ФЕДЕРЕЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ им.Д.И.МЕНДЕЛЕЕВА»

ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАСХОДОМЕТРИИ – ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО УНИТАРНОГО ПРЕДПРИЯТИЯ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ им.Д.И.МЕНДЕЛЕЕВА»

ВНИИР – филиал ФГУП «ВНИИМ им. Д.И. Менделеева»

СОГЛАСОВАНО

Заместитель директора филиала

А.С. Тайбинский

« 06 » ноября

2023 г.

Государственная система обеспечения единства измерений

СИСТЕМА ИЗМЕРЕНИЙ КОЛИЧЕСТВА И ПАРАМЕТРОВ СВОБОДНОГО НЕФТЯНОГО ГАЗА (СИКГ-1), ПОДАВАЕМОГО В ГАЗОПРОВОД УППГ ЗАПАДНО-ТАРКОСАЛИНСКОГО МЕСТОРОЖДЕНИЯ

Методика поверки

MΠ 1562-13-2023

Заместитель начальника отдела

НИО-13

И.Н. Куликов

Тел. отдела: 8 (843) 272-11-24

1. Общие положения

1.1 Настоящая методика поверки распространяется на систему измерений количества и параметров свободного нефтяного газа (СИКГ-1), подаваемого в газопровод УППГ Западно-Таркосалинского месторождения (далее – СИКГ) и устанавливает методику первичной поверки при вводе в эксплуатацию, а также после ремонта и периодической поверки при эксплуатации.

В результате поверки должны быть подтверждены следующие метрологические характеристики, приведены в таблице 1

Таблица 1 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений объемного расхода газа, приведенного к стандартным условиям, м ³ /ч	от 1250 до 74717
Пределы допускаемой относительной погрешности измерений объема газа, приведенных к стандартным условиям, %, не более	± 2,0

Для СИКГ установлена поэлементная поверка.

Объемный расход газа, приведенный к стандартным условиям, определяется косвенным методом динамических измерений, основанным на измерении объемного расхода и объема газа при рабочих условиях, давления и температуры.

Поверка средства измерения расхода газа из состава СИКГ обеспечивает передачу единицы объемного и массового расхода газа в соответствии с государственной поверочной схемой, утвержденной Приказом Росстандарта от 11.05.2022 г. № 1133 «Об утверждении Государственной поверочной схемы для средств измерений объемного и массового расхода газа», подтверждающую прослеживаемость к Государственному первичному эталону единиц объемного и массового расходов газа ГЭТ 118-2017.

Поверка средства измерения давления газа из состава СИКГ обеспечивает передачу единицы давления в соответствии с государственной поверочной схемой, утвержденной Приказом Росстандарта от 06.12.2019~г. № 2900 «Об утверждении Государственной поверочной схемы для средств измерений абсолютного давления в диапазоне $1 \cdot 10^{-1} - 1 \cdot 10^{7}~\text{Па}$ », подтверждающую прослеживаемость к Государственному первичному эталону единицы давления ГЭТ 101-2011.

Поверка средства измерения температуры газа из состава СИКГ обеспечивает передачу единицы температуры в соответствии с государственной поверочной схемой, утвержденной Приказом Росстандарта от 23.12.2022 г. № 3253 «Об утверждении Государственной поверочной схемы для средств измерений температуры», подтверждающую прослеживаемость к Государственным первичным эталонам единицы температуры ГЭТ 34-2020 и ГЭТ 35-2021.

Интервал между поверками СИ из состава СИКГ указан в документах на методики поверки этих СИ.

Если очередной срок поверки СИ из состава СИКГ наступает до очередного срока поверки СИКГ, поверяется только это СИ, при этом поверку СИКГ не проводят.

2. Перечень операций поверки

2.1 При проведении поверки выполняют операции, приведенные в таблице 2.

Таблица 2 – Операции поверки

	Проведение операции при		Номер раздела (пункта)	
			методики поверки, в	
Наименование операции поверки	первичной	периодической	соответствии с которым	
	поверке	поверке	выполняется операция	
			поверки	
Внешний осмотр	Да	Да	6	
Подготовка к поверке и	По	По	7	
опробование СИКГ	Да	Да	/	
Проверка программного	Да	Да	8	
обеспечения			0	
Определение метрологических	По По	Да	9	
характеристик СИКГ	Да	Да	,	
Подтверждение соответствия				
средства измерений	Да	Да	10	
метрологическим требованиям				
Оформление результатов поверки	Да	Да	11	

3. Требования к условиям проведения поверки

- 3.1 Поверка СИКГ осуществляется в условиях эксплуатации.
- 3.2 При проведении поверки соблюдают условия в соответствии с требованиями документов на методики поверки СИ, входящих в состав СИКГ.
 - 3.3 Условия проведения поверки должны соответствовать приведенным в таблице 3.

