

Технический директор

«ОТЧЭНЕ» ДИН» ООО

П. С. Казаков

2024 г.

OTHER CANADA OF THE PROPERTY O

Государственная система обеспечения единства измерений

Системы испытательные для релейной защиты и автоматики Релейта-М

Методика поверки

МП-НИЦЭ-061-24

Содержание

1 ОБЩИЕ ПОЛОЖЕНИЯ	3
2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ	
3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ	4
4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ	4
5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ	5
6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ	
ПОВЕРКИ	5
7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ	6
8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ	7
9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ	7
10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ	Í7
11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ	
МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ	7
12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	13

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на системы испытательные для релейной защиты и автоматики Релейта-М (далее системы), Guangdong ONLLY Electrical Automation Co., Ltd., Китай, и устанавливает методику их первичной и периодической поверок.
- 1.2 При проведении поверки должна обеспечиваться прослеживаемость системы к ГЭТ 4-91 согласно государственной поверочной схеме, утвержденной Приказом Росстандарта от 01.10.2018 г. № 2091, к ГЭТ 13-2023 согласно государственной поверочной схеме, утвержденной Приказом Росстандарта от 28.07.2023 г. № 1520, к ГЭТ 89-2008 согласно государственной поверочной схеме, утвержденной Приказом Росстандарта от 18.08.2023 г. № 1706, к ГЭТ 88-2014 согласно государственной поверочной схеме, утвержденной Приказом Росстандарта от 17.03.2022 г. № 668, к ГЭТ 1-2022 согласно государственной поверочной схеме, утвержденной Приказом Росстандарта от 26.09.2022 г. № 2360.
- 1.3 Допускается проведение первичной (периодической) поверки отдельных измерительных каналов и проведение периодической поверки для меньшего числа измеряемых величин в соответствии с заявлением владельца средства измерений, с обязательным указанием в сведениях о поверке информации об объеме проведенной поверки.
- Поверка системы должна проводиться в соответствии с требованиями настоящей методики поверки.
- 1.5 Методы, обеспечивающие реализацию методики поверки, прямой метод измерений, косвенный метод измерений, метод непосредственного сличения.
- 1.6 В результате поверки должны быть подтверждены метрологические требования, приведенные в Приложении А.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

2.1 При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 - Операции поверки

Наименование операции по-	Обязательность выполнения операций поверки при		Номер раздела (пункта) методики поверки, в со- ответствии с которым
верки	первичной поверке	периодической поверке	выполняется операция поверки
Внешний осмотр средства измерений	Да	Да	7
Подготовка к поверке и опробование средства изме- рений	Да	Да	8
Контроль условий поверки (при подготовке к поверке и опробовании средства изме- рений)	Да	Да	8.1
Опробование (при подготовке к поверке и опробовании средства измерений)	Да	Да	8.2
Проверка программного обеспечения средства измерений	Да	Да	9

Наименование операции поверки	Обязательность выполнения операций поверки при		Номер раздела (пункта) методики поверки, в со- ответствии с которым
- Span	первичной поверке	периодической поверке	выполняется операция поверки
Определение метрологиче- ских характеристик средства измерений	Да	Да	10
Определение погрешностей воспроизведений напряжения переменного тока	Да	Да	10.1
Определение погрешностей воспроизведений напряжения постоянного тока	Да	Да	10.2
Определение погрешностей воспроизведений силы пере- менного тока	Да	Да	10.3
Определение погрешностей воспроизведений силы постоянного тока	Да	Да	10.4
Определение абсолютной по- грешности воспроизведений частоты переменного тока	Да	Да	10.5
Определение абсолютной погрешности воспроизведений угла фазового сдвига между сигналами напряжений, сигналами токов, сигналами токов и напряжения одной фазы	Да	Да	10.6
Определение погрешностей измерений интервалов време- ни	Да	Да	10.7
Определение погрешностей воспроизведений цифрового SV-потока (для модификций Релейта-М 660/61850, Релейта-М 430/61850, Релейта-М 430B/61850)	Да	Да	10.8
Подтверждение соответствия средства измерений метроло- гическим требованиям	Да	Да	11

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающей среды плюс (20±5) °С;
- относительная влажность от 30 % до 80 %.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К проведению поверки допускаются лица, изучившие настоящую методику поверки, эксплуатационную документацию на поверяемые системы и средства поверки.

