Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» ФГУП «ВНИИМ им. Д.И. Менделеева»

Государственная система обеспечения единства измерений

КОМПЛЕКТЫ ПОВЕРОЧНЫЕ LCS241 Методика поверки

МП 254-0222-2024

И.о. руководителя научно-исследовательского отдела госэталонов в области измерений аэрогидрофизических параметров ФГУП «ВНИИМ им Д.И. Менделеева» А.Ю. Левин

Руководитель лаборатории испытаний в целях утверждения типа средств измерений аэрогидрофизических параметров ФГУП «ВНИИМ им. Д.И. Менделеева» П.К. Сергеев

г. Санкт-Петербург 2024 г.

1. Общие положения

Настоящая методика поверки распространяется на комплекты поверочные LCS241 (далее — LCS241), предназначенные для измерений и передачи эквивалентной длины (высоты облаков) при поверке и калибровке средств измерений высоты нижней границы облачности (облакомеры) и устанавливает методы и средства их первичной и периодической поверки.

Методика поверки обеспечивает прослеживаемость LCS241 к ГЭТ2-2021 ГЭТ182-2010 и ГЭТ1-2022 в соответствии с Локальной поверочной схемой для средств измерений высоты нижней границы облаков (облачности), структура которой приведена в Приложении А.

Метод, обеспечивающий реализацию методики поверки – косвенные измерения. LCS241 подлежат первичной и периодической поверке.

2. Перечень операций поверки средства измерений

Таблипа 1 -- Перечень операций поверки средства измерений

Таолица 1 Перечень операции поверки ередеты измерении				
	Обязательность выполнения операций поверки при		Номер пункта методики	
Наименование операции поверки	первичной поверке	периодической поверке	поверки	
Внешний осмотр	да	да	p. 7	
Контроль условий поверки	да	да	п. 8.1.1-8.1.2	
Опробование	да	да	п. 8.2	
Определение метрологических характеристик	да	да	p. 9	
Подтверждение соответствия средства измерений метрологическим требованиям	да	да	p. 10	
Оформление результатов поверки	да	да	p. 11	

При получении отрицательных результатов одной из операций поверка прекращается.

3. Требования к условиям проведения поверки

При проведении поверки в лабораторных условиях должны соблюдаться следующие требования:

- температура воздуха, °С

от +17 до +23;

- относительная влажность воздуха, %

от 25 до 80;

- атмосферное давление, кПа

от 84 до 106.

При этом не должны нарушаться требования к условиям эксплуатации применяемых средств поверки.

4. Требования к специалистам, осуществляющим поверку

4.1 К проведению поверки допускаются лица, изучившие настоящую методику поверки и эксплуатационную документацию ЯКИН.411713.724 РЭ «Комплект поверочный LCS241. Руководство по эксплуатации» (далее – РЭ на LCS241).

5. Метрологические и технические требования к средствам поверки

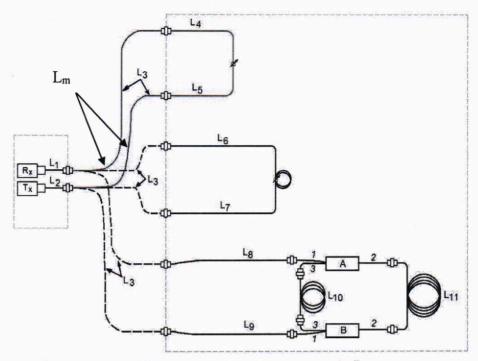
Таблица 2 - Метрологические и технические требования к средствам поверки

Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
п. 8.1.1-8.1.2 Контроль условий поверки	Средства измерений температуры окружающей среды в диапазоне от +17 °C до +23 °C с абсолютной погрешностью не более ±1 °C; Средства измерений относительной влажности воздуха в диапазоне от 25 % до 80 %, с погрешностью не более ±10 %; Средства измерений атмосферного давления в диапазоне от 84 до 106 кПа, с абсолютной погрешностью не более ±0,2 кПа	Термогигрометр автономный ИВА-6, мод ИВА-6Н-Д, регистрационный номер в ФИФ по ОЕИ (далее рег. №) 82393-21
4.	Эталон единицы длины (лента измерительная), соответствующие требованиям к рабочим эталонам 3-го разряда по Государственной поверочной схеме для средств измерений длины в диапазоне от 1·10 ⁻⁹ до 100 м и длин волн в диапазоне от 0,2 до 50 мкм, утвержденной Приказом Росстандарта от 29.12.2018 № 2840 (часть 2) в диапазоне измерений от 0,001 до 20 м.	Лента измерительная эталонная 3-го разряда рег. № 36469-07;
п. 9.1 Определение эквивалентной длины (высоты облаков) и отклонений эквивалентной длины (высоты облаков) от номинального значения	Средства измерений импульсного электрического напряжения (осциллограф), диапазон измерений от 0 до 1 ГГц, относительная погрешность ±2,5·10 ⁻⁵ % Вспомогательное технические средства: Компаратор 30 м с приспособлениями для закрепления ленты измерительной и грузом для её натяжения; Оптический генератор с параметрамиз импульсный режим работы; время нарастания фронта импульса не более 15 нс; длительность импульса излучения от до 500 нс; частота следования импульсов не более 50 кГц; волоконный выход излучения; длина волны излучения 905±25 нм; Оптический делитель А с рабочей длиной волны (905±25) нм; Фотодетектор (2 шт.) с диапазоном длин волны менее (905±25) нм, полоса пропускания не	модификация MSO5074 per. № 82665-21

