СОГЛАСОВАНО

Первый заместитель генерального директора - заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

Engeul 2024 r.

Государственная система обеспечения единства измерений

Модули расширения частотного диапазона векторных анализаторов электрических цепей 3643

МЕТОДИКА ПОВЕРКИ

МП 113-23-012

СОДЕРЖАНИЕ

1	ОБЩИЕ ПОЛОЖЕНИЯ	. 3
2	ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ	. 4
3	ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ	. 5
4	ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ	. 5
5	МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ	. 5
6 ПОІ	ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ВЕРКИ	. 7
7	ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ	. 7
8	ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ	. 8
9	ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ	. 9
10 TPE	ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИ	
12 (ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	15

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на модули расширения частотного диапазона векторных анализаторов электрических цепей 3643 (далее МРЧД), изготавливаемые фирмой «Ceyear Technologies Co., Ltd», Китай, и устанавливает методы и средства их первичной и периодической поверок.
- 1.2 Первичной поверке подлежат МРЧД до ввода в эксплуатацию и после ремонта. Периодической поверке подлежат МРЧД, находящиеся в эксплуатации и на хранении.
- 1.3 Применяемые при поверке эталоны и средства измерений должны обеспечивать прослеживаемость к государственным первичным эталонам единиц величин:

ГЭТ 1-2022 «Государственный первичный эталон единиц времени, частоты и национальной шкалы времени» в соответствии с Приказом Росстандарта № 2360 от 26.09.2022 «Об утверждении государственной поверочной схемы для средств измерений времени и частоты»:

ГЭТ 193-2011 «Государственный первичный эталон единицы ослабления электромагнитных колебаний в диапазоне частот от 0 до 178 ГГц» в соответствии с Приказом Росстандарта № 3383 от 30.12.2019 «Об утверждении Государственной поверочной схемы для средств измерений ослабления напряжения постоянного тока и электромагнитных колебаний в диапазоне частот от 20 Гц до 178,4 ГГц».

- 1.4 Поверка МРЧД может осуществляться только аккредитованным на проведение поверки лицом в соответствии с его областью аккредитации, в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации.
- 1.5 При проведении поверки необходимо руководствоваться настоящей методикой и эксплуатационной документацией на МРЧД и на используемое при поверке оборудование. Методика поверки реализуется посредством методов прямых измерений.
- 1.6 В результате поверки должны быть подтверждены метрологические характеристики, приведенные в таблице 1.

Таблица 1 – Метрологические характеристики

-	Значение		
Наименование характеристики	3643NA	3643P	
Диапазон рабочих частот, ГГц	от 50 до 75	от 75 до 110	
Диапазон частот на входах «RF» и «LO», ГГц	от 12,5 до 18,75	от 12,5 до 18,33	
Мощность выходного сигнала, дБ (1 мВт), не менее		5 ±	
Номинальный уровень мощности на входах «RF» и «LO», дБ (1 мВт)	1	0	
Диапазон измерений модуля коэффициента передачи $ S_{ji} ^1$, дБ	от 0 ;	до -60	
Диапазон измерений фазы коэффициента передачи $ S_{ji} $, градус	от -180	до +180	
Диапазон измерений модуля коэффициента отражения $ S_{ii} ^2$	от 0,01 до 1		
Диапазон измерений фазы коэффициента отражения $ S_{ii} $, градус	от -180	до +180	
Пределы допускаемой абсолютной погрешности измерений модуля коэффициента отражения $ S_{ii} $, отн. ед. 3)	0,018+0,014	$S_{ii} +0.018\cdot S_{ii} ^2$	
Пределы допускаемой абсолютной погрешности измерений фазы коэффициента отражения, градус ³⁾	$\pm [1,0+(180/\pi)\cdot \arcsin(\Delta S_{ii} / S_{ii})]$		

Продолжение таблицы 1

II	Значение	
уля коэффициента передачи согласованных ырехполюсников без учета нелинейности и уровня	3643NA 364	
Пределы допускаемой абсолютной погрешности измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей $\Delta S_{ji} $, д \mathbb{B}^{3}	±[0,12+ 0	$,01\cdot S_{ji}]$
Пределы допускаемой абсолютной погрешности измерений фазы коэффициента передачи, градус ³⁾	$\pm [0,5+(180/\pi)\cdot\arcsin(\Delta S_{ji} /8,6)$	

ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

При проведении поверки МРЧД должны быть выполнены операции, указанные в таблице 2.