4.2 К проведению поверки допускаются лица, соответствующие требованиям, изложенным в статье 41 Приказа Минэкономразвития России от 26.10.2020 года № 707 (ред. от 30.12.2020 года) «Об утверждении критериев аккредитации и перечня документов, подтверждающих соответствие заявителя, аккредитованного лица критериям аккредитации».

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

Таблица 2 - Средства поверки

таолица 2 – Ср	едства поверки	
Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
	Основные средства пове	рки
р. 10 Опреде-	Эталоны единицы напряжения перемен-	
ление метро- логических характеристик	ного тока, соответствующие требованиям к эталонам не ниже 3-го разряда по	Прибор электроизмерительный эталонный многофункциональный «Энергомонитор-61850», исполнение «Энергомонитор-61850» П-02-00-50, рег. № 73445-18
	Эталоны единицы силы переменного то- ка, соответствующие требованиям к эта- лонам не ниже 2-го разряда по Приказу Росстандарта от 17.03.2022 г. № 668. Средства измерений силы переменного тока в диапазоне измерений от 0 до 95 А при частоте от 40 до 70 Гц.	Прибор электроизмерительный эталонный многофункциональный «Энергомонитор-61850», исполнение «Энергомонитор-61850» П-02-00-50 (далее — Энергомонитор), рег. № 73445-18
	Эталоны единицы напряжения постоянного тока, соответствующие требованиям к эталонам не ниже 3-го разряда по Приказу Росстандарта от 28.07.2023 г. № 1520. Средства измерений напряжения постоянного тока в диапазоне измерений от 0 до 700 В.	Мультиметр 3458A (далее – мультиметр), рег. № 25900-03
	Эталоны единицы электрического сопротивления постоянному току, соответствующие требованиям к эталонам не ниже 2-го разряда по Приказу Росстандарта от 30.12.2019 г. № 3456. Мера с номинальными значениями электрического сопротивления постоянному току в диапазоне от 0,001 до 1 Ом.	Шунт токовый АКИП-7501 (далее – шунт), per. № 49121-12
	Эталоны единицы частоты соответствующие требованиям к эталонам не ниже 5-го разряда по Приказу Росстандарта от 26.09.2022 г. № 2360. Средства измерений частоты в диапазоне измерений от 10 до 1000 Гц.	Частотомер электронно-счетный серии Ч3-85, модификация Ч3-85/6, рег. № 56478-14

Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
	Эталоны единицы времени соответствующие требованиям к эталонам не ниже 5-го разряда по Приказу Росстандарта от 26.09.2022 г. № 2360. Средства измерений интервалов времени в диапазоне измерений от 0,001 до 1·10 ⁶ с.	Частотомер электронно-счетный серии Ч3-85, модификация Ч3-85/6 (далее – частотомер), рег. № 56478-14
	Вспомогательные средства п	оверки
п. 8.1 Контроль условий поверки (при подготовке к поверке и опробовании средства измерений)	Средства измерений с диапазоном измерений температуры окружающей среды от +15 °C до +25 °C, с пределами допускаемой абсолютной погрешности измерений ±1 °C. Средства измерений с диапазоном измерений относительной влажности от 30 % до 80 %, с пределами допускаемой абсолютной погрешности измерений ±3 %.	/ Измеритель параметров микро- климата «МЕТЕОСКОП-М», рег. № 32014-11
р. 10 Определение метро-	Контактное электромеханическое устройство для размыкания цепи	Автоматический выключатель
логических характеристик	Тип линейного порта: SFP Тип клиентского порта: RJ-45	Медиаконвертер SFP с SFP тран- сивером
	Синхронизация по 1PPS	Устройство синхронизирующее Метроном-РТР, рег. № 66731-17

Примечание — Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице.

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 При проведении поверки необходимо соблюдать требования безопасности, установленные ГОСТ 12.3.019-80, «Правилами технической эксплуатации электроустановок потребителей». Также должны быть соблюдены требования безопасности, изложенные в эксплуатационных документах на поверяемые системы и применяемые средства поверки.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

Система допускается к дальнейшей поверке, если:

- внешний вид системы соответствует описанию и изображению, приведенному в описании типа;
- отсутствуют видимые дефекты, способные оказать влияние на безопасность проведения поверки или результаты поверки.

