Федеральное государственное бюджетное учреждение «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГБУ «ВНИИМС»)

СОГЛАСОВАНО Заместитель директора по производственной метрологии

Государственная система обеспечения единства измерений

«ГСИ. Система измерительная HVF-1000kV. Методика поверки»

MΠ 201/1.1-031-2024

1 Общие положения

Настоящая методика поверки применяется для проведения поверки системы измерительной HVF-1000kV, серийный № JT244419A, (далее по тексту — система), состоящая из делителя напряжения емкостного OWF-1000kV/700pF с серийным № JT244419A и киловольтметра цифрового DMVD-351 с серийным № JT244419A, изготовленной Shanghai Himalayal Co., Ltd, Китай, и используемой в качестве средства измерений в соответствии с государственной поверочной схемой для средств измерений электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до 500 кВ с гармоническими составляющими от 0,3 до 50 порядка, в диапазоне частот от 15 до 2500 Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии (Росстандарт) от 31.12.2020 г. № 2316.

На поверку представляется система, укомплектованная в соответствии с руководством по эксплуатации.

При проведении поверки следует руководствоваться указаниями, приведенными в п.п. 2 – 6 настоящей методики поверки и руководстве по эксплуатации.

При определении метрологических характеристик системы должна быть обеспечена прослеживаемость к ГЭТ 191-2019.

Методом, обеспечивающим реализацию методики поверки, является метод сличения значений определяемых поверяемым СИ величин со значениями определяемых эталоном величин.

2 Перечень операций поверки

2.1 Поверка проводится в объеме и в последовательности, указанной в таблице 1.

Таблица 1 - Перечень операций при первичной и периодических поверках

Наименование операции поверки	выполнени	ельность ия операций ки при	Номер раздела (пункта) методики поверки, в соответствии с которым выполняется операция поверки
	первичной поверке	периодиче- ской поверке	
Внешний осмотр	Да	Да	7
Подготовка к поверке и опробование средства измерений	Да	Да	8
Проверка программного обеспечения	Да	Да	9
Определение метрологических характеристик средств измерений	Да	Да	10
Подтверждение соответствия средства измерений метрологическим требованиям	Да	Да	11

3 Требования к условиям проведения поверки

3.1 Поверка должна проводиться при следующих условиях окружающей среды:

- температура окружающей среды, °С

от +10 до +35;

- атмосферное давление, кПа

от 84 до 106;

- относительная влажность воздуха, %

до 90.

3.2 Напряжение питающей сети переменного тока частотой от 49,5 до 50,5 Гц, действующее значение напряжения от 198 до 242 В. Коэффициент искажения синусоидальности кривой напряжения не более 5 %. Остальные характеристики сети переменного тока должны соответствовать ГОСТ 32144-2013.

4 Требования к специалистам, осуществляющим поверку

- 4.1 К проведению поверки допускают специалистов из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучивших настоящую методику поверки и руководство пользователя/руководство по эксплуатации на поверяемое СИ и имеющих стаж работы по данному виду измерений не менее 1 года.
- 4.2 Специалист должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право проведения работ в электроустановках с квалификационной группой по электробезопасности не ниже III до и выше 1000 В.

5 Метрологические и технические требования к средствам поверки

5.1 При проведении поверки должны применяться средства поверки с характеристиками, указанными в таблице 2.

Таблица 2 – Метрологические и технические требования к средствам поверки

Операции по-	Метрологические и технические требования к	Перечень рекомендуемых
верки, требую- щие применения средств поверки	средствам поверки, необходимые для прове- дения поверки	средств поверки
п.3.1 Условия прове- дения поверки	Средства измерений температуры окружающей среды в диапазоне измерений от 15 до 25 °C, с $\Delta = \pm 0.4$ °C; средства измерений относительной влажности воздуха в диапазоне измерений от 20 до 90 % с $\Delta = \pm 3$ %; средства измерений атмосферного давления в диапазоне измерений от 80 до 106 кПа, с $\Delta = \pm 0.3$ кПа.	Измеритель-регистратор комбинированный Librotech SX100-P, регистрационный № 80508-20.
п.3.2 Условия проведения поверки	Средства измерений действующих значений напряжения переменного тока от 154 до 450 В с δ не более 0,2 %; средства измерений частоты от 45 до 55 Γ ц с Δ не более 0,02 Γ ц; средства измерений коэффициента искажения синусоидальности кривой напряжения от 0 до 30 % с δ не более 0,2 % (при K_U < 1%) и не более 10 % (при K_U > 1%).	Регистраторы показателей качества электрической энергии Парма РКЗ.01ПТ, регистрационный № 25731-05.
п.9 Определение метрологиче- ских характери- стик средств из- мерений	Рабочий эталон единицы электрического напряжения переменного тока не ниже 2 разряда, по приказу Федерального агентства по техническому регулированию и метрологии (Росстандарт) от 31.12.2020 г. № 2316;	Делитель напряжения ДН- 400э, регистрационный № 54883-13;
	эталон единицы электрического напряжения переменного тока не ниже 3 разряда, по при- казу Федерального агентства по техническому регулированию и метрологии (Росстандарт) от 18.08.2023 г. № 1706;	вольтметр универсальный серии АКИП-2101, регистрационный № 70837-18;
	эталон единицы электрического напряжения переменного тока не ниже 3 разряда, по при- казу Федерального агентства по техническому регулированию и метрологии (Росстандарт) от 18.08.2023 г. № 1706.	калибратор универсальный 9100, регистрационный № 25985-09.

