.1.1.1);

- для калибратора Н5-9/1 на частотах от 10 кГц до 10 МГц методом прямых измерений с помощью вольтметра ВЗ-100/1 и на частотах от 30 МГц до 1500 МГц методом компарирования напряжений с Вторичным эталоном напряжения переменного тока (ВЭН) (п.10.1.1.2).

10.1.1.1 Определение основной относительной погрешности воспроизведения напряжения калибратора Н5-9/2 на частотах от 10 кГц до 1500 МГц при значениях напряжения 3; 1; 0,3; 0,1 B.

Подключить пробник вольтметра В3-100 в соединитель « С→ II» калибратора и провести полную калибровку калибратора с подключённым пробником. Полная калибровка запускается длительным (2 сек.) нажатием кнопки калибровки «V» на передней панели калибратора. В вольтметре В3-100, в соответствии с инструкцией по его эксплуатации, проводят установку нуля.

В калибраторе установить частоту 10 кГц. Устанавливая значения напряжения 3; 1; 0,3 и

0,1 В измеряют их вольтметром.

Аналогично вольтметром В3-100 проводят измерения на других частотах калибратора.

Примечание – На частотах свыше 10 МГц в вольтметре В3-100, в соответствии с инструкцией по его эксплуатации, вводят частотную поправку на табло «ЧАСТОТА».

Относительную погрешность воспроизведения напряжения на каждой из частот для измеренных значений напряжения рассчитать по формуле

$$\delta_1 = \frac{U_{\text{M3M}} - U_{\text{y}}}{U_{\text{y}}} \cdot 100 \tag{1}$$

где $U_{u_{3M}}$, U_y – соответственно измеренное по вольтметру и установленное в калибраторе значения напряжений, В.

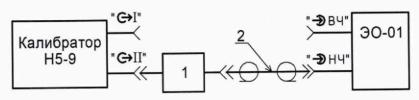
10.1.1.2 Определение основной относительной погрешности воспроизведения напряжения калибратора Н5-9/1 на частотах от 10 кГц до 1500 МГц при значениях напряжения 3; 1; 0,3; 0,1 B.

Измерения на частотах от 10 к Γ ц до 10 М Γ ц проводят с помощью вольтметра В3-100/1

аналогично п.10.1.1.1. Измерения на частотах от 30 МГц до 1500 МГц проводят методом компарирования напряжений с ВЭН, с помощью имеющегося в составе эталона компаратора. Измерения проводят в соответствие с изложенной в Руководстве по эксплуатации ВЭН методикой.

На частотах от 30 МГц до 1500 МГц и при значениях напряжении 3; 1; 0,3 и 0,1 В компаратором измеряют напряжение на выходе ВЭН и на выходе калибратора.

Относительную погрешность воспроизведения напряжения на каждой из частот для измеренных значений напряжения определить по формуле


$$\delta_{\kappa} = \frac{U_{\kappa} - U_{9}}{U_{9}} \cdot 100 \tag{2}$$

где U_{κ} , –напряжение, измеренное компаратором на выходе калибратора, B; U_3 –напряжение, измеренное компаратором на выходе Вторичного эталона, В.

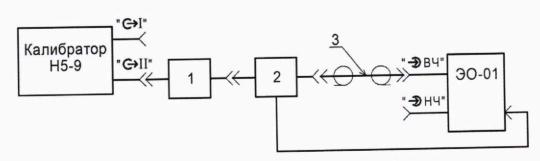
10.1.2 Определение основной относительной погрешности воспроизведения напряжения на частотах 10; 100 кГц;1; 10; 30 и 100 МГц при значениях напряжения 30; 10; 3 и 1 мВ проводят

путём измерения отношения установленных в калибраторе напряжений относительно опорного уровня напряжения 100 мВ с использованием эталонной установки ЭО-01.

10.1.2.1 Измерения на частотах 10; 100 кГц проводят в соответствии со схемой соединения приборов, приведённой на рисунке 2.

- 1 Переход ТП20/N (из комплекта поставки калибратора)
- 2 Кабель соединительный ВЧ 685671.002 (из комплекта ЭО-01)

Рисунок 2 — Схема соединения приборов при определении основной относительной погрешности воспроизведения напряжения на частотах 10; 100 кГц при значениях напряжения 30; 10; 3 и 1 мВ


ВНИМАНИЕ. Запрещается проводить калибровку калибратора, когда подключен переходе ТП20/N к соединителю « → II» калибратора.

