СОГЛАСОВАНО

Первый заместитель генерального директора – заместитель по научной

работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

О/ 2024 г.

Государственная система обеспечения единства измерений Дефектоскопы лазерно-ультразвуковые КИНЕТИК ЛУС-01

> МЕТОДИКА ПОВЕРКИ МП 651-24-001

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Настоящая методика устанавливает методы и средства первичной и периодической поверок дефектоскопов лазерно-ультразвуковых Кинетик ЛУС-01 (далее по тексту — дефектоскопы), изготовленных обществом с ограниченной ответственностью «Кинетик» (ООО «Кинетик»), ИНН 9701079037, 108810, г. Москва, вн.тер. г. поселение Марушкинское, д. Крёкшино, ул. Производственная, д.6, стр. 1, этаж 1, офис №32.

В результате поверки должны быть подтверждены следующие метрологические требования, приведенные в таблице 1.

Таблица 1 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений скорости распространения продольных ультразвуковых волн, м/с	от 2000 до 7000
Пределы допускаемой относительной погрешности измерений скорости распространения продольных ультразвуковых волн, %	±1
Диапазон измерений временных интервалов, мкс	от 0,02 до 35
Пределы допускаемой абсолютной погрешности измерений временных интервалов, нс	±15
Диапазон измерений толщины и/или глубины залегания дефектов (по стали), мм	от 0,1 до 180
Пределы допускаемой абсолютной погрешности измерений толщины и/или глубины залегания дефектов (по стали), мм - в диапазоне от 0,1 до 90 мм включ в диапазоне св. 90 до 180 мм	±(0,03+0,0015·H)

1.2 Необходимо обеспечение прослеживаемости поверяемых дефектоскопов к государственным первичным эталонам единиц величин посредством использования аттестованных (поверенных) в установленном порядке средств поверки.

По итогам проведения поверки должна обеспечиваться прослеживаемость поверяемого дефектоскопа к государственному первичному эталону единицы длины — метра ГЭТ 2-2021, к государственному первичному эталону единиц времени, частоты и национальной шкалы времени ГЭТ 1-2022 в соответствии с локальной поверочной схемой для ультразвуковых дефектоскопов, комплексов, систем, установок, приборов, станций (Приложение А) и к государственному первичному эталону единиц скоростей распространения и коэффициента затухания ультразвуковых волн в твердых средах ГЭТ 189-2014 в соответствии с государственной поверочной схемой для средств измерений скоростей распространения и коэффициента затухания ультразвуковых волн в твердых средах».

Методика поверки реализуется посредством методов прямых измерений.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

2.1 При проведении первичной (в том числе после ремонта) и периодической поверок должны выполняться операции, указанные в таблице 2.

Таблица 2 – Операции первичной и периодической поверок

	Обязательность выполнения операций поверки при		Номер раздела (пункта) методики
Наименование операции поверки	первичной поверке	периодической поверке	поверки, в соответствии с которым выполняется операция поверки
Внешний осмотр средства измерений	да	да	7
Подготовка к поверке и опробование средства измерений	да	да	8
Проверка программного обеспечения средства измерений	да	да	9
Определение метрологических характеристик и подтверждение соответствия средства измерений метрологическим требованиям	_	-	10
Определение диапазона и относительной погрешности измерений скорости распространения продольных ультразвуковых волн	1124	да	10.1
Определение диапазона и абсолютной погрешности измерений толщины и/или глубины залегания дефектов (по стали)	па	да	10.2
Определение диапазона и абсолютной погрешности измерений временных интервалов		да	10.3

- 2.2 Поверка дефектоскопов осуществляется аккредитованными в установленном порядке юридическими лицами и индивидуальными предпринимателями.
- 2.3 Поверка дефектоскопа прекращается в случае получения отрицательного результата при проведении хотя бы одной из операций, приведенных в таблице 2, а дефектоскоп признают не прошедшим поверку.
- 2.4 Не допускается проведение поверки для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

3.1 Поверка проводится при рабочих условиях эксплуатации поверяемых дефектоскопов и используемых средств поверки. Средства поверки должны быть подготовлены к работе в соответствии с руководствами по их эксплуатации.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К проведению поверки дефектоскопа допускается инженерно-технический персонал со средним или высшим техническим образованием, имеющий право на проведение поверки (аттестованный в качестве поверителя), изучивший устройство и принцип работы средств поверки по эксплуатационной документации.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 Рекомендуемые средства поверки указаны в таблице 3.