Операции по- верки, требую- щие применения средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
	пускается использовать при поверке другие эта ий, обеспечивающие необходимую точность изм	

5.2 Средства измерений, применяемые при поверке, должны обеспечивать требуемую точность, быть поверены и иметь действующие записи о поверке во ФГИС «Аршин». Эталоны единиц величин должны быть аттестованы и иметь свидетельства об аттестации.

6 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки должны соблюдаться требования ГОСТ 12.1.019, ГОСТ 12.3.019, а также выполнен комплекс мероприятий по обеспечению безопасности, установленных приказом Министерства труда и социальной защиты РФ от 15.12.2020 г. № 903н «Об утверждении правил по охране труда при эксплуатации электроустановок».

Перед проведением поверки необходимо ознакомиться с настоящей методикой, эксплуатационной документацией на поверяемые СИ и средства поверки.

Должны быть также обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

7 Внешний осмотр средства измерений

- 7.1 При проведении внешнего осмотра должно быть установлено соответствие поверяемого СИ следующим требованиям:
 - комплектность должна соответствовать приведенной в руководстве по эксплуатации;
- все органы управления и коммутации должны действовать плавно и обеспечивать надежность фиксации во всех позициях;
- не должно быть механических повреждений корпусов, экрана, органов управления.
 Незакрепленные или отсоединенные части должны отсутствовать. Внутри корпусов не должно быть посторонних предметов. Все надписи на панелях должны быть четкими и ясными;
 - все разъемы, клеммы не должны иметь повреждений и должны быть чистыми.
- 7.2 Соответствие требованиям комплектности и маркировки, а также отсутствие внешних механических повреждений проверяются визуально.
 - 7.3 Результат операции поверки по 7.1 считается положительным, если
- отсутствуют внешние механические повреждения, незакрепленные или отсоединенные части;
- все органы управления и коммутации действуют плавно и обеспечивают надежность фиксации во всех позициях;
 - внутри корпусов нет посторонних предметов;
- комплектность и маркировка соответствуют требованиям, приведенным в руководстве по эксплуатации.

8 Подготовка к поверке и опробование средства измерений

8.1 Подготовка к поверке

- 8.1.1 Средства поверки должны быть подготовлены к работе согласно указаниям, приведенным в соответствующих эксплуатационных документах.
- 8.1.2 До проведения поверки поверителю надлежит ознакомиться с эксплуатационной документацией на поверяемое СИ и используемые средства поверки.

8.2 Опробование

8.2.1 Для проведения опробования делителя соберите схему, приведенную на рисунке 1.

Рисунок 1 - Схема опробования

- 8.2.2 Включите питание приборов и дайте им прогреться. На киловольтметре цифровом DMVD-351 (далее DMVD-351) включите режим измерений PEAK/ $\sqrt{2}$.
- 8.2.3 Подайте с источника высокого напряжения переменного тока (далее ИВН) напряжение, значением 100 кВ.
- 8.2.4 Убедитесь, что на DMVD-351 отображается задаваемое напряжение с отклонением ± 3 кВ.
 - 8.2.5 Подайте с ИВН напряжение, значением 400 кВ.
- 8.2.6 Убедитесь, что на DMVD-351 отображается задаваемое напряжение с отклонением ± 12 кВ. Во время измерений должны отсутствовать полные или частичные пробои и перекрытия изоляции.
- 8.2.7 Результаты опробования считаются положительными, если отсутствуют полные или частичные пробои и перекрытия изоляции, и отображаемые на DMVD-351 значения напряжения находятся в допускаемых пределах.

9 Проверка программного обеспечения

- 9.1 Для проверки версии программного обеспечения необходимо:
- включить питание DMVD-351;
- проверить номер версии ПО внизу проявившего окна на дисплее.
- 9.2 Результат операции считается положительным, если номер версии программного обеспечения не ниже, чем V2.1.