Измерения проводят в следующей последовательности:

- установить в калибраторе частоту сигнала 10 кГц и значение выходного напряжения 100 мВ;
- установить в установке ЭО-01 режим входа НЧ, фильтр 0...150 кГц, входное сопротивление приемника 1 МОм;
- установить в установке ЭО-01 требуемую шкалу измерения, произвести сброс на «00,000» дБ показаний шкалы «Измерение» приемника ЭО-01;
 - установить в калибраторе значение выходного напряжения 30 мВ;
 - нажать в установке ЭО-01 кнопку «Измерить»;
- установить в установке ЭО-01 требуемую шкалу измерения и зафиксировать показания шкалы «Измерение» в децибелах (N_и) для значения выходного напряжения 30 мВ.

Аналогично проводят измерения при значениях напряжения 10; 3 и 1 мВ и частоте 100 кГц.

10.1.2.2 Измерения на частотах 1; 10; 30 и 100 МГц проводят в соответствии со схемой соединения приборов, приведённой на рисунке 3.

- 1 Переход ТП20/N (из комплекта поставки калибратора)
- 2 Устройство согласующее высокоомное 671142.001(из комплекта ЭО-01)
- 3 Кабель соединительный ВЧ 685671.002 (из комплекта ЭО-01)

Рисунок 3 –Схема соединения приборов при определении основной относительной погрешности воспроизведения напряжения на частотах 1; 10; 30 и 100 МГц при значениях напряжения 30; 10; 3 и 1 мВ

ВНИМАНИЕ. Запрещается проводить калибровку калибратора, когда подключен переходе ТП20/N к соединителю «С→ П» калибратора.

Измерения проводят в следующей последовательности:

- установить в калибраторе частоту сигнала 1 МГц и значение выходного напряжения 100 мВ;
- установить в установке ЭО-01 режим входа ВЧ, частоту настройки приемника 1 МГц, фильтр 0...3 кГц, входное сопротивление приемника 50 Ом;
- установить в установке ЭО-01 требуемую шкалу измерения, произвести сброс на «00,000» дБ показаний шкалы «Измерение» приемника ЭО-01;
 - установить в калибраторе значение выходного напряжения 30 мВ;
 - нажать в установке ЭО-01 кнопку «Измерить»;
- установить в установке ЭО-01 требуемую шкалу измерения и зафиксировать показания шкалы «Измерение» в децибелах (Nu) для значения выходного напряжения 30 мВ.

Аналогично проводят измерения и определяют погрешность воспроизведения напряжения при значениях напряжения 10; 3 и 1 мВ и частотах 10; 30 и 100 МГц.

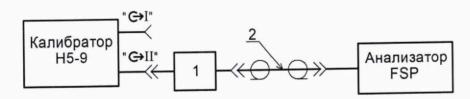
10.1.2.3 Относительную погрешность воспроизведения напряжения в поверяемых точках определяют по формуле

$$\delta_3 = \delta_1 + \delta_2 \tag{3}$$

где δ_1 — относительная погрешность воспроизведения опорного уровня напряжения 100 мB на установленной частоте, %;

 δ_2 — относительная погрешность установки ослабления относительно опорного уровня.

Погрешность δ_2 , в процентах, определяется по формуле


$$\delta_2 = (10^{\frac{(N_H - N_p)}{20}} - 1) \cdot 100 \tag{4}$$

 N_p — расчетное значение ослабления, дБ, соответствующее поверяемой точке (приведено в таблице 4)

Таблица 4

I dominate .				
Воспроизводимые значения напряжения, мВ	30	10	3	1
Расчётные значения ослабления Np, дБ	-10,4576	-20,0000	-30,4576	-40,0000

10.1.3 Определение основной относительной погрешности воспроизведения напряжения на частотах 600; 1000 и 1500 МГц при значениях 30; 10; 3 и 1 мВ проводят путём измерения отношения установленных в калибраторе напряжений относительно значения напряжения 100 мВ с использованием анализатора спектра FSP в соответствии со схемой соединения приборов, приведённой на рисунке 3.

- 1 Переход ТП20/N (из комплекта поставки калибратора)
- 2 кабель ВЧ 685671.002 (из комплекта ЭО-01)

Рисунок 3 — Схема соединения приборов измерения при определении основной относительной погрешности воспроизведения напряжения на частотах 600; 1000 и 1500 МГц при значениях напряжения 30; 10; 3 и 1 мВ.

Примечание – Рекомендуется синхронизировать анализатор спектра по опорной частоте калибратора используя выход опорного генератора «→ 10 МГц» на задней панели калибратора и вход внешней опорной частоты анализатора спектра.

ВНИМАНИЕ. Запрещается проводить калибровку калибратора, когда подключен переходе ТП20/N к соединителю « → II» калибратора.