Таблица 3 – Условия проведения поверки

Наименование характеристики	Значение
Температура окружающей среды, °С	от -46 до +34
Относительная влажность воздуха, %, не более	80
Атмосферное давление, кПа	от 84,0 до 106,7

4. Метрологические и технические требования к средствам поверки

4.1 При проведении поверки применяют средства поверки, представленные в таблице 4. Применяемые средства поверки должны быть поверены.

Таблица 4 – Перечень средств поверки

Операции по требуюн применение поверк	(ие средств	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
П.9.2 Опре	деление	- диапазон воспроизведения сигналов силы	Калибратор
относительної	Í	постоянного тока от 0 до 25 мА, предел	многофункциональный
погрешности		допускаемой основной погрешности ±(0,02 %	MC5-R (далее -
измерений об	ъемного	показ. +1 мкА);	калибратор),
расхода и объ	ема газа,	- диапазон воспроизведения	регистрационный
приведенных	К	последовательности импульсов от 0 до	номер в федеральном
стандартным		999999 импульсов;	информационном

- диапазон измерений частоты сигналов от $0,0028$ Γ ц до 50 к Γ ц, предел допускаемой относительной погрешности $\pm 0,01$ %	фонде 22237-08
Диапазон измерений температуры должен охватывать температуру проведения поверки. Пределы основной абсолютной погрешности при измерении температуры ±0,2 °C.	Термогигрометр ИВА-6Н, регистрационный номер в федеральном
Пределы измерений влажности от 0 до 99 %. Пределы допускаемой основной абсолютной погрешности измерений относительной влажности ±2,0 %.	информационном фонде 46434-11
Диапазон измерений от 75 до 115 кПа. Пределы основной приведенной погрешности $\pm 0,02$ %.	
	0,0028 Гц до 50 кГц, предел допускаемой относительной погрешности ±0,01 % показания. Диапазон измерений температуры должен охватывать температуру проведения поверки. Пределы основной абсолютной погрешности при измерении температуры ±0,2 °C. Пределы измерений влажности от 0 до 99 %. Пределы допускаемой основной абсолютной погрешности измерений относительной влажности ±2,0 %. Диапазон измерений от 75 до 115 кПа. Пределы основной приведенной

Примечание – Допускается использовать при поверке другие поверенные средства измерений утвержденного типа, удовлетворяющие метрологическим требованиям, указанным в таблице

5. Требования (условия) по обеспечению безопасности проведения поверки

- 5.1 При проведении поверки соблюдают требования, определяемые:
- Правилами безопасности труда, действующими на объекте;
- Правилами безопасности при эксплуатации СИ;
- Федеральными нормами и правилами в области промышленной безопасности «Правила безопасности нефтяной и газовой промышленности».
- 5.2 Управление оборудованием и СИ проводится лицами, прошедшими обучение и проверку знаний и допущенными к обслуживанию применяемого оборудования и СИ.

6. Внешний осмотр

- 6.1 При проведении внешнего осмотра должно быть установлено соответствие поверяемой СИКГ следующим требованиям:
- монтаж расходомера-счетчика Вега-Соник ВС-12 (далее расходомер-счетчик) должен соответствовать требованиям, установленным изготовителем расходомера-счетчика газа;
 - комплектность СИКГ должна соответствовать ее инструкции по эксплуатации;
- на компонентах СИКГ не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- надписи и обозначения на компонентах СИКГ должны быть четкими и соответствовать инструкции по эксплуатации;
 - наличие маркировки на приборах;
- каждое применяемое СИ из состава СИКГ, участвующее в измерении объемного расхода и объема газа, приведенных к стандартным условиям, должно быть поверено.

Результаты поверки считаются положительными, если установлено соответствие СИКГ всем требованиям, перечисленным выше. При обнаружении дефектов необходимо принять решение о прекращении поверки (до устранения обнаруженных дефектов) или о возможности проведения дальнейшей поверки.

7. Подготовка к поверке и опробование средства измерений

- 7.1 Подготовку к поверке проводят в соответствии с руководством по эксплуатации СИКГ и нормативными документами на поверку СИ, входящих в состав СИКГ.
- 7.2 Все используемые СИ должны быть приведены в рабочее положение, заземлены и включены в соответствии с руководством по их эксплуатации.
- 7.3 При опробовании СИКГ проверяют отсутствие сообщений об ошибках и соответствие текущих измеренных СИКГ значений температуры, давления, объемного расхода данным, отраженным в описании типа СИКГ.