Примечание – При выявлении дефектов, способных оказать влияние на безопасность проведения поверки или результаты поверки, устанавливается возможность их устранения до проведения поверки. При наличии возможности устранения дефектов, выявленные дефекты устраняются, и система допускается к дальнейшей поверке. При отсутствии возможности устранения дефектов, система к дальнейшей поверке не допускается.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- изучить эксплуатационную документацию (далее ЭД) на поверяемую систему и на применяемые средства поверки;
- выдержать систему в условиях окружающей среды, указанных в п. 3.1, не менее
 ч, если она находилась в климатических условиях, отличающихся от указанных в п. 3.1, и подготовить его к работе в соответствии с его эксплуатационной документацией;
- подготовить к работе средства поверки в соответствии с указаниями их эксплуатационной документации;
- провести контроль условий поверки на соответствие требованиям, указанным в разделе 3, с помощью оборудования, указанного в таблице 2.
 - 8.2 Опробование

Опробование системы проводить в следующей последовательности:

- 1) включить систему согласно с ЭД;
- 2) убедиться, что при подаче на систему напряжения питания произошло успешное самотестирование системы, и на дисплее появился список режимов испытаний.

Система допускается к дальнейшей поверке, если при опробовании выполняются все вышеуказанные требования.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

Проверку программного обеспечения (далее – ΠO) системы проводить в следующей последовательности:

- 1) подключить систему к сети питания в соответствии с ЭД;
- 2) после загрузки основного интерфейса в правом верхнем углу дисплея считать версию встроенного ПО;
- 3) сравнить номер версии встроенного ПО, считанный с дисплея системы, с номером версии встроенного ПО, указанным в описании типа;

Система допускается к дальнейшей поверке, если встроенное программное обеспечение соответствует требованиям, указанным в описании типа.

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ

10.1 Определение погрешностей воспроизведений напряжения переменного тока Определение погрешностей воспроизведений напряжения переменного тока проводят с помощью Энергомонитора в следующей последовательности:

- 1) Размещают систему и Энергомонитор на удобном для проведения работ месте.
- 2) Подготавливают систему и Энергомонитор к работе согласно их ЭД.
- 3) С помощью штатных измерительных проводов соединяют выход по напряжению системы с соответствующим входом Энергомонитора: в режиме использования одного источника согласно рисунку 1, в режиме использования двух источников, соединенных последовательно, согласно рисунку 2.

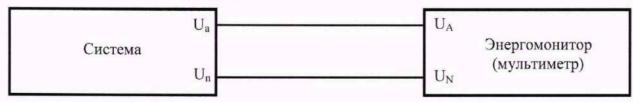


Рисунок 1 — Структурная схема определения погрешностей воспроизведений напряжения переменного (постоянного) тока (в режиме использования одного источника)

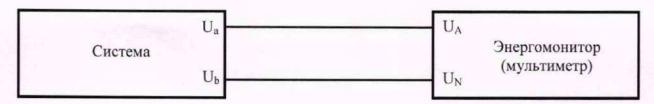


Рисунок 2 — Структурная схема определения погрешностей воспроизведений напряжения переменного (постоянного) тока (в режиме использования двух источников, соединенных последовательно)

- 4) Последовательно при помощи системы воспроизводят по пять значений напряжения переменного тока (при частоте 40, 50, 70 Γ ц), соответствующих от 0 % до 5 %, от 20 % до 30 %, от 40 % до 50 %, от 70 % до 80 %, от 90 % до 100 % от диапазона воспроизведений.
 - 5) Измеряют при помощи Энергомонитора значения напряжения переменного тока.
 - 6) Повторяют п. 3) п. 5) для всех остальных выходов по напряжению системы.
- 7) Повторяют п. 3) п. 6) в режиме использования двух источников, соединенных последовательно.
- 10.2 Определение погрешностей воспроизведений напряжения постоянного тока Определение погрешностей воспроизведений напряжения постоянного тока проводят с помощью мультиметра в следующей последовательности:
 - 1) Размещают систему и мультиметр на удобном для проведения работ месте.
 - 2) Подготавливают систему и мультиметр к работе согласно их ЭД.
- 3) С помощью штатных измерительных проводов соединяют выход по напряжению системы с соответствующим входом мультиметра: в режиме использования одного источника согласно рисунку 1, в режиме использования двух источников, соединенных последовательно, согласно рисунку 2.
- 4) Последовательно при помощи системы воспроизводят пять значений напряжения постоянного тока, соответствующих от 0 % до 5 %, от 20 % до 30 %, от 45 % до 55 %, от 70 % до 80 %, от 90 % до 100 % от диапазона воспроизведений.
 - 5) Измеряют при помощи мультиметра значения напряжения постоянного тока.
 - 6) Повторяют п. 3) п. 5) для всех остальных выходов по напряжению системы.
- 7) Повторяют п. 3) п. 6) в режиме использования двух источников, соединенных последовательно.
 - 10.3 Определение погрешностей воспроизведений силы переменного тока

