СОГЛАСОВАНО

Заместитель директора

ФГБУ «ВИННОФИ»

Е.А. Гаврилова

wore 2024 r.

«ГСИ. Аттенюаторы оптические перестраиваемые FVA-600

Методика поверки»

МП 022.Ф3-24

Главный метролог ФРБУ «ВНИИОФИ»

« 29/ инопа 2024 г.

20211

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на аттенюаторы оптические перестраиваемые FVA-600 (далее по тексту аттенюаторы), предназначенные для внесения ослабления мощности в оптических кабелях и оптических компонентах в одномодовых волоконно-оптических линиях передачи, и устанавливает методы их первичной и периодической поверки
- 1.2 По итогам проведения поверки должна обеспечиваться прослеживаемость, в соответствии с государственной поверочной схемой утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 05.12.2019 № 2862, к государственному первичному специальному эталону единиц длины и времени распространения сигнала в оптическом волокие, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем передачи информации ГЭТ 170 2024.
 - 1.3 Поверка аттенюаторов выполняется методом прямых измерений.
 - 1.4 Метрологические характеристики аттенюаторов приведены в таблице 1.

Таблица 1 – Метрологические характеристики аттенюаторов

Наименование характеристики	Значение
Максимальное значение устанавливаемого ослабления, дБ, не менее	65
Собственные вносимые потери на длинах волн градуировки, дБ, не более*	1,5
Нелинейность установки ослабления на длинах волн градуировки, дБ** - в диапазоне установки ослабления до 59,99 включ., дБ - в диапазоне установки ослабления св. 59,99 до 65 включ., дБ	0,2 0,5
Уровень обратных потерь, дБ, не менее	45

2 Перечень операций поверки средства измерений

2.1 При проведении первичной и периодической поверок должны быть выполнены операции, указанные в таблице 2.

Таблица 2 - Операции поверки

aosinga 2 Onepagan 1022-p	Обязательность выполнения операций поверки при		Номер раздела
Наименование операции поверки	первичной поверке	поверке поверке	(пункта) методики поверки, в соответствии с которым выполняется операция поверки
Внешний осмотр средства измерений	Да	Да	7
Подготовка к поверке и опробование средства измерений	Да	Да	8
Проверка программного обеспечения средства измерения	Да	Да	9
Определение метрологических характеристик средства измерений			10
Определение собственных вносимых потерь на длинах волн градуировки	Да	Да	10.1

Определение максимального значения устанавливаемого ослабления; определение нелинейности установки ослабления на длинах волн градуировки	Да	Да	10.2
Определение уровня обратных потерь	Да	Да	10.3
Подтверждение соответствия средства измерений метрологическим требованиям	Да	Да	11

- 2.2 При получении отрицательных результатов при проведении хотя бы одной операции поверка прекращается.
- 2.3 Допускается проведение периодической поверки в сокращенном объеме на меньшем числе поддиапазонов измерений и меньшего числа величин. Поверка в сокращенном объеме проводится на основании письменного заявления владельца средства или лица, представившего средство измерения на поверку, оформленного в произвольной форме.

3 Требования к условиям проведения поверки

3.1 Все операции поверки проводят при следующих условиях:

-	температура окружающей среды, □20 ± 5
-	относительная влажность воздуха, $\%$
_	атмосферное давление, кПа от 84 до 106
-	напряжение питания сети, В
_	частота, Γ ц

3.2 Помещение, где проводится поверка, должно быть чистым и сухим. Допускаемый перепад температуры при проведении поверки — не более 2 °C.

4 Требования к специалистам, осуществляющим поверку

- 4.1 К проведению поверки допускают лиц, изучивших настоящую методику поверки и руководство по эксплуатации (далее РЭ) поверяемого аттенюатора и средств поверки, а также их правила хранения и применения, и имеющих опыт работы с высокоточными средствами измерений в области волоконно-оптических систем передачи информации; прошедших обучение на право проведения поверки по требуемому виду измерений.
- 4.2 Поверку средства измерений осуществляют аккредитованные в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

5 Метрологические и технические требования к средствам поверки

5.1 При проведении первичной и периодической поверок применяются средства поверки, указанные в таблице 3.