Примечания

1 Средства поверки должны быть поверены, эталоны – аттестованы.

² Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.


- 6. Требования (условия) по обеспечению безопасности проведения поверки
- требования безопасности по ГОСТ 12.3.019-80;
- требования безопасности, изложенные в ЭД на LCS241;
- в целях обеспечения безопасности работ и возможности выполнения процедур поверки достаточно одного специалиста.
 - 7. Внешний осмотр средства измерений

При проведении внешнего осмотра должно быть установлено соответствие LCS241 следующим требованиям:

- 7.1 соответствие внешнему виду СИ описания типа СИ.
- 7.2 LCS241 не должен иметь механических повреждений или иных дефектов, влияющих на качество их работы.
- 7.3 Соединения в разъемах питания, вспомогательного и дополнительного оборудования должны быть надежными.
 - 7.4 Маркировка LCS241 должна быть целой, четкой, хорошо читаемой.
 - 8. Подготовка к поверке и опробование средства измерений
 - 8.1 Контроль условий проведения поверки.
- 8.1.1 При поверке должны быть проверены условия проведения поверки, указанные в разделе 3 настоящей методики поверки.
- 8.1.2 Для контроля условий поверки используются средства поверки, приведенные в таблице 2.
 - 8.2 Опробование LCS241 должно осуществляться в следующем порядке:
 - 8.2.1 Проверьте комплектность LCS241.
- 8.2.2 Проверьте наличие сведений о поверке в Федеральном информационном фонде по обеспечению единства измерений Генератора импульсов серии АКИП-3300, модификация АКИП-3302, (рег. № 68025-17) из состава поверяемого LCS241.
- 8.2.3 Результаты опробования считаются положительными, если комплектность LCS241 соответствует описанию типа, в Федеральном информационном фонде по обеспечению единства измерений содержатся сведения о положительных результатах поверки и подтверждается прослеживаемость к ГЭТ182-2010 и ГЭТ1-2022.
 - 9. Определение метрологических характеристик
- 9.1 Определение эквивалентной длины (высоты облаков) и отклонений эквивалентной длины (высоты облаков) от номинального значения производится в следующем порядке:
- 9.1.1 Определение действительной длины линии задержки и отклонений эквивалентного значения высоты облаков от номинальной длины линии задержки производится в несколько этапов:
 - Этап 1 исследование первичной линии задержки;
 - Этап 2 исследование пространственной линии задержки;
 - Этап 3 исследование цикличной линии задержки.

Этап 1

Первичная линия задержки имитирует наличие твердого объекта (облака) на эквивалентной длине (высоте облаков) 10 м. Схема с указанием первичной линии задержки (участок L_m, выделен красным цветом) приведена на рисунке 1.

 R_x — вводной коллиматор; T_x — выводной коллиматор; A, B —делитель оптический; L_1 - L_{11} — оптоволоконный кабель; 1, 2, 3 — порт Рисунок 1 - Первичная линия задержки

- Определение эквивалентной длины (высоты облаков) первичной линии задержки производится в следующем порядке:
- 9.1.1.1 Подготовьте оптоволокно к поверке, для этого отсоедините каждый оптоволоконный кабель, входящий в первичную линию задержки $L_{\rm m}$.
- 9.1.1.2 Определите действительную длину каждого оптоволоконного кабеля l_i , входящего в состав линии L_m с помощью ленты измерительной 3-го разряда (далее ленты измерительной). Для этого разместите ленту измерительную и оптоволоконный кабель, l_i , на столе компаратора так, чтобы они соприкасались по всей длине и были параллельны оси компаратора. Совместите начало оптоволоконного кабеля с отметкой «0» на шкале ленты измерительной.