Определение погрешностей воспроизведений силы переменного тока проводят с помощью Энергомонитора в следующей последовательности:

- 1) Размещают систему и Энергомонитор на удобном для проведения работ месте.
- 2) Подготавливают систему и Энергомонитор к работе согласно их ЭД.
- 3) С помощью штатных измерительных проводов соединяют выход по току системы с соответствующим входом Энергомонитора: в режиме использования одного источника согласно рисунку 3, в режиме использования двух источников, соединенных параллельно, согласно рисунку 4, в режиме использования трех источников, соединенных параллельно, согласно рисунку 5.

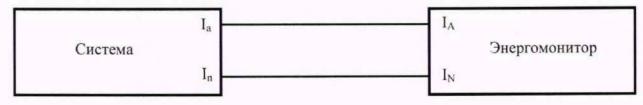


Рисунок 3 — Структурная схема определения погрешностей воспроизведений силы переменного тока (в режиме использования одного источника)

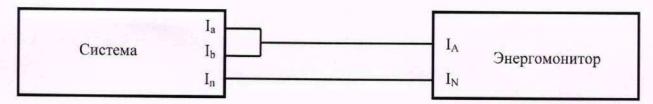


Рисунок 4 — Структурная схема определения погрешностей воспроизведений силы переменного тока (в режиме использования двух источников, соединенных параллельно)

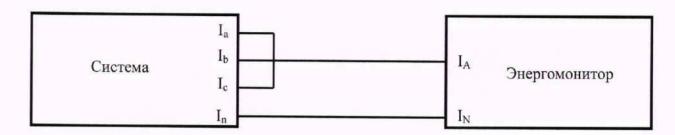


Рисунок 5 – Структурная схема определения погрешностей воспроизведений силы переменного тока (в режиме использования трех источников, соединенных параллельно)

- 4) Последовательно при помощи системы воспроизводят по пять значений силы переменного тока (при частоте 40, 50, 70 Гц), соответствующих от 0 % до 5 %, от 20 % до 30 %, от 40 % до 50 %, от 70 % до 80 %, от 90 % до 100 % от диапазона воспроизведений.
 - 5) Измеряют при помощи Энергомонитора значения силы переменного тока.
 - 6) Повторяют п. 3) п. 5) для всех остальных выходов по току системы.
- 7) Повторяют п. 3) п. 6) в режиме использования двух источников, соединенных параллельно, и в режиме использования трех источников, соединенных параллельно.
- 10.4 Определение погрешностей воспроизведений силы постоянного тока Определение погрешностей воспроизведений силы постоянного тока проводят с помощью мультиметра и шунта в следующей последовательности:
 - 1) Размещают систему, мультиметр и шунт на удобном для проведения работ месте.
 - 2) Подготавливают систему, мультиметр и шунт к работе согласно их ЭД.
- 3) С помощью штатных измерительных проводов соединяют выход по току системы с соответствующим входом шунта согласно рисунку 6.

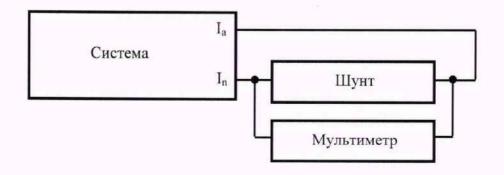


Рисунок 6 – Структурная схема определения погрешностей воспроизведений силы постоянного тока

4) Последовательно при помощи системы воспроизводят пять значений силы постоянного тока, соответствующих от $0\,\%$ до $5\,\%$, от $20\,\%$ до $30\,\%$, от $40\,\%$ до $50\,\%$, от $70\,\%$ до $80\,\%$, от $90\,\%$ до $100\,\%$ от диапазона воспроизведений.