Таблица 3 – Средства поверки

Операция	Метрологические и	
поверки,	технические требования к	Перечень рекомендуемых
требующие	средствам поверки,	средств поверки
применение	необходимые для проведения	
средств поверки	поверки	
п. 8 Подготовка	Средства измерений	Измерители – регистраторы
к поверке и	температуры окружающей	параметров микроклимата «ТКА
опробование	среды в диапазоне	ПКЛ» модификации ТКА-
средства	от 15 до 25 °C с пределами	ПКЛ(26)-Д,
измерений	допускаемой абсолютной	рег. № 76454-19
	погрешности не более \pm 0,2 °C.	
	Средства измерений	
	относительной влажности	
	воздуха в диапазоне до 80 % с	
	пределами допускаемой	
	абсолютной погрешности не	
	более ± 3 %.	
	Средства измерений	
	атмосферного давления в	
	диапазоне от 84 до 106 кПа с	
	пределами допускаемой	
	абсолютной погрешности не	
	более ± 0,2 кПа	
	Средства измерений частоты	Мультиметры цифровые серии D
	переменного тока в диапазоне	модификации DT-9963,
	от 40 до 60 Гц с пределами	рег. № 58550-14
	допускаемой абсолютной	
	погрешности не более	
	\pm (0,012·f _{изм} + 3·k) Γμ,	
	где f _{изм} – измеряемое значение	
	частоты переменного тока, Гц,	
	k – значение единицы младшего	
	разряда, Гц, равное 0,01 Гц.	
	Средства измерений напряжения	
	переменного тока в диапазоне	
	до 600 В с пределами	
	допускаемой абсолютной	
	погрешности не более	
	$\pm (0.008 \cdot U_{\text{H3M}} + 4 \cdot k) B,$	
	где U _{изм} – измеряемое значение	
	напряжения переменного тока, В,	
	k – значение единицы младшего	
	разряда, В, равное 0,1 В.	
п. 10	Эталоны средней мощности и	Государственный рабочий этало
Определение	ослабления оптического	единиц средней мощности и
метрологических	излучения в волоконно-	ослабления непрерывного и
характеристик	оптических системах передачи,	импульсно-модулированного
средства	не ниже уровня рабочего	лазерного излучения в
измерений	эталона по государственной	волоконно-оптических система:
	поверочной схеме,	передачи в диапазоне
	утвержденной приказом	
	Федерального агентства по	

Операция	Метрологические и	
поверки,	технические требования к	Перечень рекомендуемых
требующие	средствам поверки,	
применение	необходимые для проведения	средств поверки
средств поверки	поверки	
	техническому регулированию и	от 10-10 до 1 Вт на длинах волн о
	метрологии от 05.12.2019	500 до 1700 нм.
	№ 2862, в диапазоне измерений:	3.1.ZZA.0100.2017
	- средней мощности	(далее – РЭСМ)
	оптического излучения: от 10 ⁻¹⁰ до 10 ⁻² Вт;	
	- длин волн исследуемого	
	излучения: от 600 до 1700 нм;	
	- пределы допускаемой	
	относительной погрешности	
	измерений средней мощности	
	оптического излучения на	
	длинах волн градуировки:	
	- в диапазоне	
	от 10 ⁻¹⁰ до 2·10 ⁻³ Вт: ± 2,5 %;	
	- в диапазоне	
	от $2 \cdot 10^{-3}$ до 10^{-2} Вт: $\pm 3.5 \%$;	
	- пределы допускаемой	
	относительной погрешности	
	измерений относительных	
	уровней мощности:	
	- в диапазоне	
	от 10^{-10} до $2 \cdot 10^{-3}$ Вт: $\pm 1,2$ %;	
	- в диапазоне	
	от 10 ⁻⁵ до 10 ⁻⁴ Вт: ± 0,5 %	
	Эталоны обратных потерь в	Рабочий эталон обратных потеры
	волоконно-оптических	в ВОСП «РЭОП»,
	системах передачи не ниже	per. № 35981-07
	уровня рабочего эталона по	
	государственной поверочной	
	схеме, утвержденной приказом	
	Федерального агентства по	
	техническому регулированию и	
	метрологии от 05.12.2019	
	№ 2862, в диапазоне измерений:	
	-рабочие длины волн: 1310 нм и 1550 нм;	
	-предел допускаемого значения	
	основной абсолютной	
	погрешности измерений	
	обратных потерь измерителем	
	обратных потерь: 1 дБ.	

- 5.2 Допускается применение других средств поверки, обеспечивающих определение необходимых метрологических характеристик поверяемых средств измерений с требуемой точностью.
- 5.3 Средства измерений, используемые при проведении поверки, должны быть аттестованы (поверены) в установленном порядке.