Таблица 3 – Средства поверки

Операции поверки,	Метрологические и технические	Перечень рекомендуемых
требующие	требования к средствам поверки,	средств поверки
применение средств	необходимые для проведения	
поверки	поверки	
п. 8 Подготовка к	Эталоны единиц длины,	Меры длины концевые
поверке и	соответствующие требованиям к	плоскопараллельные, набор №
опробование	эталонам не ниже 3 разряда	(далее -концевые меры, набор
средства измерений;	согласно государственной	Nº1)
п. 10.2 Определение	поверочной схеме утвержденной	per. № 74059-19
диапазона и	приказом Федерального агентства	Меры длины концевы
абсолютной	по техническому регулированию и	плоскопараллельные, набор №
погрешности	метрологии от 29.12.2018 г. №2840	(далее – концевые меры, набор
измерений толщины	в диапазоне значений от 0,5 до	№8)
и/или глубины	500,0 мм	per. № 35954-07
залегания дефектов		
(по стали)		
п. 10.1 Определение	Эталоны единиц скоростей	Государственный рабочий эталог
диапазона и	распространения и коэффициента	единиц скорости (далее – эталон
относительной	затухания ультразвуковых волн в	скорости) распространения
погрешности	твердых средах, соответствующие	продольных ультразвуковых воли
измерений скорости	требованиям к эталонам не ниже 1	в твердых средах 1 разряда в
распространения	разряда согласно государственной	диапазоне значений от 2000 до
продольных	поверочной схеме утвержденной	7000 м/с, коэффициента
ультразвуковых	приказом Федерального агентства	затухания продольных
волн	по техническому регулированию и	ультразвуковых волн в твердых
	метрологии от 29.12.2018 г. №2842	средах 1 разряда в диапазоне
	в диапазоне значений скоростей	значений от 0,2 до 2000 дБ/м,
	распространения продольной	скорости распространения
	ультразвуковой волны в твердых	сдвиговых ультразвуковых волн
	средах от 2000 до 7000 м/с	твердых средах 1 разряда в
		диапазоне значений от 1000 до
		4000 м/с (рег
		№3.1.ZZT.0392.2022)
п. 10.2 Определение	Средства измерений с диапазоном	Набор щупов № 4 (далее – щупы
диапазона и	значений от 0,1 до 1 мм и классом	per. № 369-73
абсолютной	точности не ниже 2-го	
погрешности		
измерений толщины		
и/или глубины		
залегания дефектов		
(по стали)		

Продолжение таблицы 3

Операции поверки,	Метрологические и технические	Перечень рекомендуемых
требующие	требования к средствам поверки,	средств поверки
применение средств	необходимые для проведения	
поверки	поверки	
п. 10.2 Определение	Средство измерений с диапазоном	Комплект мер для дефектоскопии
диапазона и	значений высот мер от 16 до 500 мм;	АЗ-НК Меры КМД-4У ст.40Х13
абсолютной	диапазон диаметров плоскодонного	(далее – мера КМД-4У)
погрешности	отражателя от 1 до 5 мм; диапазон	per. № 79145-20
измерений толщины	расстояния от рабочей поверхности	13
и/или глубины	до плоскодонного отражателя от 1 до	
залегания дефектов	485 мм; скорость распространения	
(по стали)	продольной ультразвуковой волны	
	6040 ±133 м/с, пределы допускаемой	
	абсолютной погрешности высоты	
	меры от $\pm 0,215$ до $\pm 0,775$ мм; пределы	
	допускаемой абсолютной	
	погрешности диаметра	
	плоскодонного отражателя ±0,025 мм	
	для мер с номинальным значением от	
	1 до 3 мм, ±0,030 мм для мер с	
	номинальным значением от 3,2 до	
	6,0 мм; пределы допускаемой	
	абсолютной погрешности расстояния	
	от рабочей поверхности до	
	плоскодонного отражателя от ±0,10	
	до ±0,63 мм, пределы допускаемой	
	абсолютной погрешности	
	воспроизведения скорости	
	распространения продольной	
	ультразвуковой волны в мере ±70 м/с	
	для мер высотой от 16 до 45 мм,	
	±30 м/с для мер высотой от 85 до	
	500 мм.	