- 5) Измеряют при помощи мультиметра значения падения напряжения на шунте.
- 6) Повторяют п. 3) п. 5) для всех остальных выходов по току системы.
- 10.5 Определение абсолютной погрешности воспроизведений частоты переменного тока

Определение абсолютной погрешности воспроизведений частоты переменного тока проводят с помощью частотомера, в следующем порядке:

- 1) Размещают систему и частотомер на удобном для проведения работ месте.
- 2) Подготавливают систему и частотомер к работе согласно их ЭД.
- 3) С помощью штатных измерительных проводов соединяют выход U_a системы с входом частотомера, и задают следующие параметры: $U_a = 1$ В.
- 4) Последовательно с системы воспроизводят значения частоты переменного тока: 10; 50; 100; 500; 1000 Гц.
 - 5) Измеряют при помощи частотомера значения частоты переменного тока.
 - 6) Повторяют п. 3) п. 5) для всех остальных выходов по напряжению системы.
- 10.6 Определение абсолютной погрешности воспроизведений угла фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы

Определение абсолютной погрешности воспроизведений угла фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы производят с помощью Энергомонитора в следующем порядке:

- 1) Размещают систему и Энергомонитор на удобном для проведения работ месте.
- 2) Подготавливают систему и Энергомонитор к работе согласно их ЭД.
- 3) С помощью штатных измерительных проводов соединяют выходы U_a , U_b , U_c , I_a , I_b , I_c системы с соответствующими входами Энергомонитор.
 - 4) Задают $U_a = U_b = U_c = 100 \text{ B}, I_a = I_b = I_c = 1 \text{ A}.$
- 5) Поочередно задают и воспроизводят следующие значения угла фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы: 0°, 30°, 90°, 180°, 270°.
- 6) Измеряют при помощи Энергомонитор значения угла фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы.
 - 7) Повторяют п. 3) п. 6) для всех остальных выходов системы.
 - 10.7 Определение погрешностей измерений интервалов времени

Определение погрешностей измерений интервалов времени входящих дискретных сигналов проводят с помощью частотомера и автоматического выключателя.

- 1) Размещают систему, частотомер и автоматический выключатель на удобном для проведения работ месте.
- 2) Подготавливают систему, частотомер и автоматический выключатель к работе согласно их ЭД.
 - 3) Собирают схему согласно рисунку 7.
- 4) Режим работы частотомера «Измерение временных интервалов CH1», режим работы системы Timer 1 (запуск таймера: Bin. А замкнут; остановка таймера: Bin. А разомкнут), автоматический выключатель разомкнут.
- 5) Нажимают кнопку «Start» на системе для начала измерений, автоматический выключатель замыкают.
- 6) Через заданное время: $X_1 = (0,001 0,1) \cdot X_{\kappa}$; $X_2 = (0,2 0,3) \cdot X_{\kappa}$; $X_3 = (0,4 0,6) \cdot X_{\kappa}$; $X_4 = (0,7 0,8) \cdot X_{\kappa}$, $X_5 = 2000$ с, где X_1 , X_2 , X_3 , X_4 , X_5 поверочные точки, $X_{\kappa} = 1000$ с, размыкают автоматический выключатель.

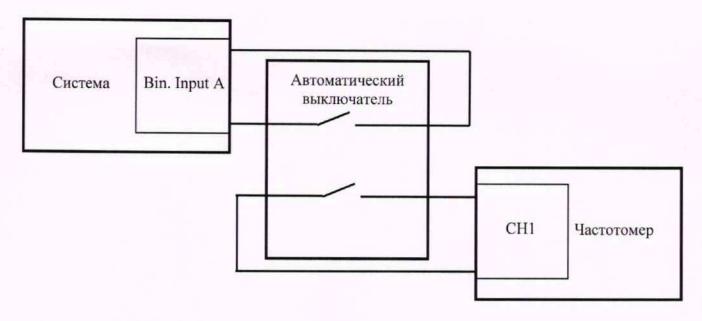


Рисунок 7 - Структурная схема определения погрешности измерений интервалов времени

7) Фиксируют измеренное значение интервала времени частотомером и системой.