Таблица 2 - Операции поверки

Наименование операции поверки	Обязательность выполнения операций поверки при		Номер раздела (пункта) методики поверки, в соответствии с	
		периодической поверке	которым выполняется операция поверки	
Внешний осмотр средства измерений	да	да	7	
Подготовка к поверке и опробование средства измерений	да	да	8	
Определение диапазона рабочих частот и диапазона частот на входах «RF» и «LO»	да	да	9.1	
Определение номинального уровня мощности на входах «RF» и «LO»	да	да	9.2	
Определение мощности выходного сигнала	да	да	9.3	
Определение диапазона измерений модуля и фазы коэффициента отражения $ S_{ii} $ и абсолютной погрешности измерений модуля и фазы коэффициента отражения $\Delta S_{ii} $	па	да	9.4	
Определение диапазона измерений модуля коэффициента передачи $ S_{ji} $ и абсолютной погрешности измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей $\Delta S_{ji} $	да	да	9.5	
Определение диапазона измерений фазы коэффициента передачи и абсолютной погрешности измерений фазы коэффициента передачи	ла	да	9.6	
Подтверждение соответствия средства измерений метрологическим требованиям	да	да	10	

 $[|]S_{ji}|$ — модуль коэффициента передачи $|S_{ii}|$ — модуль коэффициента отражения $|S_{ii}|$ — модуль коэффициента отражения $|S_{ii}|$ 3 Значения погрешностей приведены после калибровки комплектами мер калибровочных ZV-WR10, ZV-WR15 или аналогичных

- 2.2 Допускается проводить периодическую поверку меньшего числа измеряемых величин, которые используются при эксплуатации по соответствующим пунктам настоящей методики поверки. Данные ограничения должны быть зафиксированы при оформлении результатов поверки.
- 2.3 При получении отрицательных результатов по любому пункту таблицы 1 поверяемый МРЧД бракуется и направляется в ремонт.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 3.1 При проведении поверки должны соблюдаться нормальные условия (если не оговорено иное):
 - температура окружающего воздуха, °С (К) от плюс 15 до плюс 25 (от 288 до 298);
 - относительная влажность окружающего воздуха, % не более 80;
 - атмосферное давление, кПа (мм рт. ст.)
 от 84,0 до 106,7 (от 630 до 800);

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

- 4.1 Поверка должна осуществляться лицами со средним или высшим техническим образованием, аттестованными в качестве поверителей в области радиотехнических измерений в установленном порядке и имеющим квалификационную группу электробезопасности не ниже второй.
- 4.2 Перед проведением поверки поверитель должен предварительно ознакомиться с документами «Модули расширения частотного диапазона векторных анализаторов электрических цепей 3643. Руководство по эксплуатации» (далее P) и «Модули расширения частотного диапазона векторных анализаторов электрических цепей 3643NA, 3643P. Паспорт» (далее Π C).
 - 4.3 Поверка осуществляется одним специалистом.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 Рекомендуемые средства поверки, в том числе рабочие эталоны и средства измерений, приведены в таблице 3.

Таблица 3 - Перечень средств поверки

Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки	
8 Подготовка к поверке и опробование средства измерений	Вспомогательное оборудование: Комплект мер калибровочных тип волноводного тракта: WR15 для модификации 3643NA; WR10 для модификации 3643P	Комплект мер калибровочных ZV-WR10 и комплект мер калибровочных ZV-WR15 из состава Государственного рабочего эталона комплексных коэффициентов передачи в диапазоне от 0 до минус 60 дБ и комплексных коэффициентов отражений в диапазоне от 0,006 до 1 в диапазоне частот от 33 до 170 ГГц в волноводных трактах 3.1.ZZT.0148.2015	

