ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГБУ «ВНИИМС»)

Государственная система обеспечения единства измерений

МОДУЛИ SGM

МЕТОДИКА ПОВЕРКИ

MΠ 204/3-18-2024

Общие сведения

Настоящая методика распространяется на модули SGM (далее - модули), изготавливаемые «Harbin Guanghan Gas Turbine Co., Ltd.», Китай и устанавливает методику их первичной и периодической поверок.

Модули SGM предназначены для измерений аналоговых сигналов, поступающих от датчиков с унифицированным выходом по току, а также от датчиков частоты вращения.

Принцип действия модулей основан на измерении и обработке сигналов, поступающих от датчиков и сравнении полученных значений с установленными уровнями срабатывания (уставками).

Модули SGM выпускаются в следующих модификациях:

- измерительные модули SGM633 предназначенные для измерения выходных сигналов от датчиков частоты вращения и имеющие 12 входных измерительных каналов.
- измерительные модули SGM410, предназначенные для измерений выходных сигналов датчиков с унифицированным выходом по току и имеющие 16 входных измерительных каналов.

Модули SGM работают в составе контроллеров SGM201.

Измерительные модули представляют собой автономные электронные блоки с блоком контактов на задней панели для подключения к шасси контроллера. Подключение к датчику осуществляется через клеммник контроллера.

При определении метрологических характеристик поверяемого средства измерений используется метод прямых измерений в соответствии с Государственной поверочной схемы для средств измерений времени и частоты, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 26.09.2022 г. № 2360 и Государственной поверочной схемы для средств измерений силы постоянного электрического тока в диапазоне от 1·10⁻¹⁶ до 100 А, утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 01.10.2018 г. № 2091.

Методикой поверки обеспечивается прослеживаемость:

- к ГЭТ 1-2022 Государственному первичному эталона единиц времени, частоты и национальной шкалы времени согласно Приказу Росстандарта № 2360 от 26.09.2022 г. «Об утверждении Государственной поверочной схемы для средств измерений времени и частоты»;
- к ГЭТ 4-91 Государственному первичному эталону единицы силы постоянного электрического тока согласно Приказу Росстандарта №2091 от 01.10.2018 «Об утверждении государственной поверочной схемы для средств измерений силы постоянного тока в диапазоне от $1 \cdot 10^{-16}$ до 100 А».
- В результате поверки должны быть подтверждены метрологические характеристики, указанные в Приложении А.

Методика поверки не допускает возможность проведения поверки меньшего количества измерительных каналов для меньшего числа измеряемых величин.

1. Перечень операций поверки средства измерений

1.1 При проведении первичной и периодической поверок модулей SGM выполняют операции, указанные в таблице 1.

Таблица 1

			Таблица
Наименование операции поверки	Обязательность выполнения операций поверки при		Номер
			раздела
	первичной	периодической	МΠ
	поверке	поверки	
1	2	3	4
Внешний осмотр средства измерений	да	да	6
Подготовка к поверке и опробование	да	да	7
средства измерений			
Проверка программного обеспечения	да	нет	8
средства измерений			
Определение метрологических	да	да	9
характеристик средства измерений и			
подтверждение соответствия средства			
измерения метрологическим требованиям			
Определение основной относительной	да	да	9.1
погрешности измерений частоты входного			
сигнала для модуля SGM633			
Определение основной приведенной	да	да	9.2
погрешности измерений силы постоянного			
тока для модуля SGM410			
Подтверждение соответствия средства	да	да	9.3
измерения метрологическим требованиям			

1.2 При получении отрицательного результата какой-либо операции поверки дальнейшая поверка не проводится, и результаты оформляются в соответствии с п. 10.2.

2. Требования к условиям проведения поверки

- 2.1. При проведении поверки должны быть соблюдены следующие условия:
- температура окружающего воздуха: от плюс 15 °C до плюс 25 °C;
- относительная влажность окружающего воздуха не более 80 %.
- 2.2 Перед проведением поверки оборудование должно быть подготовлено к работе в соответствии с руководством по эксплуатации.
- Средства поверки, вспомогательные средства и поверяемый модуль должны иметь защитное заземление.