Продолжение таблицы 3

Продолжение таблицы	13	
Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
п. 10.3 Определение диапазона и абсолютной погрешности измерений временных интервалов	Средства измерений с диапазоном частот выходного сигнала от 1 мкГц до 30 МГц, пределы допускаемой абсолютной погрешности установки частоты выходного сигнала $\pm (1\cdot10^{-6}\cdot\text{F}+15\cdot10^{-12})$, где F - установленное значение частоты сигнала, Гц. Диапазоном размаха выходного напряжения при нагрузке 50 Ом от 0,001 до 10 В, с пределами допускаемой абсолютной погрешности установки размаха выходного напряжения синусоидальной формы на частоте 1 кГц $\pm (0,01\cdot\text{U}+0,001)$ В, где U - установленное значение выходного напряжения	Генератор сигналог произвольной формы 33521В (далее — генератор) рег. № 72915-18
п. 10.3 Определение диапазона и абсолютной погрешности измерений временных интервалов	Эталоны единиц времени и частоты, соответствующие требованиям к эталонам не ниже 5 разряда согласно государственной поверочной схеме утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 26.09.2022 №2360 в диапазоне значений от 10 нс до 10000 с	Частотомер электронно счетный Ч3-85/6 (далее частотомер), рег. № 75631-19

5.2 Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице 3.

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 Работа с дефектоскопом и средствами поверки должна проводиться согласно требованиям безопасности, указанным в нормативно-технической и эксплуатационной документации на средства поверки.
- 6.2 При проведении поверки должны быть соблюдены требования безопасности согласно ГОСТ 12.3.019-80.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 При внешнем осмотре должно быть установлено соответствие дефектоскопа следующим требованиям:
 - комплектность дефектоскопа в соответствии с паспортом;
- отсутствие явных механических повреждений, влияющих на работоспособность дефектоскопа;
 - наличие маркировки дефектоскопа в соответствии с документацией.
- 7.2 Результаты поверки по данному разделу считать положительными, если дефектоскоп соответствует требованиям, приведенным в п. 7.1.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 Если дефектсокоп и средства поверки до начала измерений находились в климатических условиях, отличающихся от указанных в разделе 3, то их выдерживают при этих условиях не менее часа.
- 8.2 Подготовить дефектоскоп и средства поверки к работе в соответствии с их руководствами по эксплуатации.
- 8.3 Запустить программное обеспечение «KeenetiX LUS» (далее Π O) дефектоскопа.
- 8.4 Подключить широкополосный оптико-акустический преобразователь к дефектоскопу и произвести его настройку и настройку скорости звука в соответствии с руководством по эксплуатации.
- 8.5 Установить широкополосный оптико-акустический преобразователь на меру концевую, набор №1, с номиналом 50 мм через тонкий слой контактной жидкости

(дистиллированная вода или индустриальное масло) и нажать кнопку « » в окне «Настр.» ПО дефектоскопа.

- 8.6 Установить значение толщины в окне «Настройки» на странице «3» ПО.
- 8.7 На графике временного трека (а-скан) амплитуды сигналов выставить маркеры (цветные вертикальные линии) на соответствующие экстремумы амплитуды сигнала от донной поверхности на втором и третьем переотражении (рисунок 1). Управление маркерами осуществляется в окне «Маркеры», а увеличение или уменьшение масштаба окна в окне «Окна».

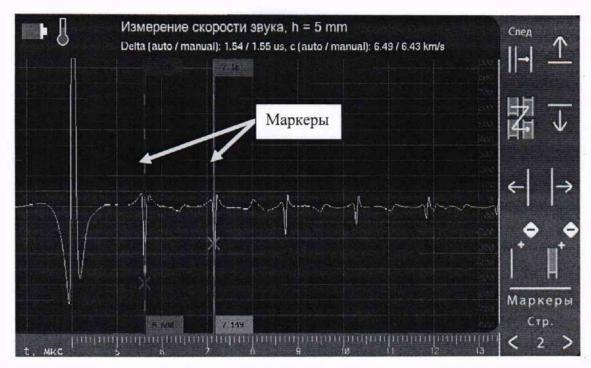


Рисунок 1 – Установка положения маркеров для измерения.

- 8.8 В поле «c = ____ km/s» отобразится значение $V_{\rm H}$, км/c, измеренной скорости распространения продольных ультразвуковых волн в мере. Значение, полученное в режиме Auto считать приоритетным.
 - 8.9 Переключиться в режим В скана кнопкой «А/В», произвести запись В-скана.