Продолжение таблицы	а 3	
Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
9.1 Определение диапазона рабочих частот и диапазона частот на входах «RF» и «LO» 9.2 Определение номинального уровня мощности на входах «RF» и «LO»	Стандарт частоты с номинальным значением воспроизводимых частот: 5, 10 МГц, соответствующие требованиям к рабочим эталонам не ниже 3 разряда в соответствии с Приказом Росстандарта № 2360 от 26.09.2022. Анализатор спектра с диапазоном рабочих частот от 5 кГц до 3 ГГц, диапазоном измерений уровня мощности входного сигнала от минус 70 до 0 дБ (1 мВт). Генератор сигналов с диапазоном частот от 250 кГц до 50 ГГц, пределом допускаемой относительной погрешности установки частоты ±7,5·10 ⁻⁸ ; диапазоном выходной мощности от минус 110 до 15 дБ (1 мВт)	Стандарт частоты рубидиевый FS725, рег. № 31222-06 Анализатор спектра FPC1000, рег. № 68365-17 Генератор сигналов E8257D, рег. № 68365-17
9.3 Определение мощности выходного сигнала	Измеритель мощности с диапазоном измерения мощности от 0 до 10 дБ (1 мВт), тип волноводного тракта: WR15 для модификации 3643NA; WR10 для модификации 3643P	Преобразователь измерительный ваттметров поглощаемой мощности V8486A рег. № 58320-14 Преобразователь измерительный ваттметров поглощаемой мощности W8486A рег № 58320-14
9.4 Определение диапазона измерений модуля и фазы коэффициента отражения Sii и абсолютной погрешности измерений модуля и фазы коэффициента отражения Δ Sii	Вспомогательное оборудование: Нагрузка согласованная с сечением волноводного тракта: WR15 для модификации 3643NA; WR10 для модификации 3643P	Государственный рабочий эталон комплексных коэффициентов передачи и диапазоне от 0 до минус 60 дБ и комплексных коэффициентог отражений в диапазоне от 0,000 до 1 в диапазоне частот от 33 до 170 ГГц в волноводных трактах 3.1.ZZT.0148.2015
9.5 Определение диапазона измерений модуля коэффициента передачи $ S_{ji} $ и абсолютной погрешности измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных	Аттенюатор с диапазоном частот от 50 до 75 ГГц для модификации 3643NA, от 75 до 110 ГГц для модификации 3643P, диапазоном измерений ослабления от 0 до 60 дБ, соответствующие требованиям к рабочим эталонам не ниже 2 разряда в соответствии с Приказом Росстандарта № 3383 от 30.12.2019. Вспомогательное оборудование: Нагрузка короткозамкнутая с сечением волноводного тракта: WR15 для модификации 3643NA; WR10 для модификации 3643P	Аттенюатор поляризационный DA-04E, рег. № 92420-24 Аттенюатор поляризационный DA-03E, рег. № 92420-24 Государственный рабочи эталон комплексны коэффициентов передачи диапазоне от 0 до минус 60 дБ комплексных коэффициенто отражений в диапазоне от 0,00
уровня сооственных шумов анализатора цепей $\Delta S_{ji} $		до 1 в диапазоне частот от 170 ГГц в волноводных т 3.1.ZZT.0148.2015

Продолжение таблицы 3

юмогательное оборудование: ра фазового сдвига с сечением новодного тракта: 15 для модификации 3643NA; WR10 модификации 3643P	Государственный рабочий эталон комплексных коэффициентов передачи в диапазоне от 0 до минус 60 дБ и комплексных коэффициентов отражений в диапазоне от 0,006 до 1 в диапазоне частот от 33 до 170 ГГц в волноводных трактах 3.1.ZZT.0148.2015
ализатов электрических пелей с	
пазоном рабочих частот от 10 МГц до ГГц, с пределом допускаемой осительной погрешности установки тоты выходного сигнала $\pm 1 \cdot 10^{-7}$, с пазоном воспроизведения мощности содного сигнала от минус 30 до плюс 15 (1 мВт). меритель температуры с диапазоном ператур от +10°C до +35°C. меритель влажности с диапазоном перений относительной влажности от 0 99 %. меритель атмосферного давления с	Измеритель влажности и температуры ИВТМ-7,
	пазоном воспроизведения мощности содного сигнала от минус 30 до плюс 15 (1 мВт). меритель температуры с диапазоном ператур от +10°C до +35°C. меритель влажности с диапазоном перений относительной влажности от 0 99 %.