Результаты опробования считают положительными, если отсутствуют сообщения об ошибках и текущие измеренные СИКГ значения расхода, давления и температуры соответствуют данным, отраженным в описании типа СИКГ.

8 Проверка программного обеспечения

8.1 Программное обеспечение (далее – Π O) СИКГ базируется на Π O, входящих в состав СИКГ серийно выпускаемых компонентов утвержденного типа.

Проверку идентификационных данных ПО системы измерений осуществляют как для основного вычислительного компонента системы — вычислителя УВП-280 (далее — вычислителя).

Проводится проверка заявленных идентификационных данных (признаков) ПО:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО;
- цифровой идентификатор ПО.

При проверке заявленных идентификационных данных (признаков) ПО должно быть установлено соответствие идентификационных данных ПО сведениям, приведенным в описании типа на СИКГ.

9 Определение метрологических характеристик СИКГ

- 9.1 Определение метрологических характеристик СИКГ заключается в расчете относительной погрешности при измерении объемного расхода и объема свободного нефтяного газа (далее газ), приведенных к стандартным условиям.
- 9.2 Определение относительной погрешности измерений объемного расхода и объема газа, приведенных к стандартным условиям.

По метрологическим характеристикам применяемых СИ рассчитывают общую результирующую погрешность определения расхода и объема газа, приведенных к стандартным условиям.

Расчет относительной погрешности измерений объемного расхода и объема газа, приведенных к стандартным условиям осуществляется по формулам, приведенным ниже.

Допускается проводить расчет относительной погрешности СИКГ при измерении объемного расхода (объема) газа, приведенного к стандартным условиям, с помощью аттестованного программного обеспечения. Пределы относительной погрешности принимаются равными относительной расширенной неопределенности (при коэффициенте охвата 2), рассчитанной в диапазоне рабочих параметров.

9.2.1 Относительную погрешность измерений объемного расхода газа, приведенного к стандартным условиям δ_{a_c} , %, рассчитывают по формуле

$$\delta_{q_c} = \sqrt{\delta_q^2 + \theta_T^2 \delta_T^2 + \theta_P^2 \delta_P^2 + \delta_K^2 + \delta_{WBK}^2}, \qquad (1)$$

где δ_q — пределы допускаемой относительной погрешности при измерении объемного расхода газа в рабочих условиях, %;

 g_r — коэффициент влияния температуры на коэффициент сжимаемости газа;

 $g_{_{D}}$ — коэффициент влияния давления на коэффициент сжимаемости газа;

 δ_p — пределы допускаемой относительной погрешности измерения абсолютного давления, %;

 $\delta_{\scriptscriptstyle T}$ — пределы допускаемой относительной погрешности измерения температуры, %;

 δ_{K} — пределы допускаемой относительной погрешности определения коэффициента сжимаемости газа, %;

 δ_{MBK} — пределы допускаемой относительной погрешности вычислителя при вычислении объемного расхода газа, приведенного к стандартным условиям, %.

9.2.1.1 Определение относительной погрешности измерений объемного расхода газа

Пределы допускаемой относительной погрешности при измерении объемного расхода газа в рабочих условиях по измерительной линии рассчитывают по формуле

$$\delta_q = \sqrt{\delta_{q_p}^2 + \delta_{np_{\text{elev}}}^2} \,, \tag{2}$$

где δ_{q_p} — пределы допускаемой относительной погрешности расходомера-счетчика при измерении объемного расхода газа в рабочих условиях, %;

 $\delta_{np_{\text{essx}}}$ — пределы допускаемой относительной погрешности вычислителя при преобразовании сигналов расходомера-счетчика в цифровой код, %.

Проверяют передачу информации на участке линии связи: расходомер-счетчик — вычислитель. Для этого отключают расходомер-счетчик Вега-Соник ВС-12 и с помощью калибратора подают на вход вычислителя с учетом линии связи частотные сигналы: 100 Γ ц, 1000 Γ ц, 5000 Γ ц, 10000 Γ ц, которые соответствуют значениям расхода 254,46 м³/ч, 2544,6 м³/ч, 12723 м³/ч и 25446 м³/ч. Фиксируют значение расхода с дисплея вычислителя.