10.8 Определение погрешностей воспроизведений цифрового SV-потока (для модификций Релейта-М 660/61850, Релейта-М 430/61850, Релейта-М 660B/61850, Релейта-М 430B/61850)

Определение погрешностей воспроизведений цифрового SV-потока проводят с помощью Энергомонитора и устройства синхронизирующего Метроном-РТР (далее – Метроном-РТР) в следующей последовательности:

- Размещают систему, Метроном-РТР и Энергомонитор на удобном для проведения работ месте.
- 2) Подготавливают систему, Метроном-РТР и Энергомонитор к работе согласно их ЭД.
 - 3) Собирают схему, приведенную на рисунке 8.
- 4) При помощи Метроном-РТР синхронизировать по 1PPS систему и Энергомонитор.
- 5) Последовательно при помощи системы формируют цифровые SV-потоки с мгновенными значениями воспроизводимых параметров, соответствующих от $0\,\%$ до $5\,\%$, от $20\,\%$ до $30\,\%$, от $40\,\%$ до $50\,\%$, от $70\,\%$ до $80\,\%$, от $90\,\%$ до $100\,\%$ от диапазона воспроизведений.

Воспроизводимые параметры:

- напряжение переменного тока (при частоте 40, 50, 70 Гц), В;
- напряжение постоянного тока, В;
- сила постоянного тока, А:
- сила переменного тока (при частоте 40, 50, 70 Гц), A;
- частота переменного тока, Гц;
- угол фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы, °.
 - 6) Измеряют при помощи Энергомонитора значения воспроизведенных параметров.

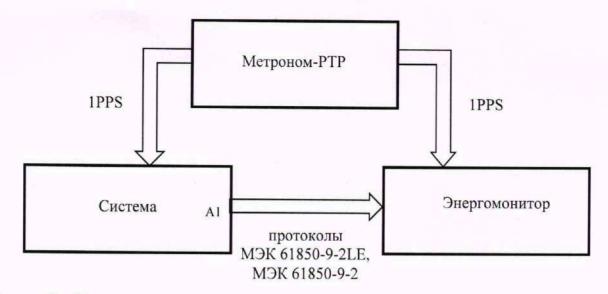


Рисунок 8 — Структурная схема определения погрешностей воспроизведений цифрового SV-потока

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

11.1 Абсолютная погрешность воспроизведений/измерений ∆, в единицах воспроизведенной/измеренной физической величины, рассчитывается по формуле:

$$\Delta = X_{\mu} - X_{0},\tag{1}$$

где X_{u} – значение физической величины, воспроизведенное/измеренное системой; X_{o} – действительное значение физической величины, измеренное эталоном.

11.2 Относительная погрешность воспроизведений/измерений δ , %, рассчитывается по формуле:

$$\delta = \frac{X_{\text{H}} - X_{\text{o}}}{X_{\text{o}}} \cdot 100,\tag{2}$$

где X_{u} — значение физической величины, воспроизведенное/измеренное системой; X_{o} — действительное значение физической величины, измеренное эталоном.

При использовании шунта действительное значение силы постоянного тока, рассчитанное по формуле:

$$I_{\text{действ}} = \frac{U_{\text{действ}}}{R_{\text{шунта}}},\tag{3}$$

где $U_{\text{действ}}$ – действительное значение напряжения постоянного тока, измеренное мультиметром 3458A, B;

R_{шунта} – действительное сопротивление шунта, Ом.

Система подтверждает соответствие метрологическим требованиям, установленным

при утверждении типа, если полученные значения погрешностей не превышают пределов, указанных в таблицах А.1- А.4 Приложения А.

При невыполнении любого из вышеперечисленных условий (когда система не подтверждает соответствие метрологическим требованиям), поверку системы прекращают, результаты поверки признают отрицательными.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 Результаты поверки системы подтверждаются сведениями, включенными в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком, установленным действующим законодательством.
- 12.2 При проведении поверки в сокращенном объеме (в соответствии с заявлением владельца средства измерений) в сведениях о поверке указывается информация, для каких измерительных каналов, измеряемых величин выполнена поверка.
- 12.3 По заявлению владельца системы или лица, представившего его на поверку, положительные результаты поверки (когда система подтверждает соответствие метрологическим требованиям) оформляют свидетельством о поверке по форме, установленной в соответствии с действующим законодательством.
- 12.4 По заявлению владельца системы или лица, представившего его на поверку, отрицательные результаты поверки (когда система не подтверждает соответствие метрологическим требованиям) оформляют извещением о непригодности к применению средства измерений по форме, установленной в соответствии с действующим законодательством.
 - 12.5 Протоколы поверки системы оформляются по произвольной форме.