Примечание – Допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице.

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 При проведении поверки необходимо соблюдать требования безопасности, регламентируемые правилами по охране труда при эксплуатации электроустановок, утвержденными приказом Министерства труда и социальной защиты Российской Федерации от 15.12.2020 № 903н, а также требования безопасности, приведённые в эксплуатационной документации на МРЧД и средства поверки.
- 6.2 Средства поверки должны быть надежно заземлены в соответствии с эксплуатационной документацией.
- 6.3 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

7.1 Внешний осмотр МРЧД провести визуально без вскрытия, при этом необходимо проверить:

- комплектность, маркировку и пломбировку (наклейку) на соответствие документам РЭ

и ПС;

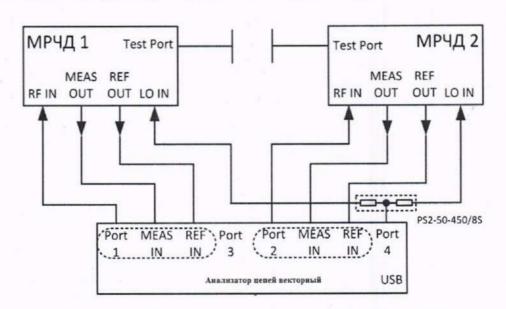
- целостность и чистоту разъемов;
- целостность фирменной наклейки;
- исправность сетевого шнура;
- отсутствие видимых повреждений, влияющих на работоспособность МРЧД.
- 7.2 Результаты внешнего осмотра считать положительными, если:
- комплект поставки соответствует документам РЭ и ПС;
- маркировка соответствует документу РЭ;
- пломбировка (наклейка) и фирменная наклейка цела;
- разъемы целы и чисты:
- отсутствуют видимые повреждения, влияющие на работоспособность МРЧД.
- В противном случае результаты внешнего осмотра считать отрицательными и последующие операции поверки не проводить.

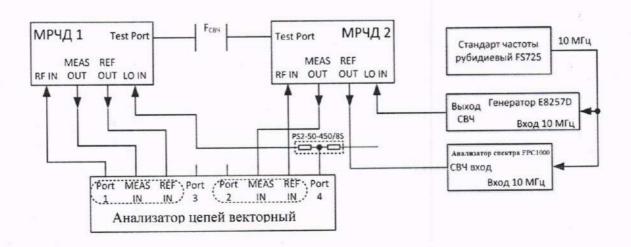
8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 8.1 Перед проведением поверки необходимо выполнить подготовительные работы, оговоренные в РЭ на применяемые средства поверки.
 - 8.2 Проверку работоспособности МРЧД выполнить в следующей последовательности.

ВНИМАНИЕ! Перед включением МРЧД убедитесь, что провод заземления МРЧД надежно соединен с проводом заземления источника питания постоянного тока. Прежде, чем подключить МРЧД к источнику питания, убедитесь, что напряжение питания в норме.

- 8.2.1 Подключить штекер адаптера питания к интерфейсу [DC input] (вход питания) модуля расширения частотного диапазона.
- 8.2.2 Подготовить к работе анализатор электрических цепей векторный ZVA67 (далее анализатор цепей векторный) в соответствии с РЭ на него.
- 8.2.3 Собрать схему в соответствии с рисунком 1. При соединении МРЧД с анализатором цепей векторным руководствоваться ЭД на МРЧД.




Рисунок 1 - Схема проверки работоспособности МРЧД

- 8.2.4 Включить модуль расширения частотного диапазона и анализатор цепей векторный в соответствии с РЭ на них. Убедиться, что после включения срабатывает вентилятор внутри поверяемого модуля. Прогреть в течении 30 минут.
- 8.2.5 Обеспечить прямое соединение между волноводными фланцами МРЧД и провести нормализацию в соответствии с ЭД на анализатор цепей векторный.