10 Определение метрологических характеристик средств измерений

10.1 Определение погрешности измерений напряжения переменного тока

10.1.1 Соберите схему, приведенную на рисунке 2. Определение погрешностей проводится с помощью делителя напряжения ДН-400э (далее – ДН-400э) и вольтметра универсального серии АКИП-2101 (далее – АКИП-2101).

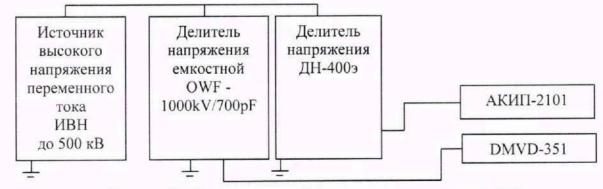


Рисунок 2 – Схема измерений напряжения переменного тока

- 10.1.2 Включите питание приборов и дайте им прогреться.
- 10.1.3 На АКИП-2101 включите режим измерений напряжения переменного тока, а на DMVD-351 включите режим измерений PEAK/ $\sqrt{2}$.
- 10.1.4 Подайте с ИВН напряжение, значением 100 кВ. Произведите одновременный отсчет показаний $U_{\text{ДН}}$ на АКИП-2101, и $U_{\text{ИС}}$, на DMVD-351. Результаты измерений занесите в таблицу 3.
 - 10.1.5 Повторите операции по п. 10.1.4 для остальных значений Uном из таблицы 3.
- 10.1.6 По окончании измерений снимите высокое напряжение, отключите его подачу и заземлите установку.

Таблица 3 – Результаты измерений напряжения переменного тока

U _{ном} , кВ	U _{ДН} , В	U _{ИС} , кВ	δU, <mark>%</mark>	Допустимое значение погрешности δU_{π} , %		
100				±1,5		
200						
300						
400						

10.2 Проверка линейности делителя напряжения емкостного OWF -1000kV/700pF

10.2.1 Проверка линейности проводится с помощью ДН-400э и двух АКИП-2101.

Проверка линейности проводится отдельно для каждого из трех модулей, составляющих плечо высокого напряжения, с подключением на их выходе плеча низкого напряжения всего делителя.

- 10.2.2 Соберите схему, приведенную на рисунке 2. Поставьте перемычку металлическим проводом на два верхних модуля плеча высокого напряжения.
- 10.2.3 Включите приборы и дайте им прогреться. На АКИП-2101 установите режим работы на напряжении переменного тока.
- 10.2.4 Подавая последовательно значения $U_{\text{ном}}$ по таблице 4 произведите одновременное измерения напряжения U_3 на выходе ДН-400э и напряжения U_x на выходе модуля 1 OWF 1000 kV/700 pF. Результаты занесите в таблицу 4.

Таблица 4 - Результаты проверки линейности

U _{ном} , кВ	U ₃ , B	U _x , В	Км	К _{м_ср}	δКм, %	Допускаемый предел $\delta K_{\text{м_доп}}$, %
			Мод	уль 1		
80						
160						±1,0
240						±1,0
350						
			Мод	уль 2		
80				3		
160						±1,0
240						
350						
			Мод	уль 3		
80						±1,0
160						
240						
350						

- 10.2.5 Повторите операции по п. 10.2.4 поставив перемычку металлическим проводом на нижний и верхний модули плеча высокого напряжения.
- 10.2.6 Повторите операции по п. 10.2.4 поставив перемычку металлическим проводом на два нижних модуля плеча высокого напряжения.
- 10.2.7 По окончании измерений снимите высокое напряжение, отключите его подачу и заземлите установку.

10.3 Проверка погрешности киловольтметра цифрового DMVD-351

- 10.3.1 Проверка погрешности проводится с помощью калибратора универсального 9100.
- 10.3.2 Соберите схему, приведенную на рисунке 3.
- 10.3.3 Включите приборы и дайте им прогреться. На калибраторе универсальном 9100 установите режим работы на напряжении переменного тока, а на DMVD-351 включите режим измерений PEAK/√2.

Рисунок 3 - Схема проверки погрешности киловольтметра цифрового DMVD-351

10.3.4~ Подавая последовательно с калибратора универсального 9100 значения $U_{\text{ном}}$ по таблице 5 произведите измерения напряжения U_{DMVD} на DMVD-351. Результаты занесите в таблицу 5.

10.3.5 По окончании измерений отключите подачу напряжения с калибратора универсального 9100.