6 Требования (условия) по обеспечению безопасности проведения поверки

- 6.1 При проведении поверки соблюдают требования, установленные ГОСТ 12.1.040-83, ГОСТ 31581-2012 и правила по охране труда при эксплуатации электроустановок, указанные в приложении к приказу Министерства труда и социальной защиты РФ от 15.12.2020 № 903н. Оборудование, применяемое при поверке, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при температуре помещения, соответствующей условиям испытаний для легких физических работ.
- 6.2 Система электрического питания системы должна быть защищена от колебаний и пиков сетевого напряжения, искровые генераторы не должны устанавливаться вблизи поверяемого аттенюатора.
- 6.3 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

7 Внешний осмотр средства измерений

- 7.1 Комплектность поверяемого аттенюатора должна соответствовать комплектности, приведенной в нормативной документации (РЭ и описание типа (далее OT)).
 - 7.2 При внешнем осмотре должно быть установлено:
 - наличие маркировки, подтверждающей тип и идентифицирующей поверяемый аттенюатор;
 - отсутствие на наружных поверхностях поверяемого аттенюатора повреждений, влияющих на его работоспособность;
 - отсутствие ослаблений элементов конструкции, сохранность пломб, чистота разъемов;
 - целостность волоконно-оптических кабелей и разъемов.
- 7.3 Аттенюатор считается прошедшим операцию поверки с положительным результатом, если корпус, внешние элементы, органы управления и индикации не повреждены, отсутствуют механические повреждения и ослабления элементов конструкции, а комплектность соответствует таблице состава РЭ и ОТ.

8 Подготовка к поверке и опробование средства измерений

- 8.1 Устанавливают на рабочем месте поверяемый аттенюатор.
- 8.2 Проверяют условия окружающей среды.
- 8.3 Протирают специальным тампоном, смоченным изопропиловым спиртом (ГОСТ 9805-84), оптический разъем поверяемого аттенюатора. Протирают специальной салфеткой, смоченной изопропиловым спиртом, торцы волоконно-оптических кабелей, используемых при проведении поверки.
- 8.4 Подготавливают поверяемый аттенюатор к работе согласно его РЭ. Проводят прогрев всех включенных приборов в течение получаса если иное не указано в их РЭ.
- 8.5 Аттенюатор считается прошедшим операцию поверки с положительным результатом, если прибор вышел на рабочий режим в соответствии с РЭ.

9 Проверка программного обеспечения средства измерений

- 9.1 Проверяют соответствие заявленных идентификационных данных ПО сведениям, приведенным в ОТ на аттенюатор.
 - 9.2 Включают аттенюатор и дожидаются загрузки главного меню.
- 9.3 Идентификационное наименование, номер версии ПО можно увидеть на экране монитора аттенюатора. (рис.1)

Рисунок 1 – Наименование и номер версии (идентификационный номер) ПО

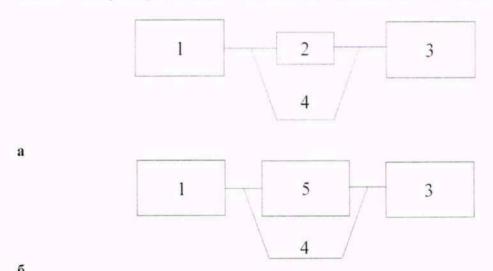

9.4 Аттенюатор считается прошедшим операцию поверки с положительным результатом, если идентификационный номер версии ПО соответствует значению, приведенному в таблице 4.

Таблица 4 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	LE 0275
Номер версии (идентификационный номер) ПО, не ниже	3.0.0.0
Цифровой идентификатор ПО	•

10 Определение метрологических характеристик средства измерений

- 10.1 Определение собственных вносимых потерь на длинах волн градуировки.
- 10.1.1 Проводят предварительный прогрев источника излучения из состава РЭСМ на длине волны 1310 нм в течение 15 минут.
 - 10.1.2 Собирают установку согласно схеме, приведенной на рисунке 2а.

1 – источник излучения, стабилизированный из состава РЭСМ с длинами волн 1310 нм, 1550 нм; 2 – волоконно-оптический соединитель; 3 – ваттметр из состава РЭСМ; 4 – волоконно-оптический кабель; 5 – исследуемый аттенюатор

Рисунок 2 — Блок-схема установки для определения собственных вносимых потерь, максимального значения устанавливаемого ослабления и нелинейности установки ослабления на длинах волн градуировки

- 10.1.3 Переводят ваттметр 3 и исследуемый аттенюатор 5 в режим измерений на длине волны 1310 нм.
- 10.1.4 Переводят измеритель мощности 3 в режим измерений относительных уровней мощности (ref), при этом он показывает 0 дБ.
 - 10.1.5 Собирают установку согласно схеме, приведенной на рисунке 26.