- 8.2.6 После проведения нормализации отсоединить волноводные фланцы МРЧД друг от друга и провести двухпортовую калибровку анализатора цепей векторного подключая соответствующие калибровочные меры. Устанавливая поочередно режимы измерений $S_{11},\,S_{12},\,S_{21},\,S_{22}$ убедиться, что происходит обновление трассы в полном диапазоне частот для каждого вида измерений.
 - 8.3 Результаты опробования считать положительными, если:
 - вентилятор МРЧД срабатывает после включения.
- в режимах измерений $S_{11},\ S_{12},\ S_{21},\ S_{22}$ происходит обновление трассы в полном диапазоне частот для каждого вида измерений.
- В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить.

9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ

- 9.1 Определение диапазона рабочих частот и диапазона частот на входах «RF» и «LO»
- 9.1.1 Определение диапазона рабочих частот и диапазона частот на входах «RF» и «LO» выполнить в следующей последовательности.
- 9.1.1.1 Подготовить к работе анализатор спектра FPC1000 (далее анализатор спектра), генератор сигналов E8257D (далее гетеродин), анализатор цепей векторный, стандарт частоты рубидиевый FS725 (далее стандарт частоты) в соответствии с РЭ на них.
- 9.1.1.2 Собрать схему измерений в соответствии с рисунком 1. Установить на векторном анализаторе цепей диапазон частот, соответствующий диапазону рабочих частот МРЧД. Выполнить TRL калибровку анализатора цепей векторного с подключенными к нему МРЧД в соответствии с РЭ на анализатор цепей векторный. Установить на векторном анализаторе цепей режим измерения S₂₁.
- 9.1.1.3 Собрать схему измерений в соответствии с рисунком 2. Включить гетеродин, анализатор спектра и стандарт частоты.
- 9.1.1.4 Соединить выходы 10 МГц стандарта частоты с соответствующими входами анализатора спектра и гетеродина. Соединить выход REF OUT МРЧД2 с входом анализатора спектра.
- 9.1.1.5 Установить на анализаторе спектра режим работы от внешнего источника, центральную частота для соответствующего измерительного порта 500 МГц, полосу обзора 999 МГц. Анализатор цепей векторный настроить для работы на фиксированной частоте.

Рисунок 2 – Схема определения относительной погрешности установки частоты выходного сигнала

- 9.1.1.6 Установить на анализаторе цепей векторном частоту выходного сигнала, в соответствии с таблицей 4, и значение мощности 10 дБ (1 мВт).
- 9.1.1.7 Установить на гетеродине частоту выходного сигнала $F_{\Gamma ETI}$ (ГГц), определяемую по формуле (1), и мощность выходного сигнала 10 дБ (1мВт).

$$F_{\Gamma ET1} = \frac{F_{\text{ycT}} + F_{\Pi Y_1}}{N_2},\tag{1}$$

где $F_{\text{УСТ}}$ — значение частоты выходного сигнала МРЧД, ГГц, в соответствии с таблицей 4;

 $F_{\Pi \Psi 1}$ — значение частоты на выходе REF OUT МРЧД, ГГц, измеряемое анализатором спектра.

 N_2 – коэффициент умножения частоты гетеродина $F_{\Gamma \to T}$;

- 9.1.1.8 Наблюдать на экране анализатора спектра появление сигнала. Убедиться, что сигнал не является паразитным. Для этого увеличить частоту гетеродина на $\Delta F_{\Gamma ET} = 10$ МГц. При этом измеряемое анализатором спектра значение промежуточной частоты $F_{\Pi \Psi 1}$ должно увеличиться на $(N \cdot \Delta F_{\Gamma ET})$ МГц.
- 9.1.1.9 Установить на анализаторе спектра центральную частоту 300 МГц и полосу обзора 480 МГц.
- 9.1.1.10 Измерить анализатором спектра частоту сигнала $F_{\Pi \Psi 1}$, установив маркер в режим измерения частоты с разрешением 1 Γ ц.
- 9.1.1.11 Зафиксировать в протоколе поверки значение частот F_{VCT} , $F_{\Gamma ETI}$ и значение промежуточной частоты $(F_{\Pi Y 1})_j$, отсчитанное по маркеру на анализаторе спектра в режиме измерения частоты.
- 9.1.1.12 Увеличить частоту гетеродина на 10 МГц. Зафиксировать частоту, измеренную анализатором спектра $F_{\Pi 42}$.
 - 9.1.1.13 Рассчитать измеренное значение частоты по формулам (4), (5):