9.1.1.3 Определите общую длину первичной линии задержки L_m по формуле:

$$L_{m} = l_{1} + 2l_{3} + l_{4} + l_{5} + l_{2}, \tag{1}$$

где l_1 – действительная длина кабеля оптоволоконного L_1 ;

l₃ – действительная длина кабеля оптоволоконного дуплексного L₃;

l₄ - действительная длина кабеля оптоволоконного L₄;

l₅ - действительная длина кабеля оптоволоконного L₅;

l₂ - действительная длина кабеля оптоволоконного L₂.

9.1.1.4 Определите эквивалентную длину (высоту облаков) первичной линии задержки, $H_{\text{измm}}$, по формуле:

$$H_{\text{измm}} = \frac{n_{\text{rp}}L_{\text{m}}}{2},\tag{2}$$

где L_m – общая длина первичной линии задержки;

n_{гр} – групповой показатель преломления оптоволокна, указанный в РЭ на LCS241.

9.1.1.5 Отклонение эквивалентной длины (высоты облаков) от номинального значения первичной линии задержки, ΔH_1 , определите по формуле:

$$\Delta H_1 = H_{\text{H3Mm}} - H_1, \tag{3}$$

где H_1 – номинальное значение эквивалентной длины (высоты облаков) первичной линии задержки, м.

9.1.1.6 Результаты считаются положительными, если отклонение эквивалентной длины (высоты облаков) от номинального значения не превышает $\pm 0,5$ м.

Этап 2

Пространственная линия задержки имитирует наличие твердого объекта на длине (высоте) 20 м. Схема с указанием пространственной линии задержки (участок L_r, выделен красным цветом) приведена на рисунке 2.

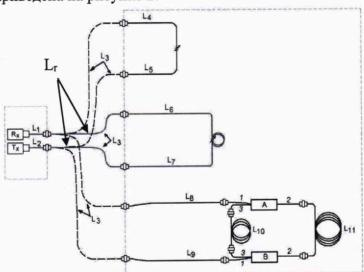


Рисунок 2 - Пространственная линия задержки

Определение эквивалентной длины (высоты облаков) пространственной линии задержки производится в следующем порядке:

9.1.1.7 Подготовьте оптоволокно к поверке, для этого отсоедините каждый оптоволоконный кабель, входящий в пространственную линию задержки L_r , от LCS241.

9.1.1.8 Определите действительную длину каждого оптоволоконного кабеля l_i , входящего в состав линии L_t , с помощью ленты измерительной согласно п. 9.1.1.2.

9.1.1.9 Определите общую длину пространственной линии задержки, L_r, по формуле:

$$L_r = l_1 + 2l_3 + l_6 + l_7 + l_2, \tag{4}$$

где l₆ - действительная длина кабеля оптоволоконного L₆;

 l_7 – действительная длина кабеля оптоволоконного L_7 ;

 l_1 , l_2 , l_3 – действительные длины оптоволоконных кабелей, определенных в п. 9.1.1.2.

9.1.1.10 Определите эквивалентную длину (высоту облаков) пространственной линии задержки, Н_{измг}, по формуле:

$$H_{\text{измr}} = \frac{n_{\text{rp}}L_{\text{r}}}{2},\tag{5}$$

где L_r – общая длина пространственной линии задержки;

n_{гр} – групповой показатель преломления оптоволокна, указанный в РЭ на LCS241.

9.1.1.11 Отклонение эквивалентной длины (высоты облаков) от номинального значения пространственной линии задержки, ΔH_2 , определите по формуле:

$$\Delta H_2 = H_{\text{H3M}\Gamma} - H_{\text{H0M}2}, \tag{6}$$

где $H_{\text{ном2}}$ – номинальное значение эквивалентной длины (высоты облаков) пространственной линии задержки.

9.1.1.12 Результаты считаются положительными, если отклонение эквивалентной длины (высоты облаков) от номинального значения не превышает $\pm 0,5$ м.

Этап 3

- 9.1.1.13 Определение эквивалентной длины (высоты облаков) цикличной линии задержки производится в следующем порядке:
- 9.1.1.13.1 Цикличная линия задержки имитирует твердые объекты, равноудаленные друг от друга на фиксированные расстояния, по всему диапазону. Схема с указанием цикличной линии задержки (участок L_t, выделен красным цветом) приведена на рисунке 3.