- 10.1.6 Регулировкой исследуемого аттенюатора 5 устанавливают минимальное значение ослабления.
- 10.1.7 Регистрируют показание ваттметра 3 P₀₁ в дБ, получая отрицательное значение, которое соответствует значению собственных вносимых потерь.
 - 10.1.8 Проводят операции по п.п. 10.1.2 10.1.7 еще четыре раза.
 - 10.1.9 Проводят операции по п.п. 10.1.1 10.1.8 на длине волны 1550 нм.
- 10.2 Определение максимального значения устанавливаемого ослабления; определение нелинейности установки ослабления на длинах волн градуировки
- 10.2.1 Проводят предварительный прогрев источника излучения из состава РЭСМ на длине волны 1310 нм в течение 15 минут.
 - 10.2.2 Собирают установку согласно схеме, приведенной на рисунке 26.
- 10.2.3 Переводят ваттметр 3 и исследуемый аттенюатор 5 в режим измерений на длине волны 1310 нм.
- 10.2.4 Регулировкой исследуемого аттенюатора 5 устанавливают минимальное значение ослабления.
- 10.2.5 Переводят ваттметр 3 в режим измерений относительных уровней мощности (*ref*), при этом он показывает 0 дБ.
- 10.2.6 Регулировкой ослабления последовательно увеличивают значение ослабления на 3 5 дБ и каждый раз регистрируют показания ваттметра 3 P_{ij} в дБ и исследуемого аттенюатора A_{ij} , пока не будет достигнуто предельное значение устанавливаемого ослабления для исследуемого аттенюатора. Измерения проводят пять раз (i=1,2,3,4,5) для каждой j-й точки диапазона (j=1,2,...,M), устанавливая значение ослабления исследуемого аттенюатора при подходе от меньшего значения ослабления к большему и от большего к меньшему.
 - 10.2.7 Проводят операции по п.п. 10.2.1 10.2.6 на длине волны 1550 нм.
 - 10.3 Определение уровня обратных потерь
 - 10.3.1 Собирают установку согласно схеме, приведенной на рисунке 3.

- 1 измеритель обратных потерь из состава РЭОП (далее ИОП);
- 2 исследуемый аттенюатор; 4 волоконно-оптический кабель.

Рисунок 3 – Блок-схема установки для определения уровня обратных потерь

- 10.3.2 Переводят ИОП и исследуемый аттенюатор в режим измерений на длине волны 1310 нм.
- 10.3.3 Устанавливают на поверяемом аттенюаторе минимальное значение ослабления. Проводят измерение уровня обратных потерь ИОП.
- 10.3.4 Проводят операции по п.п. 10.3.2 10.3.3 при значении ослабления 30 дБ и при максимальном значении ослабления аттенюатора.
 - 10.3.5 Проводят операции по п.п. 10.3.1 10.3.4 на длине волны 1550 нм.
- 10.3.6 Аттенюатор считается прошедшим поверку, если для обеих длин волн на всех значениях ослабления полученное значение уровня обратных потерь составляет не менее приведённого в таблице 1.

11 Подтверждение соответствия средства измерений метрологическим требованиям

11.1 Обработка результатов определения собственных вносимых потерь на длинах

волн градуировки.

11.1.1 Определяют значение собственных вносимых потерь A_0 по формуле (1) для длин волн 1310 и 1550 нм:

$$A_0 = -\frac{1}{5} \sum_{i=1}^{5} P_{0i} \tag{1}$$

- 11.1.2 Аттенюатор считается прошедшим поверку, если полученное значение собственных вносимых потерь для обеих длин волн не превышает указанного в таблице 1.
- 11.2 Обработка результатов определения максимального значения устанавливаемого ослабления; определения нелинейности установки ослабления на длинах волн градуировки 1310 и 1550 нм.
 - 11.2.1 Определяют нелинейность установки ослабления θ_{A} по формуле (2):

$$\theta_{A} = \max_{j} \{ |\theta_{j}| \} + \theta_{oo}$$
 (2)

где θ_{00} — погрешность измерений относительных уровней мощности РЭСМ (0,05 дБ) (из паспорта РЭСМ).

 θ_{j} – средняя разность показаний РЭСМ и поверяемого прибора в j-той точке измерений, вычисляемая по формуле (3):

$$\theta_{j} = \frac{1}{5} \sum_{i=1}^{5} (P_{ij} + A_{ij})$$
(3)

11.2.2 Определяют максимальное значение устанавливаемого ослабления для исследуемого аттенюатора A_M по формуле (4):

$$A_{M} = -\frac{1}{5} \sum_{i=1}^{5} P_{iM} \tag{4}$$

где P_{iM} — показания ваттметра РЭСМ при предельном достигнутом ослаблении исследуемого аттенюатора по п. 10.2.6.