Относительную погрешность вычислителя при преобразовании сигналов расходомерасчетчика газа в цифровой код определяют по формуле:

$$\delta_{np_{\text{glave}}} = 100 \frac{Q_{\text{glav}_i} - Q_{\kappa_i}}{Q_{\nu}}, \tag{3}$$

где $Q_{_{\theta \bowtie \mathsf{u}_{i}}}$ – показание вычислителя в i-той точке, м 3 /ч;

 Q_{κ_i} — заданное при помощи калибратора значение расхода в i-той реперной точке, м 3 /ч; Выбирают максимальное значение и подставляют в формулу (2).

9.2.1.2 Определение относительной погрешности измерений давления газа

Пределы допускаемой относительной погрешности определения давления рассчитывают по формуле

$$\delta_p = \sqrt{\sum_{i=1}^n \left(\delta_{pi}\right)^2} , \qquad (4)$$

где n — число последовательно соединенных измерительных преобразователей, используемых для измерения давления;

 δ_{pi} — относительная погрешность, вносимая i-м измерительным преобразователем

давления с учетом дополнительных погрешностей, %.

Абсолютную погрешность преобразования аналоговых сигналов в цифровое значение измеряемого параметра по каналу измерений давления определяют следующим образом.

Проверяют передачу информации на участке линии связи: Датчик давления Метран-150 – вычислитель. Для этого отключают датчик давления Метран-150 и с помощью калибратора подают на вход вычислителя с учетом линии связи аналоговые сигналы. Для аналогового сигнала 4-20 мА это: 4 мА, 8 мА, 12 мА, 16 мА, 20 мА, которые соответствуют значениям давления 0,1 МПа, 0,375 МПа, 0,75 МПа, 1,125 МПа, 1,5 МПа. Фиксируют значение давления с дисплея вычислителя.

Значение давления P_i , задаваемое калибратором, рассчитывают по формуле

$$P_{i} = P_{\min} + \frac{P_{\max} - P_{\min}}{I_{\max} - I_{\min}} (I_{i} - I_{\min}), \tag{5}$$

где $P_{\text{max}}, P_{\text{min}}$ – верхний и нижний пределы диапазона измерений давления, МПа;

 I_{\max} , I_{\min} — максимальное и минимальное значения токового сигнала, соответствующие верхнему и нижнему пределам диапазона измерений давления P_{\max} и P_{\min} , мА;

 I_i – значение подаваемого от калибратора входного сигнала постоянного тока, мА.

По результатам измерений в каждой реперной точке вычисляют абсолютную погрешность по формуле

$$\Delta P_i = P_i - P_{vi},\tag{6}$$

где P_i – показание вычислителя в i-той реперной точке, МПа;

 P_{yi} – заданное при помощи калибратора значение давления в i-той реперной точке, МПа.

При известном значении абсолютной погрешности относительная погрешность находится по формуле

$$\delta_p = 100 \frac{\Delta P_i}{P_{vi}} \tag{7}$$

9.2.1.3 Определение относительной погрешности измерений температуры газа

Пределы допускаемой относительной погрешности определения температуры вычисляют по формуле

$$\delta_{T} = \frac{100(t_{s} - t_{h})}{273,15 + t} \sqrt{\sum_{i=1}^{n} \left(\frac{\Delta T_{i}}{y_{si} - y_{hi}}\right)},$$
(8)

где n — число последовательно соединенных измерительных преобразователей, используемых для измерения температуры;

 t_{s} , t_{H} — соответственно, верхнее и нижнее значения диапазона шкалы комплекта СИ температуры, °C;

t - температура газа, °С;

 ΔT_i – абсолютная погрешность *i*-го измерительного преобразователя температуры с учетом дополнительных погрешностей, °C;

 y_{si} , y_{ni} — соответственно, верхнее и нижнее значения диапазона шкалы или выходного сигнала i-го измерительного преобразователя температуры, °C.

Абсолютную погрешность преобразования аналоговых сигналов в цифровое значение измеряемого параметра по каналу измерений температуры определяют следующим образом:

Проверяют передачу информации на участке линии связи: датчик температуры ТСПТ – вычислитель. Для этого отключают датчик температуры ТСПТ и с помощью калибратора подают на вход вычислителя с учетом линии связи аналоговые сигналы. Для аналогового сигнала 4-20 мА это: 4 мА, 8 мА, 12 мА, 16 мА, 20 мА, которые соответствуют значениям температуры -25 °C, -11,25 °C, 2,5 °C, 16,25 °C, 30 °C. Фиксируют значение температуры с дисплея вычислителя.