Рисунок 2 – Отображение донного сигнала на А и В-скане

8.10 Результаты поверки по данному разделу считать положительными, если в поле «с = ____ km/s» отобразится значение измеренной скорости распространения продольных ультразвуковых волн в мере и в окне ПО на А и В-скане отобразится донный сигнал аналогично представленному на рисунке 2. Значение, полученное в режиме Auto, считать приоритетным.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

- В левой части окна ПО зайти в меню «Справка».
- 9.2 В верхнем части окна ПО прочитать идентификационное наименование и номер версии ПО.
- 9.3 Проверить идентификационные данные ПО на соответствие значениям, приведенным в таблице 4.

Таблица 4 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	KeenetiX LUS
Номер версии (идентификационный номер) ПО	v 1.0 и выше
Цифровой идентификатор ПО	

9.4 Результаты поверки по данному разделу считать положительными, если идентификационные данные ПО соответствуют значениям, приведенным в таблице 4.

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК И ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

- 10.1 Определение диапазона и относительной погрешности измерений скорости распространения продольных ультразвуковых волн
- 10.1.1 Подключить широкополосный оптико-акустический преобразователь к дефектоскопу, выставить значение количества усреднений 20.
- 10.1.2 Установить широкополосный оптико-акустический преобразователь на меру из состава рабочего эталона 1 разряда скорости распространения ультразвуковых волн в твердых средах, через тонкий слой контактной жидкости (дистиллированная вода или индустриальное

масло) и нажать кнопку « » в окне «Настр.» ПО дефектоскопа.

- 10.1.3 На графике временного трека (а-скан) амплитуды сигналов выставить маркеры (цветные вертикальные линии) на соответствующие экстремумы амплитуды сигнала от донной поверхности на втором и третьем переотражении (рисунок 1). Управление маркерами осуществляется в окне «Маркеры», а увеличение или уменьшение масштаба окна в окне «Окна».
- 10.1.4 Установить значение толщины измеряемой меры, взятое из протокола аттестации рабочего эталона 1 разряда скорости распространения ультразвуковых волн в

твердых средах, в окне «Настройки»

- 10.1.5 В поле «c = ____ km/s» отобразится значение $V_{\rm ni}$, км/c, измеренной скорости распространения продольных ультразвуковых волн в мере. Значение, полученное в режиме Auto, считать приоритетным.
- 10.1.6 Вычислить относительную погрешность измерений скорости распространения продольных ультразвуковых волн, ΔV , %, по формуле (1):

$$\Delta V = \frac{V_{\text{H}i} \cdot 1000 - V_{\text{H}i}}{V_{\text{H}i}} \cdot 100, \tag{1}$$

где $V_{{\it n}i}$ – действительное значение скорости распространения продольных

ультразвуковых волн в мере из состава рабочего эталон 1 разряда скорости распространения ультразвуковых волн в твердых средах, м/с;

i – номер текущего измерения.

- 10.1.7 Повторить измерения по пунктам 10.1.2 10.1.6 используя поочередно каждую меру из состава рабочего эталона 1 разряда скорости распространения ультразвуковых волн в твердых средах.
- 10.1.8 Результаты поверки по данному разделу считать положительными, если диапазон измерений скорости распространения продольных ультразвуковых волн составляет от 2000 до 7000 м/с, а значения относительной погрешности измерений скорости распространения продольных ультразвуковых волн находятся в пределах ± 1 %.
- 10.2 Определение диапазона и абсолютной погрешности измерений толщины и/или глубины залегания дефектов (по стали)
- 10.2.1 Подключить широкополосный оптико-акустический преобразователь к дефектоскопу и выставить значение количества усреднений 20.
- 10.2.2 Установить широкополосный оптико-акустический преобразователь на щуп толщиной 1,0 мм через тонкий слой контактной жидкости (дистиллированная вода или

индустриальное масло) и нажать кнопку « *** » в окне «Настр.» ПО дефектоскопа.

- 10.2.3 В ПО установить действительное значение толщины щупа, взятое из свидетельства о поверке на щуп.
- 10.2.4 На графике временного трека (а-скан) амплитуды сигналов выставить маркеры (цветные вертикальные линии) на соответствующие экстремумы амплитуды сигнала от донной поверхности на втором и третьем переотражении (рисунок 1). Управление маркерами осуществляется в окне «Маркеры», а увеличение или уменьшение масштаба окна в окне «Окна».
- 10.2.5 После того, как маркеры выставлены в необходимое положение, в верхней части окна ПО отобразится результат измерений (рисунок 3). Значение, полученное в режиме Auto, считать приоритетным.