3. Требования к специалистам, осуществляющим поверку

3.1. К поверке допускаются лица имеющие необходимые навыки по работе с подобными средствами измерений, включая перечисленные в таблице 2, и ознакомленными с эксплуатационной документацией на модули и данной методикой поверки.

4. Метрологические и технические требования к средствам поверки

4.1. При проведении поверки необходимо применять основные средства поверки, приведенные в таблице 2.

Таблица 2

Операции	Метрологические и технические требования	Перечень рекомендуемых
поверки,	к средствам поверки, необходимые для	средств поверки
требующие	проведения поверки	
применения		
средств		
поверки		
1	2	3
7.3	Средства измерений температуры от -10 °C	Прибор комбинированный
	до +60 °C с погрешностью не более ±1 °C;	Testo 622 (per. № 53505-13)
	Средства измерений относительной	,
	влажности от 10 % до 95 %, с погрешностью	
	не более ±3 %	
9.1-9.2	РЭ единиц времени и частоты 5 разряда по	Генератор сигналов сложной
	приказу Федерального агентства по	формы со сверхнизким
	техническому регулированию и метрологии	уровнем искажений DS 360
	№ 2360 от 26.09.2022 г. (в диапазоне от	(per. № 45344-10)
	1,0·10 ⁻³ до 178,4·10 ⁹ Гц)	
	Эталон 2-го разряда по приказу	Калибратор процессов
	Федерального агентства по техническому	многофункциональный Fluke
	регулированию и метрологии № 2091 от	726 (per. № 52221-12)
	01.10.2018 г. (в диапазоне измерений от 0 до	
	20 мА с погрешность не более 0,01 %)	
	Эталон 4-ого разряда по приказу	Частотомер электронно-
	Федерального агентства по техническому	счетный Ч3-85/7 (рег. №
	регулированию и метрологии № 2360 от	75631-19)
	26.09.2022 г. (в диапазоне от 1,0·10 ⁻³ до	
	178,4·10 ⁹ Гц)	
	Эталон 2-го разряда по приказу	Мультиметр цифровой Agilent
	Федерального агентства по техническому	34411A (per. № 33921-07)
	регулированию и метрологии № 2091 от	
	01.10.2018 г. (в диапазоне измерений от 0 до	
	20 мА с погрешность не более 0,01 %)	

Примечания:

- 1) Все средства поверки должны быть поверены (запись в Федеральном информационном фонде по обеспечению единства измерений) или аттестованы;
- 2) Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим и техническим требованиям
- 3) В качестве вспомогательного оборудования в п. 9.1-9.2 применяется контроллер SGM201, предназначенный для обмена данными с модулями и визуализацией измеренной информации.

5. Требования (условия) по обеспечению безопасности проведения поверки

- К проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности.
- 5.2. При проведении поверки необходимо соблюдать требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», указаниями по безопасности эксплуатации эталонов, средств измерений и оборудования, изложенными в паспортах и руководствах по эксплуатации.

6. Внешний осмотр средства измерений

- 6.1. При внешнем осмотре устанавливают соответствие внешнего вида средства измерений описанию и изображению, приведенному в описании типа, комплектности и маркировки, а также отсутствие механических повреждений корпусов, соединительных кабелей и разъемов.
- 6.2. В случае несоответствия хотя бы одному из выше указанных требований, модуль считается непригодным к применению, поверка не производится до устранения выявленных замечаний.

7. Подготовка к поверке и опробование средства измерений

- 7.1. Проверяют работоспособность модуля в соответствии с эксплуатационной документацией.
- 7.2. Все средства измерений должны быть прогреты и подготовлены к работе в соответствии со своим руководством по эксплуатации.
 - 7.3. Проверяют условия проведения поверки на соответствие требованиям п. 2.