Измерения проводят в следующей последовательности:

- установить в калибраторе частоту сигнала 600 МГц и значение выходного напряжения 100 мВ;
- установить в анализаторе спектра следующие параметры: центральная частота 600 МГц, полоса обзора 100 кГц, опорный уровень минус 5 дБм, полоса пропускания 1 кГц, видео фильтр 100 Гц, детектор среднеквадратический, маркер максимум;
 - зафиксировать в анализаторе спектра установленный маркер в качестве опорного;
 - установить в калибраторе значение выходного напряжения 30 мВ;
- зафиксировать показания дельта маркера ($N_{\text{и}}$) для значения выходного напряжения 30 мВ;

Рассчитать относительную погрешность воспроизведения напряжения по формулам (3), (4).

Аналогично проводят измерения и определяют погрешность воспроизведения напряжения при значениях напряжения 10; 3 и 1 мВ и частотах 1000; 1500 МГц

10.2 Определение абсолютной погрешности установки частоты выходного напряжения Подключить частотомер Ч3-63/1 к розетке « → I» на передней панели калибратора.

В калибраторе устанавливают выход «С I», частоту 10 кГц и уровень выходного напряжения 1 В. Частотомер устанавливают в режим измерения частоты при времени счета 1 секунда и фиксируют показания частотомера.

Абсолютную погрешность установки частоты на каждой из частот рассчитать по формуле

$$\Delta f = f_{\text{M3M}} - f_{\text{H}} \tag{5}$$

где $f_{\text{изм}}$ — измеренная частотомером частота калибратора, Γ ц; $f_{\text{н}}$ — установленная (номинальная) частота калибратора, Γ ц.

Аналогично вышеизложенному, проводят измерения частот выходного напряжения калибратора для установленных значений частоты 10; 100 и 1500 МГц.

10.3 Определение коэффициентов гармоник выходного напряжения калибратора проводят на всех фиксированных частотах. На частотах 10; 20; 50; 100 кГц измерения проводят с использованием измерителя нелинейных искажений C6-22, а на частотах 300 кГц и выше - с использованием анализатора спектра FSP.

Измерения проводят на розетке « → I» калибратора, при уровне выходного напряжения 3 В. При этом, в анализаторе спектра входной аттенюатор (в режиме ручной установки ослабления входного аттенюатора) устанавливают в положение «-60 дБ».

С помощью анализатора спектра измеряют относительные уровни (по отношению к уровню первой гармоники) второй (A_2) , третьей (A_3) гармоник в децибелах.

Коэффициент гармоник выходного напряжения (в процентах) определяют по формуле

$$K_{\rm r} = \sqrt{10^{-0.1A_2} + 10^{-0.1A_3} \cdot 100} \tag{6}$$

где A2 — значение ослабления второй гармоники выходного напряжения относительно основной гармоники, дБ

A3 – значение ослабления третьей гармоники выходного напряжения относительно основной гармоники, дБ.

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЯ МЕТРОЛО-ГИЧЕСКИМ ТРЕБОВАНИЯМ

- 11.1 Критерием принятия решения по подтверждению соответствия калибратора метрологическим требованиям, установленными при утверждении типа, и обязательным требованиям к рабочим эталонам в соответствии с ГПС от 18.08.2023 № 1706, является выполнение требований всех операций поверки с положительным результатом.
- 11.2 Результаты выполнения операции поверки калибраторов по определению основной относительной погрешности воспроизведения напряжения считаются положительными, если измеренные значения основной относительной погрешности для всех контролируемых значений находятся в пределах, указанных в таблице 6 для калибратора H5-9/2 и таблицы 7 для калибратора H5-9/1.

Таблица 6 - Пределы допускаемой основной относительной погрешности воспроизведения

напряжения калибратора Н5-9/2

напряжения калиоратора 113-3/2								
Воспроизводимые	Пределы допускаемой основной погрешности %, на частотах, МГц							
значения напряжения, В	0,01; 0,02; 0,05; 0,1	0,3; 0,5	1	10	30	50		
3	±0,3	±0,3	±0,3	±0,3	±0,4	±0,8		
1	10,5	-0,5			1			
0,3	±0,3	±0,3	±0,3	±1,0	±1,0	±1,6		
0,1	±0,3	±0,3	±0,3	±1,0	±1,0	±1,6		
0,03	±0,5	-	±0,8	±2,4	±2,4	-		
0,01	±0,6	-	±1,0	±2,5	±2,5	-		
0,003	±0,6	-	±2,0	±3,0	±3,0	-		
0,001	±0,6	-	±3,0	±3,0	±3,0	-		