Измерение скорости звука, h = 5 mm

Delta (auto / manual): 1.54 / 1.55 us, c (auto / manual): 6.49 / 6.43 km/s

- Рисунок 3 Измеренное значение скорости распространения продольных ультразвуковых волн
- 10.2.6 Установить полученное в пункте 10.2.5 значение скорости распространения продольных ультразвуковых волн в окне «Настройки»
- 10.2.7 Установить широкополосный оптико-акустический преобразователь на щуп с номинальной толщиной 0,1 мм через тонкий слой контактной жидкости (дистиллированная

вода или индустриальное масло) и нажать кнопку « ** » в окне «Настр.» ПО дефектоскопа.

- 10.2.8 На графике временного трека (а-скан) амплитуды сигналов выставить маркеры (цветные вертикальные линии) на соответствующие экстремумы амплитуды сигнала от донной поверхности на втором и третьем переотражении (рисунок 1). Управление маркерами осуществляется в окне «Маркеры», а увеличение или уменьшение масштаба окна в окне «Окна».
- 10.2.9 После того, как маркеры выставлены в необходимое положение, в верхней части окна ПО отобразится результат измерений (рисунок 4). Значение, полученное в режиме Auto, считать приоритетным.

Измерение толщины, с = 6.41 km/s Delta (auto / manual): 9.34 / 9.36 us h (auto / manual): 29.9 / 30 mm

Рисунок 4 – Результат измерений толщины и/или глубины залегания дефектов

- 10.2.10 Повторить операции пунктов 10.2.2 − 10.2.5, на концевой мере, набор №1, с номиналом 70 мм.
- 10.2.11 Повторить операции пунктов 10.2.7 10.2.9, используя поочередно концевые меры, набор №1, с номиналом 10, 50, 90, мм и установив измеренное в п. 10.2.10 значение скорости распространения продольных ультразвуковых волн.
- 10.2.12 Установить широкополосный оптико-акустический преобразователь на концевой мере, набор №1 с номиналом 100 мм через тонкий слой контактной жидкости

(дистиллированная вода или индустриальное масло) и нажать кнопку « » в окне «Настр.» ПО дефектоскопа.

- 10.2.13 На графике временного трека (а-скан) амплитуды сигналов выставить маркеры (цветные вертикальные линии) на соответствующий экстремум амплитуды сигнала от донной поверхности и от лицевой поверхности меры (рисунок 1). Управление маркерами осуществляется в окне «Маркеры», а увеличение или уменьшение масштаба окна в окне «Окна».
- 10.2.14 После того, как маркеры выставлены в необходимое положение, в верхней части окна ПО отобразится результат измерений (рисунок 4).
- 10.2.15 Повторить операции пунктов 10.2.11 10.2.14 используя поочередно концевую меру, набор №8 номиналом 175 мм, установив измеренное в п. 10.2.10 значение скорости распространения продольных ультразвуковых волн.
- 10.2.16 Установить широкополосный оптико-акустический преобразователь на меру КМД-4У с высотой 105 мм над плоскодонным отражателем.
 - 10.2.17 Произвести запись В-скана.
- 10.2.18 Произвести измерение глубины залегания дефекта согласно РЭ, установив скорость распространения продольных ультразвуковых волн, взятую из свидетельства о поверке на меру.
- 10.2.19 Повторить измерения по пунктам 10.2.16-10.2.18 для меры КМД-4У с глубиной залегания дефекта 180 мм.
- 10.2.20 Вычислить абсолютную погрешность измерений толщины и/или глубины залегания дефектов, ΔX , мм, по формуле (2):

$$\Delta X = X_{ni} - X_{\mu}, \tag{2}$$

где X_{ui} – измеренная дефектоскопом толщина и/или глубина залегания дефекта, мм;

 $X_{\rm д}$ — действительное значение толщины и/или глубины залегания дефекта, взятое из свидетельства о поверке, мм.

10.2.21 Результаты поверки по данному разделу считать положительными, если диапазон измерений толщины и/или глубины залегания дефектов (по стали) составляет от 0,1 до 180 мм, а значения абсолютной погрешности измерений толщины и/или глубины залегания дефектов (по стали) в диапазоне от 0,1 до 90 мм включ. находятся в пределах $\pm (0.03+0.0015 \cdot \text{H})$ мм, в диапазоне св. 90 до 180 мм находятся в пределах $\pm (0.01+0.0015 \cdot \text{H})$ мм.