$$F_{\mu_{3M}} = N \cdot F_{\Gamma ET1} - F_{\Pi Y1}$$
, если $F_{\Pi Y2} > F_{\Pi Y1}$, (4)

$$F_{\mu_{3M}} = N \cdot F_{\Gamma ET1} + F_{\Pi \Psi 1}$$
, если $F_{\Pi \Psi 2} < F_{\Pi \Psi 1}$., (5)

9.1.1.14 Повторить действия п.п. 9.1.1.5 - 9.1.1.13 для значений частот из таблицы 4.

Таблица 4 – Значения частот, устанавливаемые на МРЧД

Значение частоты на входах «RF» и «LO» F_{RF} , устанавливаемое на анализаторе цепей векторном, $\Gamma\Gamma$ ц		анавливаемое на умножения частоты		Значение частоты выходного сигнала МРЧД, $F_{\text{уст}}$, $\Gamma\Gamma$ ц		
3643NA	3643P	3643NA	3643P	3643NA	3643P	
12,50000	12,50000	4			50	75
13,50000	13,50000			54	81	
14,50000	14,50000		0		58	87
15,50000	15,50000		6	62	93	
16,50000	16,50000			66	99	
17,50000	17,50000			70	105	
18,75000	18,33333			75	110	

9.1.2 Результаты поверки считать положительными, если диапазон рабочих частот и диапазон частот на входах «RF» и «LO» соответствуют п. 10.1.

9.2 Определение номинального уровня мощности на входах «RF» и «LO»

- 9.2.1 Определение номинального уровня мощности на входах «RF» и «LO» проводить одновременно с п. 9.5 «Определение диапазона измерений модуля коэффициента передачи |Sji| и абсолютной погрешности измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей Δ |Sji|».
- 9.2.2 Результаты поверки считать положительными, если при номинальном уровне мощности на входах «RF» и «LO» 10 дБ (1 мВт) диапазон измерений модуля коэффициента передачи $|S_{ti}|$ соответствует п. 10.4.

9.3 Определение мощности выходного сигнала

- 9.3.1 Определение мощности выходного сигнала проводить в следующей последовательности.
- 9.3.1.1 Собрать схему измерений в соответствии с рисунком 1. Установить на векторном анализаторе цепей диапазон частот, соответствующий диапазону рабочих частот МРЧД.
 - 9.3.1.2 Установить на анализаторе цепей векторном значение мощности 10 дБ (1 мВт).
 - 9.3.1.3 Анализатор цепей векторный настроить для работы на фиксированной частоте.
- 9.3.1.4 Подготовить к работе преобразователь измерительный V8486 A (для модификации 3643NA) или преобразователь измерительный W8486A (для модификации 3643P) (далее ваттметр) в соответствии с РЭ на них.
 - 9.3.1.5 Подключить к волноводному выходу МРЧД ваттметр.
 - 9.3.1.6 Провести измерения на частотах в соответствии с таблицей 4.
 - 9.3.1.7 Результаты измерений зафиксировать в протоколе поверки.
- 9.3.2 Результаты поверки считать положительными, если мощность выходного сигнала не менее 5 дБ (1 мВт).
- 9.4 Определение диапазона измерений модуля и фазы коэффициента отражения $|S_{ii}|$ и абсолютной погрешности измерений модуля и фазы коэффициента отражения $\Delta |S_{ii}|$
- 9.4.1 Определение диапазона измерений модуля и фазы коэффициента отражения $|S_{tt}|$ выполнить в следующей последовательности.
 - 9.4.1.1 Установить на векторном анализаторе цепей режим измерения S₁₁.
- 9.4.1.2 Присоединить нагрузку согласованную (номинальное значение модуля коэффициента отражения 0,01), из состава Государственного эталона единиц комплексных коэффициентов передачи в диапазоне от 0 до минус 60 дБ и комплексных коэффициентов отражений в диапазоне от 0,006 до 1 в диапазоне частот от 33 до 170 ГГц в волноводных трактах (далее 3.1.ZZT.0148.2015), к МРЧД, подключенному к порту 1 векторного анализатора цепей.
- 9.4.1.3 Провести измерения модуля коэффициента отражения $|S_{ii}|$, используя маркеры, на частотах:

модификация 3643NA

50, 60, 70, 75 ГГц;

модификация 3643Р

75, 90, 100, 110 ГГц.