ПРИЛОЖЕНИЕ А

Основные метрологические характеристики систем

Таблица А.1 – Метрологические характеристики систем модификаций Релейта-М 660, Релейта-М 460, Релейта-М 430, Релейта-М 330, Релейта-М 660/61850, Релейта-М 430/61850

Наименование характеристики	Диапазон воспро- изведений ¹⁾	Пределы допускаемой погрешности воспроизведений 1 (абсолютной Δ, относительной δ)
Напряжение переменного тока в диа- пазоне частот от 40 до 70 Гц: - при использовании одного источника - при использовании двух источни- ков, соединенных последовательно	от 0 до 125 В от 0 до 250 В	±0,004 В (Δ), для поддиапазона от 0 до 2 В включ., ±0,2 % (δ), для поддиапазонов св. 2 до 125 В включ., св. 2 до 250 В включ.
Сила переменного тока в диапазоне частот от 40 до 70 Гц: - при использовании одного источника - при использовании двух источников, соединенных параллельно -при использовании трех источников, соединенных параллельно	от 0 до 30 A от 0 до 60 A от 0 до 90 A	±0,001 A (Δ), для поддиапазона от 0 до 0,5 A включ., ±0,2 % (δ), для поддиапазонов св. 0,5 до 30 A включ., св. 0,5 до 60 A включ., св. 0,5 до 90 A включ.
Сила постоянного тока	от 0 до 20 А	±0,001 A (Δ), для поддиапазона от 0 до 0,5 A включ., ±0,2 % (δ), для поддиапазона св. 0,5 до 20 A включ.
Напряжение постоянного тока: - при использовании одного источника - при использовании двух источников, соединенных последовательно	от -175 до +175 В от 0 до 350 В	±0,01 В (Δ), для поддиапазонов от -5 до +5 В включ., от 0 до 5 В включ., ±0,2 % (δ), для поддиапазонов от -175 до -5 В не включ., св. +5 до +175 В включ., св. 5 до 350 В включ.
Частота переменного тока	от 10 до 1000 Гц	±0,001 Гц (Δ), для поддиапазона от 10 до 65 Гц включ., ±0,01 Гц (Δ), для поддиапазона св. 65 до 450 Гц включ., ±0,02 Гц (Δ), для поддиапазона св. 450 до 1000 Гц включ.
Угол фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы в диапазоне частот от 40 до 70 Гц	от -360° до 360°	±0,2° (Δ)
Интервал времени	от 0,001 до 1·106 с	$\pm 0,001$ с (Δ), для поддиапазона от 0,001 до 1 с включ., $\pm 0,1$ % (δ), для поддиапазона от св. 1 до $1\cdot 10^6$ с включ.

Примечание $-^{1)}$ – для интервалов времени нормирован диапазон измерений и пределы допускаемой погрешности измерений

Таблица А.2 — Метрологические характеристики систем модификаций Релейта-М 660B, Релейта-М 430B, Релейта-М 660B, Релейта-М 430B, Релейта-М 660B/61850, Релейта-М 430B,