10.3 Определение диапазона и абсолютной погрешности измерений временных интервалов

10.3.1 Подключить генератор и частотомер к дефектоскопу, как показано на рисунке 5.

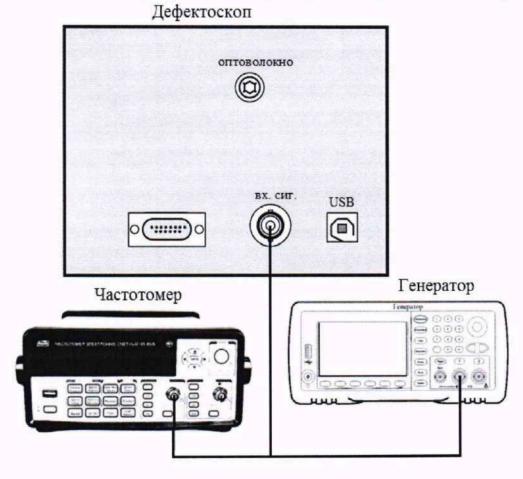


Рисунок 5 — Схема подключения генератора и частотомера для определения диапазона и абсолютной погрешности измерений временных интервалов

- 10.3.2 Установить в настройках дефектоскопа количество усреднений 1.
- 10.3.3 Установить настройки генератора: режим генерации немодулированного сигнала, частота 50 МГц, амплитуда 500 мВ.
- 10.3.4 На генераторе подстроить частоту таким образом, чтобы на частотомере период сигнала был равен 0,02 мкс, соответствующий временному интервалу 0,02 мкс.

- 10.3.5 Измерить при помощи маркеров на дефектоскопе значение временного интервала как интервал между двумя соседними максимумами сигнала $D_{\text{Тизмі}}$, мкс.
- 10.3.6 Повторить операции пунктов 10.3.4 10.3.5 для значений временного интервала (периода сигнала на частотомере) 1, 10, 20, 35 мкс.
- 10.3.7 Рассчитать абсолютную погрешность измерений временных интервалов ΔD_T , нс, по формуле (3):

$$\Delta D_{T} = (D_{T \mu 3 \text{mi}} - D_{Ti}) \cdot 1000, \tag{3}$$

где D_{Ti} - измеренное на частотомере значение временного интервала (периода сигнала), мкс.

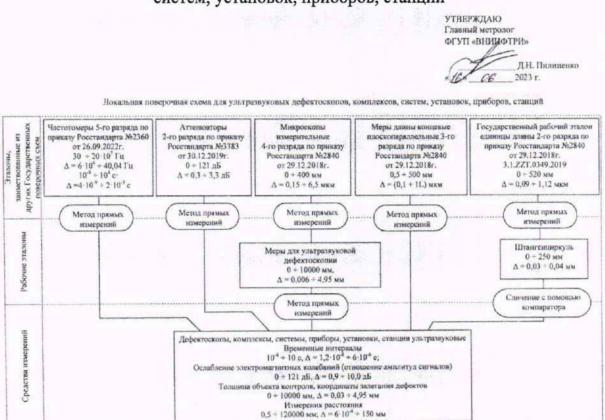
10.3.8 Результаты поверки по данному разделу считать положительными, если диапазон измерений временных интервалов составляет от 0,02 до 35 мкс, а значения абсолютной погрешности измерений временных интервалов находятся в пределах ±15 нс.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 Дефектоскоп признается годным, если в ходе поверки все результаты процедур поверки положительные.
- 11.2 Сведения о результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений.
- 11.3 При положительных результатах поверки по заявлению владельца дефектоскопа или лица, предъявившего его на поверку, выдается свидетельство о поверке.
- 11.4 Дефектоскоп, имеющий отрицательные результаты поверки в обращение не допускается и на него выдается извещение о непригодности к применению с указанием причин забракования.

Начальник НИО-10 ФГУП «ВНИИФТРИ»

М.С. Шкуркин


Начальник 103 отдела ФГУП «ВНИИФТРИ»

Инженер 1 категории 103 отдела ФГУП «ВНИИФТРИ» \mathcal{H} А.С. Неумолотов

ПРИЛОЖЕНИЕ А

(рекомендуемое)

Локальная поверочная схема для ультразвуковых дефектоскопов, комплексов, систем, установок, приборов, станций