Таблица 5 – Результаты проверки погрешности киловольтметра цифрового DMVD-351

U _{ном} , В	U _{DMVD} , кВ	U _x , B	δU, %	Допустимое значение погрешности δU_{A} , %
10				
25				
50				±0,5
75				
100				

11 Подтверждение соответствия средства измерений метрологическим требованиям

11.1 Для каждого измеренного значения U_{иС} из таблицы 3 рассчитайте полученные значения погрешности измерений напряжения δU поверяемой системой по формуле:

$$\delta U = 100 \cdot (U_{\text{UC}} - K_{\text{ДH}} \cdot U_{\text{ДH}}) / K_{\text{ДH}} \cdot U_{\text{ДH}}$$
 (1).

где Кдн - номинальное значение коэффициента деления ДН-400э.

Результаты вычислений занесите в таблицу 3.

Результаты операции поверки по п. 10.1 считаются удовлетворительными, если полученные значения δU из таблицы 3 не превышают допустимых пределов $\pm 1,5$ %.

11.2 Для каждого измеренного значения U_x из таблицы 4 рассчитайте полученные значения коэффициент деления K_M для проверяемого модуля по формуле:

$$K_{M} = K_{RH} \cdot U_{3} / U_{XM}$$
 (2).

Результаты занесите в таблицу 4.

Для каждого модуля рассчитайте среднее значение $K_{\text{м_cp}}$ по формуле:

$$K_{\text{M}_cp} = \sum K_{\text{M}} / 4 \tag{3}$$

где Км значения из таблицы 4 для каждого Uном одного модуля.

Результаты занесите в таблицу 4.

Для каждого значения Км одного модуля рассчитайте его линейность по формуле:

$$\delta K_{M} = 100 \cdot (K_{M} - K_{M}_{cp}) / K_{M}_{cp}$$
(4).

Результаты занесите в таблицу 4.

Результаты операции поверки по п. 10.2 считаются удовлетворительными, если полученные значения $\delta K_{\rm M}$ из таблицы 4 не превышают допустимых пределов $\pm 1,0$ %.

11.3 Для каждого измеренного значения U_{DMVD} из таблицы 5 рассчитайте значения U_x по формуле:

$$U_{x} = U_{DMVD} / 10317 \tag{5}.$$

Результаты занесите в таблицу 5.

Для каждого значение U_x рассчитайте погрешность измерений по формуле:

$$\delta U = 100 \cdot (U_X - U_{HOM} / U_{HOM}) \tag{6}.$$

Результаты занесите в таблицу 5.

Результаты операции поверки по п. 10.3 считаются удовлетворительными, если полученные значения δU из таблицы 5 не превышают допустимых пределов ± 0.5 %.

- 11.4 Критериями принятия специалистом, проводившим поверку, решения по подтверждению соответствия средства измерений метрологическим требованиям, установленным при утверждении типа, являются:
- обязательное выполнение всех процедур, перечисленных в пунктах 8.2, 9, 10 и соответствие действительных значений метрологических характеристик системы измерительной HVF-1000kV, серийный № JT244419A, требованиям, указанным в пунктах 11.1, 11.2 и 10.3 настоящей методики поверки;
- обеспечение прослеживаемости поверяемой системы измерительной HVF-1000kV к ГПСЭ единицы электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до 500 кВ с гармоническими составляющими от 0,3 до 50 порядка, в диапазоне частот от 15 до 2500 Гц ГЭТ 191-2019 в соответствии с государственной поверочной схемой для средств измерений электрического напряжения переменного тока промышленной частоты и композитного напряжения в диапазоне от 1 до 500 кВ с гармоническими составляющими от 0,3 до 50 порядка, в диапазоне частот от 15 до 2500 Гц, утвержденной приказом Федерального агентства по техническому регулированию и метрологии (Росстандарт) от 31.12.2020 г. № 2316.

12 Оформление результатов поверки

12.1 В соответствии с действующим законодательством в области обеспечения единства измерений сведения о положительных и отрицательных результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений.

- 12.2 Система, прошедшая поверку с положительным результатом, признаётся годной и допускается к применению. На основании письменного заявления владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке, оформленное на бумажном носителе.
- 12.3 При отрицательных результатах поверки система признаётся не годной и не допускается к применению. На основании письменного заявления владельца средства измерений или лица, представившего его на поверку, выдается извещение о непригодности, оформленное на бумажном носителе.

Начальник центра 201 ФГБУ «ВНИИМС» мвассеев И.М. Каширкина

Начальник НИО 201/1 ФГБУ «ВНИИМС» Е.В. Громочкова

Начальник лаборатории 201/1.2 ФГБУ «ВНИИМС» Shef-Sthung

А.В. Леонов