8. Проверка программного обеспечения средства измерений

Проводят проверку идентификационных данных программного обеспечения на соответствие таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	GTG&SIS_AT_654 SP2	
Номер версии (идентификационный номер) ПО	не ниже 654 SP2	

9. Определение метрологических характеристик и подтверждение соответствия средства измерений метрологическим требованиям

9.1 Определение основной относительной погрешности измерений частоты входного сигнала для модуля SGM633.

Модуль SGM633 установить в контроллер SGM201 и подключить к персональному компьютеру с установленным на него программным обеспечением.

Подключить выход генератора к соответствующим клеммам модуля в соответствии с руководством по эксплуатации. Выходной сигнал генератора контролировать частотомером. Воспроизвести последовательность прямоугольных импульсов амплитудой 5 В поочередно при значениях частоты сигнала генератора, соответствующих значениям 0,5; 100; 1000; 10000 и 32000 Гц. В каждой точке измерений зафиксировать значения по монитору компьютера.

Рассчитать основную относительную погрешность измерений частоты входного сигнала для каждой испытываемой точки по формуле (1):

$$\delta = \frac{X_{\text{H3M}} - X_3}{X_2} \cdot 100, \% \tag{1}$$

где: $x_{uзм}$ — показания испытываемого модуля.

х₃ – заданное значение частоты входного сигнала

Модуль считается пригодным к применению (соответствующим метрологическим требованиям) если полученные значения основной относительной погрешности измерений частоты входного сигнала не превышают ± 5 %.

9.2 Определение основной приведенной погрешности измерений силы постоянного тока для модуля SGM410.

Модуль SGM410 установить в контроллер SGM201 и подключить к персональному компьютеру с установленным на него программным обеспечением.

Подключить выход калибратора процессов многофункционального Fluke 726 в режиме генерирования выходного тока к соответствующим клеммам модуля. Выходной сигнал контролировать мультиметром цифровым Agilent 34411A.

Воспроизвести значения силы постоянного тока, равные 4; 8; 12; 16 и 20 мА. В каждой точке измерений зафиксировать значения по монитору компьютера.

Рассчитать значения основной приведенной погрешности измерений силы постоянного тока по формуле (2):

$$\delta = \frac{I_{\text{H3M}} - I_{3}}{I_{\text{max}} - I_{\text{min}}} \cdot 100, \% \tag{2}$$

где: $I_{u_{3M}}$ — значение тока, измеренное мультиметром на выходе канала;

 I_3 – заданное значение тока;

 I_{min}, I_{max} — нижний и верхний пределы диапазона входного тока

Модуль считается пригодным к применению (соответствующим метрологическим требованиям), если полученные значения относительной погрешности формирования выходного сигнала не превышают ± 0.2 %.

9.3 Подтверждение соответствия средства измерений метрологическим требованиям.

Модуль считается пригодным к применению (соответствующим метрологическим требованиям) если он соответствует требованиям каждого пункта данной методики поверки.

10. Оформление результатов поверки

10.1. Модуль, прошедший поверку с положительным результатом, признается пригодным и допускается к применению.

Результаты поверки модуля передаются в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке средства измерений.

- 10.2. При отрицательных результатах поверки в соответствии с действующим законодательством в области обеспечения единства измерений РФ на модуль оформляется извещение о непригодности к применению.
 - 10.3. Протокол поверки оформляется в произвольном виде.

А.Г. Волченко

Начальник отдела 204

Метрологические характеристики

Таблица А.1 - Метрологические характеристики модулей SGM

Наименование характеристики	Значение
Модуль SGM633	
Диапазон измерений частоты входного сигнала, Гц	от 0,5 до 32000
Диапазон измерений напряжения входного сигнала (пик), В	от 0,5 до 50
Пределы допускаемой относительной погрешности измерений частоты	
входного сигнала, %	±5
Модуль SGM410	
Диапазон измерений силы постоянного тока, мА	от 4 до 20
Пределы допускаемой основной приведенной погрешности измерений	
силы постоянного тока, %	±0,2
Пределы допускаемой дополнительной приведенной погрешности	
измерений силы постоянного тока, вызванной изменением	±0,022
температуры окружающей среды от нормальных условий измерений,	
%/°C	