Наименование характеристики	Диапазон воспро- изведений ¹⁾	Пределы допускаемой погрешности воспроизведений (абсолютной Δ, относительной δ)
Напряжение переменного тока в диа- пазоне частот от 40 до 70 Гц: - при использовании одного источ- ника	от 0 до 300 В	±0,002 В (Δ), для поддиапазона от 0 до 2 В включ., ±0,1 % (δ), для поддиапазона св. 2 до 300 В включ.,
 при использовании двух источни- ков, соединенных последовательно 	от 0 до 600 В	±0,2 % (б), для поддиапазона св. 2 до 600 В включ.,
Сила переменного тока в диапазоне частот от 40 до 70 Гц: - при использовании одного источника	от 0 до 35 А	±0,001 A (Δ), для поддиапазона от 0 до 0,5 A включ., ±0,1 % (δ), для поддиапазона св. 0,5 до 35,0 A включ.,
 при использовании двух источни- ков, соединенных параллельно при использовании трех источников, 	от 0 до 60 А	$\pm 0,2$ % (δ), для поддиапазонов св. 0,5 до 60,0 А включ.,
соединенных параллельно	от 0 до 95 А	св. 0,5 до 95,0 А включ.
Сила постоянного тока	от 0 до 20 А	±0,001 A (Δ), для поддиапазона от 0 до 0,5 A включ., ±0,2 % (δ), для поддиапазона св. 0,5 до 20,0 A включ.
Напряжение постоянного тока: - при использовании одного источника - при использовании двух источников, соединенных последовательно	от -350 до +350 В от 0 до 700 В	±0,01 В (Δ), для поддиапазона от -5 до +5 В включ., ±0,1 В (Δ), для поддиапазона от 0 до 20 В включ., ±0,2 % (δ), для поддиапазонов от -350 до -5 В не включ., св. +5 до +350 В включ., св. 20 до 700 В включ.
Частота переменного тока	от 10 до 1000 Гц	±0,001 Гц (Δ), для поддиапазона от 10 до 65 Гц включ., ±0,01 Гц (Δ), для поддиапазона св. 65 до 450 Гц включ., ±0,02 Гц (Δ), для поддиапазона св. 450 до 1000 Гц включ.
Угол фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы в диапазоне частот от 40 до 70 Гц	от -360° до 360°	±0,2° (Δ)
Интервал времени	от 0,001 до 1·106 с	$\pm 0,001$ с (Δ), для поддиапазона от 0,001 до 1,000 с включ., $\pm 0,1$ % (δ), для поддиапазона от св. 1 до $1\cdot 10^6$ с включ.

Примечание — 1) — для интервалов времени нормирован диапазон измерений и преде лы допускаемой погрешности измерений

Таблица А.3 – Метрологические характеристики систем модификаций Релейта-М 660/61850,

Релейта-М 430/61850 при воспроизведении цифрового SV-потока

Наименование характеристики	Диапазон воспро- изведений	Пределы допускаемой погрешности воспроизведений (абсолютной Δ, относительной δ)
Напряжение переменного тока в диа- пазоне частот от 40 до 70 Гц	от 0 до 250 В	±0,003 В (Δ), для поддиапазона от 0 до 10 В включ., ±0,03 % (δ), для поддиапазона св. 10 до 250 В включ.
Сила переменного тока в диапазоне частот от 40 до 70 Гц	от 0 до 90 А	±0,0003 A (Δ), для поддиапазона от 0 до 1 A включ., ±0,03 % (δ), для поддиапазона св. 1 до 90 A включ.
Сила постоянного тока	от 0,1 до 20 А	±0,03 % (δ)
Напряжение постоянного тока	от 1 до 350 В	±0,03 % (δ)
Частота переменного тока	от 10 до 1000 Гц	±0,0003 % (δ)
Угол фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы в диапазоне частот от 40 до 70 Гц	от -360° до 360°	±0,01° (Δ)

Таблица А.4 – Метрологические характеристики систем модификаций Релейта-М 660B/61850, Релейта-М 430B/61850 при воспроизведении цифрового SV-потока

Наименование характеристики	Диапазон воспро- изведений	Пределы допускаемой погрешности воспроизведений (абсолютной Δ, относительной δ)
Напряжение переменного тока в диа- пазоне частот от 40 до 70 Гц	от 0 до 600 В	±0,003 В (Δ), для поддиапазона от 0 до 10 В включ., ±0,03 % (δ), для поддиапазона св. 10 до 600 В включ.
Сила переменного тока в диапазоне частот от 40 до 70 Гц	от 0 до 95 А	±0,0003 A (Δ), для поддиапазона от 0 до 1 A включ., ±0,03 % (δ), для поддиапазона св. 1 до 95 A включ.
Сила постоянного тока	от 0,1 до 20 А	±0,03 % (δ)
Напряжение постоянного тока	от 1 до 700 В	±0,03 % (δ)
Частота переменного тока	от 10 до 1000 Гц	±0,0003 % (δ)
Угол фазового сдвига между сигналами напряжений, сигналами токов, сигналами тока и напряжения одной фазы в диапазоне частот от 40 до 70 Гц	от -360° до 360°	±0,01° (Δ)