- 9.4.1.4 Повторить операции п.п. 4.10.1.2 4.10.1.4 для второго МРЧД.
- 9.4.1.5 Результаты измерений зафиксировать в протоколе поверки.
- 9.4.1.6 Отсоединить от МРЧД нагрузку согласованную.
- 9.4.1.7 Присоединить нагрузку рассогласованную с номинальным значением КСВН 1,2, аттестованную (поверенную) по фазе коэффициента отражения, из состава 3.1.ZZT.0148.2015, к МРЧД, подключенному к порту 1 векторного анализатора цепей.
 - 9.4.1.8 Провести измерения фазы коэффициента отражения, на частотах аттестации

(поверки) нагрузки рассогласованной.

- 9.4.1.9 При измерении фазы коэффициента отражения, убедиться, что отображение фазы есть в диапазоне от минус 180° до плюс 180° .
 - 9.4.1.10 Повторить операции п.п. 9.4.1.7 9.4.1.9 для второго МРЧД.
 - 9.4.1.11 Результаты измерений зафиксировать в протоколе поверки.
 - 9.4.1.12 Отсоединить от МРЧД нагрузку рассогласованную.
- 9.4.1.13 Присоединить к порту 1 отрезок и меру короткого замыкания (номинальное значение модуля коэффициента отражения 1) из состава 3.1.ZZT.0148.2015.
 - 9.4.1.14 Повторить операции п.п. 9.4.1.3 9.4.1.5.
- 9.4.1.15 Рассчитать абсолютную погрешность модуля и фазы коэффициента отражения $\Delta |S_{ii}|$ в соответствии с п. 10.2.
- 9.4.2 Результаты поверки считать положительными, если диапазон измерений модуля и фазы коэффициента отражения $|S_{ii}|$ и абсолютная погрешность измерений модуля и фазы коэффициента отражения $\Delta |S_{ii}|$ находится в допускаемых пределах, приведенных в п.10.2.
- 9.5 Определение диапазона измерений модуля коэффициента передачи $|S_{ji}|$ и абсолютной погрешности измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей $\Delta |S_{ji}|$
- 9.5.1 Определение диапазона измерений модуля коэффициента передачи $|S_{ji}|$ выполнить в следующей последовательности.
- 9.5.1.1 Установить на векторном анализаторе цепей режим измерения S_{21} , маркеры на частотах:

модификация 3643NA модификация 3643P 50, 55, 60, 65, 70, 75 ΓΓμ; 75, 80, 90, 100, 105, 110 ΓΓμ.

- 9.5.1.2 Подключить аттенюатор к 3.1.ZZT.0148.2015.
- 9.5.1.3 Установить на аттенюаторе уровень ослабления, соответствующий модулю коэффициента передачи 0 дБ.
- 9.5.1.4 Отсоединить аттенюатор и не изменяя его настройки подключить к волноводному фланцу первого МРЧД. Выход аттенюатора соединить с волноводным фланцем второго МРЧД, в соответствии с рисунком 4.

- 9.5.1.5 Провести измерения модуля коэффициента передачи S21.
- 9.5.1.6 Результаты измерений зафиксировать в протоколе поверки.
- 9.5.1.7 Повторить операции п.п. 9.5.1.2 -9.5.1.6 устанавливая на аттенюаторе значения ослабления, соответствующие модулю коэффициента передачи 30 и 60 дБ. Полученные значения занести в протокол испытаний.
- 9.5.1.8 Повторить операции п.п. 9.5.1.2 9.5.1.7 при режиме измерений векторного анализатора цепей S_{12} .
- 9.5.1.9 Рассчитать абсолютную погрешность измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей $\Delta |S_{ii}|$ в соответствии с п. 10.3.
- 9.5.2 Результаты поверки считать положительными, если диапазон измерений модуля коэффициента передачи $|S_{ji}|$ и абсолютная погрешность измерений модуля коэффициента

передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей $\Delta |S_{ji}|$ находятся в допускаемых пределах, приведенных в п. 10.3.