Значение температуры T_i , задаваемое калибратором, рассчитывают по формуле

$$T_{i} = T_{\min} + \frac{T_{\max} - T_{\min}}{I_{\max} - I_{\min}} (I_{i} - I_{\min}), \tag{9}$$

где T_{\max} , T_{\min} – верхний и нижний пределы диапазона измерений температуры, °C;

 I_{\max} , I_{\min} — максимальное и минимальное значения токового сигнала, соответствующие верхнему и нижнему пределам диапазона измерений температуры T_{\max} и T_{\min} , мА;

 I_i – значение подаваемого от калибратора входного сигнала постоянного тока, мА.

По результатам измерений в каждой реперной точке вычисляют абсолютную погрешность по формуле

$$\Delta T_i = T_i - T_{yi},\tag{10}$$

где T_i – показание вычислителя в i-той реперной точке, °C;

 T_{yi} — заданное при помощи калибратора значение температуры в i-той реперной точке, ${}^{\circ}\mathrm{C}$.

Результаты испытаний по п.п. 4.4.2.1, 4.4.2.2, 4.4.2.3 приводят в протоколе испытаний СИКГ № 5.

9.2.1.4 Относительную погрешность определения коэффициента сжимаемости газа, для многокомпонентного газа, при расчете коэффициента сжимаемости по давлению, температуре и компонентному составу, без учета погрешности измерений давления и температуры, рассчитывают по формуле

$$\delta_K = \left(\delta_{K_f}^2 + \sum_{i=1}^N \left[\vartheta_{K_{x_i}} \cdot \delta_{x_i}\right]^2\right)^{0.5}$$
(11)

где δ_{K_f} – относительная погрешность, приписанная уравнению, применяемому для расчета коэффициента сжимаемости газа;

N — число компонентов газовой смеси;

 $\mathcal{G}_{K_{x_i}}$ – относительный коэффициент чувствительности коэффициента сжимаемости к изменению i-го компонента газа;

 δ_{x_i} – относительная погрешность определения молярной доли i-го компонента газовой смеси.

9.2.1.5 Относительный коэффициент чувствительности коэффициента сжимаемости K к изменению значения i-го компонента газовой смеси рассчитывают по формуле

$$\mathcal{G}_{K_{x_i}} = f'_{K_{x_i}} \frac{x_i}{K} \tag{12}$$

где $f_{K_{x_i}}$ – частная производная функции f по x_i ;

 x_i — содержание *i*-го компонента в газовой смеси;

К – коэффициент сжимаемости.

9.2.1.6 Предел относительной погрешности измерений объема газа, приведенного к стандартным условиям, δ_{V_c} %, определяют по формуле:

$$\delta_{V_c} = \sqrt{\delta_{q_c}^2 + \delta_{\tau}^2} \,, \tag{13}$$

где δ_{q_c} – относительная погрешность измерений объемного расхода СНГ, приведенного к стандартным условиям, %;

 $\delta_{ au}$ — относительная погрешность вычислителя при определении интервала времени (измерения текущего времени), %.

Относительная погрешность вычислителя при определении интервала времени пренебрежимо мала, поэтому относительная погрешность измерений объема газа, приведенного к стандартным условиям, принимается численно равной относительной погрешности измерений объемного расхода газа, приведенного к стандартным условиям.

10. Подтверждение соответствия средства измерений метрологическим требованиям

- 10.1 Метрологические характеристики СИ, входящих в состав СИКГ, должны соответствовать метрологическим требованиям, указанным в описании типа СИ, и подтверждаться действующими результатами поверки.
- 10.2 Пределы относительной погрешности измерений объемного расхода и объема газа, приведенных к стандартным условиям, по формуле (1) не должны превышать \pm 2,0 %.

11. Оформление результатов поверки

Результаты поверки СИКГ передаются в Федеральный информационный фонд по обеспечению единства измерений в соответствии с Приказом Минпромторга России от 31 июля 2020 г. № 2510 «Об утверждении порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

По заявлению владельца СИКГ или лица, представившего СИКГ на поверку, при положительных результатах поверки выдается свидетельство о поверке в соответствии с Приказом Минпромторга России от 31 июля 2020 г. № 2510, или в случае отрицательных результатов поверки выдается извещение о непригодности применения СИКГ.

СИ, входящие в состав СИКГ, должны быть снабжены средствами защиты (пломбировки) в соответствии с описанием типа на СИ или эксплуатационной документацией.

Результаты поверки оформляют протоколом произвольной формы.

Знак поверки наносится на свидетельство о поверке СИКГ.

При отрицательных результатах поверки СИКГ к эксплуатации не допускают.