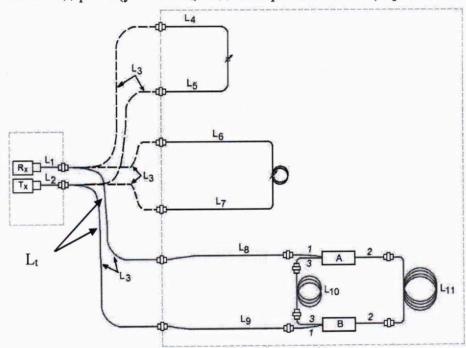


Рисунок 3 - Цикличная линия задержки

- 9.1.1.13.2 Подготовьте оптоволокно к поверке, для этого отсоедините каждый оптоволоконный кабель, входящий в цикличную линию задержки L_t, от LCS241.
- 9.1.1.13.3 Определите действительную длину каждого оптоволоконного кабеля l_i , входящего в состав линии L_t с помощью ленты измерительной согласно п. 9.1.1.2.

9.1.1.13.4 Определите общую длину цикличной линии задержки по формуле

$$L_t = l_1 + l_2 + 2l_3 + l_8 + l_9 + l_{A_{1-2}} + l_{B_{2-1}} + t * l_{11} + (t-1) * (l_{A_{3-2}} + l_{10} + l_{B_{2-3}}),$$
 (7) гле t – количество циклов от 1 до 10,

l₈ - действительная длина кабеля оптоволоконного L₈;

l₉ - действительная длина кабеля оптоволоконного L₉;

 l_{10} – действительная длина кабеля оптоволоконного L_{10} ;

 ${\bf l_{11}}$ – действительная длина кабеля оптоволоконного ${\bf L_{11}};$

l_{A1-2} - действительная длина плечей 1 и 2 делителя оптического A;

l_{B2-1} - действительная длина плечей 1 и 2 делителя оптического В;

 $l_{A_{3-2}}$ — действительная длина плечей 2 и 3 делителя оптического A; $l_{B_{2-3}}$ — действительная длина плечей 2 и 3 делителя оптического B; действительные длины l_1 , l_2 , l_3 определены в п. 9.1.1.2

9.1.1.13.5 Измерение l_{11} выполняют по следующей схеме (представлена на Рисунке 4):

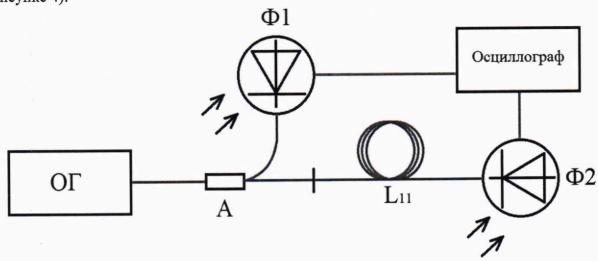


Рисунок 4 - Измерение l₁₁

9.1.1.13.6 Оптический генератор ОГ (параметры: импульсный режим работы; время нарастания фронта импульса < 15 нс; длительность импульса излучения (5 - 500) нс; частота следования импульсов <50 кГц; волоконный выход излучения; длина волны излучения (905±25) нм) соединяют с оптическим делителем А (параметры: 1x2, коэффициент деления 50:50). Выходы оптического делителя А соединяют с фотодетектором $\Phi 1$ и входом оптического волокна L_{11} . Выход оптического волокна L_{11} соединяют с фотодетектором Ф2. Фотодетекторы Ф1 и Ф2 соединяют с входами осциллографа ВЧ проводами одинаковой длины. Переводят осциллограф в режим прямого отображения сигналов. Получают на осциллографе изображения импульсов с фотодетекторов Ф1 и Ф2. Устанавливают синхронизацию по каналу фотодетектора Ф1. Устанавливают масштаб по горизонтальной оси таким образом, чтобы на развертке одновременно отображались импульсы с фотодетекторов Ф1 и Ф2. Устанавливают масштаб по вертикальной оси таким образом, чтобы размах сигналов занимал не менее 1/3 от высоты экрана осциллографа. Не следует устанавливать различные коэффициенты внутреннего усиления каналов осциллографа, т.к. это может привести к возникновению ошибки измерения времени задержки. Убеждаются, что передние фронты импульсов не зашумлены, формы сигналов идентичны, и соответствуют импульсному сигналу, заданному на ОГ. Устанавливают режим измерения времени задержки переднего фронта импульса между каналами фотодетекторов Ф1 и Ф2 (по уровню 10% от максимальной амплитуды), либо производят данное измерение вручную с помощью курсоров.

9.1.1.13.7 Произведите измерение времени задержки переднего фронта импульса $T_{\rm d}$.