Прололжение таблицы 6

Воспроизводимые								
значения напряжения, В	100	300	1000	1500				
3	±0,9	±1,1	±1,8	±2,0	±2,5	±6,0		
1	· ·	±2,2	±2,6	±2,8	±3,6	±8,0		
0,3 0,1	±1,6 ±1,6	±2,2 ±2,2	±2,6	±2,8	±3,6	±8,0		
0,03	±3,0	-	±8,0	-	±11,0	±13,0		
0,01	±3,5	-	±8,0	-	±11,0	±14,0		
0,003	±3,6	-	±10,0	-	±14,0	±16,0		
0,001	±3,6	-	±10,0	-	±14,0	±16,0		

Таблица 7 - Пределы допускаемой основной относительной погрешности воспроизведения

напряжения калибратора Н5-9/1

Воспроизводимые	Пределы допускаем	Пределы допускаемой основной погрешности %, на частотах, МГц						
значения напряжения, В	0,01; 0,02; 0,05; 0,1	0,3; 0,5	1	10	30	50		
3	±0,15	±0,15	±0,15	±0,2	±0,18	±0,3		
0,3	±0,15	±0,3	±0,3	±0,3	±0,3	±0,6		
0,1	±0,2	±0,3	±0,3	±0,5	±0,5	±0,8		
0,03	±0,3	-	±0,6	±0,8	±0,8	-		
0,01	±0,4	-	±0,8	±1,1	±1,1	-		
0,003	±0,6	-	±1,0	±1,5	±1,5	-		
0,001	±0,6	-	±1,5	±1,5	±1,5	-		

Продолжение таблицы 7

продолжение таолиц									
Воспроизводимые	Пределы	Пределы допускаемой основной погрешности %, на частотах, МГц							
значения напряжения, В	100	300	600	800	1000	1500			
3	±0,4	±0,4	±0,7	±0,9	±1,2	±3,0			
1	±0,4	20,1							
0,3	±0,6	±0,8	±1,0	±1,2	±1,6	±3,0			
0,1	±0,8	±1,0	±1,3	±1,4	±1,8	±4,0			
0,03	±1,4	-	±4,0	-	±5,5	±6,5			
0,01	±1,6	-	±4,0	-	±5,5	±7,0			
0,003	±1,8	-	±5,0	-	±7,0	±8,0			
0,001	±1,8	-	±5,0	-	±7,0	±8,0			

- 11.2 Результаты выполнения операции поверки калибраторов по определению абсолютной погрешности установки частоты считаются положительными, если измеренное значение частоты для контролируемого значения находиться в пределах $\pm (5\cdot 10^{-4}f + 0.1)$, где f установленное значение частоты, Γ ц.
- 11.3 Результаты выполнения операции поверки калибраторов по определению коэффициента гармоник воспроизводимого напряжения считаются положительным, если измеренные значения коэффициента гармоник для всех контролируемых значений находятся в пределах, указанных в таблице 8.

Таблина 8

гаолица в							
Частота, МГц	от 0,01 до 0,5	1; 10; 30	от 50 до 300	600	800	1000	1500
Коэффициент гармоник, %	0,07	0,1	0,2	0,35	0,45	0,6	1,5

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 Результаты поверки метрологических характеристик заносятся в протоколы в соответствии с формой протокола, установленной организацией, проводящей поверку.
- 12.1.1 Положительные результаты поверки калибратора H5-9/1 оформляются протоколом, подтверждающим соответствие обязательным требованиям к рабочим эталонам 1-го разряда в диапазоне частот от 10 до 1500 МГц и диапазоне напряжений от 0,001 до 3 В в соответствии с ГПС от 18.08.2023 № 1706.
- 12.1.2 Положительные результаты поверки калибратора H5-9/2 оформляются протоколом, подтверждающим соответствие обязательным требованиям к рабочим эталонам 2-го разряда в диапазоне частот от 30 до 1500 МГц и диапазоне напряжений от 0,001 до 3 В в соответствии с ГПС от 18.08.2023 № 1706.
- 12.2 Сведения о результатах поверки в целях её подтверждения передаются в Федеральный информационный фонд по обеспечению единства измерений в соответствии с Порядком создания и ведения Федерального информационного фонда по обеспечению единства измерений.

Знак поверки на калибратор наносится давлением на специальную мастику двух пломб, расположенных в крепежных отверстиях упоров задней панели калибратора.

- 12.3 По заявлению владельца средства измерений или лица, представившего его на поверку, в случае положительных результатов поверки (подтверждено соответствие калибратора установленным метрологическим требованиям) оформляют свидетельство о поверке по установленной форме.
- 12.4 В случае отрицательных результатов поверки (не подтверждено соответствие поверяемого калибратора установленным метрологическим требованиям) по заявлению владельца средства измерений или лица, предъявившего его на поверку, выдают извещение о непригодности к применению установленной формы.