Аттенюатор считается прошедшим поверку, если для обеих длин волн полученное значение нелинейности установки ослабления не превышает указанного в таблице 1, а максимальное значение устанавливаемого ослабления составляет не менее 65 дБ.

12 Оформление результатов поверки

- 12.1 Результаты поверки оформляются протоколом поверки. Рекомендуемая форма протокола поверки приведена в приложении А. Протокол может храниться на электронных носителях.
- 12.2 Аттенюатор считается прошедшим поверку с положительным результатом и допускается к применению, если все операции поверки пройдены с положительным результатом и полученные значения метрологических характеристик удовлетворяют требованиям аттенюатору в соответствии с его описанием типа, а также соблюдены требования по защите средства измерений от несанкционированного вмешательства. В ином случае аттенюатор считается прошедшим поверку с отрицательным результатом и не допускается к применению.

- 12.3 По заявлению владельца средства измерений или лица, представившего его на поверку, с учетом требований методики поверки аккредитованное на поверку лицо, проводившее поверку, в случае положительных результатов поверки (подтверждено соответствие средства измерений метрологическим требованиям) выдает свидетельство о поверке, оформленное в соответствии с требованиями к содержанию свидетельства о поверке, утвержденными приказом Минпромторга России от 31.07.2020 № 2510
- 12.4 По заявлению владельца средства измерений или лица, представившего его на поверку, с учетом требований методики поверки аккредитованное на поверку лицо, проводившее поверку, в случае отрицательных результатов поверки (не подтверждено соответствие средства измерений метрологическим требованиям) выдает извещение о непригодности к применению средства измерений
- 12.5 Сведения о результатах поверки (как положительных, так и отрицательных) передаются в Федеральный информационный фонд по обеспечению единства измерений.

Начальник лаборатории отделения Ф-3

Старший научный сотрудник отделения Ф-3

И.С. Королев

А.И. Глазов

Приложение А

(Рекомендуемое)

Форма протокола поверки

ПРОТОКОЛ ПЕРВИЧНОЙ (ПЕРИОДИЧЕСКОЙ) ПОВЕРКИ №

OT	20	*
от		Γ.

Аттенюатор оптический	перестраиваемый FVA-600
(регистрационный №	, год выпуска)

Заводской номер:

Изготовитель:

Владелец СИ:

Применяемые средства поверки:

Рабочий эталон единицы средней мощности

оптического излучения «РЭСМ»

Применяемая методика поверки:

МП 022.Ф3-24

«ГСИ.

Аттенюаторы

FVA-600.

оптические перестраиваемые

Методика поверки»

Место проведения поверки:

Условия поверки:

- температура окружающей среды:
- относительная влажность воздуха:
- атмосферное давление:
- напряжение сети питания:
- частота сети питания:

Проведение поверки:

- 1. Вешний осмотр
- 2. Опробование
- 3. Идентификация программного обеспечения
- 4. Определение метрологических характеристик аттенюатора:

Полученные результаты измерений метрологических характеристик аттенюатора:

Таблица А.1 – Результаты определения метрологических характеристик

Длина волны градуировки, нм	Измеренное значение, дБ	Среднее измеренное значение, дБ	Допускаемое значение, дБ, не более	Результат
1310			1,5	
1550			1,5	

Длина волны градуировки, нм	Измеренное значение, дБ	Среднее измеренное значение, дБ	Допускаемое значение, дБ, не менее	Результат
1310			65	
1550		4	65	

Определение нелинейности установки ослабления на длинах волн граду	ировки, п. 10.2 МП
--	--------------------

Длина волны градуировки, нм	Номинальное значение ослабления, дБ	Разность показаний РЭСМ и поверяемого прибора, дБ	Значение нелинейности установки ослабления, дБ	Допускаемое значение, дБ, не более	Результат
1310			- в диапазоне установки ослабления до 59,99 дБ:	0,2	
			- в диапазоне установки ослабления от 60 до 65 дБ:	0,5	
1550			- в диапазоне установки ослабления до 59,99 дБ:	0,2	
			- в диапазоне установки ослабления от 60 до 65 дБ:	0,5	

	Определение уровня оор	ратных потерь, п. 10.3 МП	
Длина волны градуировки, нм	Измеренное значение, дБ	Допускаемое значение, дБ, не менее	Результат
1310		45	
1550		45	

٥.	заключение по результатам поверки:				
	Поверитель:				
		Подпись	Фамилия И.О.		
	Руководитель:				
		Подпись	Фамилия И.О		