9.1.1.13.8 Определите значение
$$l_{11}$$
, по формуле
$$l_{11} = \frac{c * T_d}{n_{rp}}, \tag{8}$$

где с - скорость света, м/с;

n_{гр} – групповой показатель преломления волокна, указанный в РЭ на LCS241.

9.1.1.13.9 Подставьте в формулу (7) полученные значения составных частей оптоволоконного тракта L_t и рассчитайте значения для каждого цикла t от 1 до10.

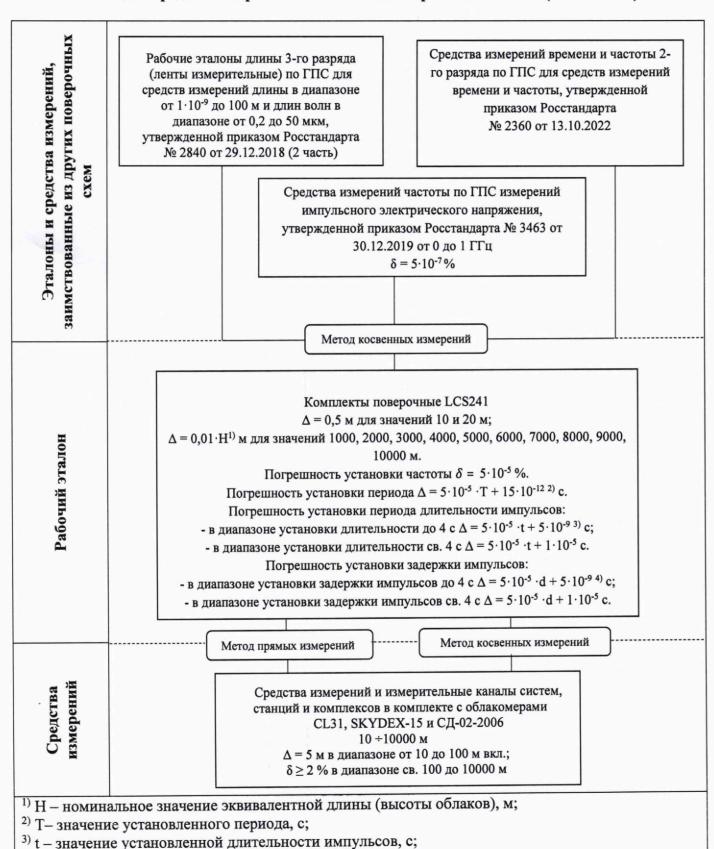
9.1.1.13.10 Определите эквивалентную длину (высоту облаков) цикличной линии задержки, H_i , в зависимости от количества циклов t определите по формуле:

$$H_{i} = \frac{L_{t}n_{rp}}{2}, \qquad (9)$$

где L_t – общая длина цикличной линии задержки в зависимости от t;

 n_{rp} – групповой показатель преломления оптоволокна, указанный в РЭ на LCS241. 9.1.1.13.11 Отклонение эквивалентной длины (высоты облаков) от номинального значения цикличной линии задержки, ΔH_i , определите по формуле:

$$\Delta H_i = H_i - H_i, \tag{10}$$


где H_i – номинальное значение эквивалентной длины (высоты облаков) цикличной линии задержки.

- 9.1.1.13.12 Результаты считаются положительными, если отклонение эквивалентной длины (высоты облаков) от номинального значения не превышает $\pm 0,01\cdot H$, м, где H номинальное значение эквивалентной длины (высоты облаков) цикличной линии задержки, м.
- 10 Подтверждение соответствия средства измерений метрологическим требованиям В результате определения метрологических характеристик, полученных в результате поверки, делается вывод о пригодности дальнейшего использования средства измерений.

Критериями пригодности являются положительный результат поверки по п. 9.1 настоящей методики поверки, а также требования к рабочим эталонам в соответствии со структурой Локальной поверочной схемой для средств измерений высоты нижней границы облаков (облачности), приведенной в Приложении А настоящей методики поверки.

- 11 Оформление результатов поверки
- 11.1 Результаты поверки средств измерений подтверждаются сведениями о результатах поверки средств измерений, включенными в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке средства измерений, и (или) в формуляр средства измерений вносится запись о проведенной поверке, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки, или выдается извещение о непригодности к применению средства измерений.
- 11.2 Протокол поверки оформляется и выдаётся по заявлению владельца СИ или другого лица, представившего СИ в поверку.

СТРУКТУРА ЛОКАЛЬНОЙ ПОВЕРОЧНОЙ СХЕМЫ для средств измерений высоты нижней границы облаков (облачности)

4) d – значение установленной задержки импульсов, с.