- 9.6 Определение диапазона измерений фазы коэффициента передачи и абсолютной погрешности измерений фазы коэффициента передачи
- 9.6.1 Определение диапазона измерений фазы коэффициента передачи и абсолютной погрешности измерений фазы коэффициента передачи выполнить в следующей последовательности.
 - 9.6.1.1 Установить на векторном анализаторе цепей режим измерения S21.
- 9.6.1.2 Соединить волноводный фланец первого МРЧД с мерой фазового сдвига из состава 3.1.ZZT.0148.2015. Противоположный выход меры фазового сдвига соединить с волноводным фланцем СВЧ выхода второго МРЧД, в соответствии с рисунком 5.

Рисунок 5 — Схема измерения фазы коэффициента передачи $|S_{ii}|$

- 9.6.1.3 Провести измерения фазы коэффициента передачи в рабочем диапазоне частот МРЧД, при этом наблюдать за фазо-частотной характеристикой меры фазового сдвига, которая представляет из себя пилообразную кривую, принимающую значения от минус 180° до плюс 180° по оси ординат. Убедиться, что отображение фазы есть в диапазоне от минус 180° до плюс 180° .
 - 9.6.1.4 Результаты измерений занести в протокол поверки.
- 9.6.1.5 Рассчитать абсолютную погрешность измерений фазы коэффициента передачи в соответствии с п. 10.4.
- 9.6.2 Результаты поверки считать положительными, если диапазон измерений фазы коэффициента передачи и абсолютная погрешность измерений фазы коэффициента передачи находится в допускаемых пределах, приведенных в п. 10.4.

10 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

10.1 Диапазон рабочих частот и диапазон частот на входах «RF» и «LO» определить методом прямых измерений и сравнения полученных результатов с нормированными значениями.

Результаты поверки считать положительными, если:

- диапазон рабочих частот находится в допускаемых пределах:

модификация 3643NA

от 50 до 75 ГГц;

модификация 3643Р

от 75 до 110 ГГц;

- диапазон частот на входах «RF» и «LO» находится в допускаемых пределах:

модификация 3643NA

от 12,5 до 18,75 ГГц;

модификация 3643Р

от 12,5 до 18,33 ГГц.

10.2 Диапазон измерений модуля и фазы коэффициента отражения $|S_{ii}|$ определить методом прямых измерений и сравнения полученных результатов с нормированными значениями.

Абсолютную погрешность модуля и фазы коэффициента отражения $\Delta |S_{ii}|$ рассчитать по формуле (6).

$$\Delta |S_{ii}| = |S_{ii}|_{HOM} - |S_{ii}|_{UVM}, \tag{6}$$

$$\Delta \Phi_{ii} = \Phi_{ii \, HOM} - \Phi_{ii \, HSM} \tag{7}$$

где $|S_{ii}|_{\text{нам}}$ — номинальное значение модуля коэффициента отражения нагрузки согласованной;

 $|S_{ii}|_{u_{3M}}$ — измеренное значение модуля коэффициента отражения;

 $\Phi_{ii\, {\scriptscriptstyle HOM}}$ – номинальное значение фазы коэффициента отражения нагрузки согласованной, градус;

 Φ_{ii} измеренное значение фазы коэффициента отражения, градус.

Результаты поверки считать положительными, если:

- значения модуля коэффициента отражения $|S_{ii}|_{u_{3M}}$ в диапазоне рабочих частот находятся в пределах от 0,01 до 1;
 - фаза коэффициента отражения находится в диапазоне от минус 180° до плюс 180°;
- абсолютная погрешность измерений модуля коэффициента отражения $\Delta |S_{ii}|$ находится в допускаемых пределах $\Delta |S_{ii}|_{\partial on}$ =0,018+0,014· $|S_{ii}|$ +0,018· $|S_{ii}|^2$;
- абсолютная погрешность измерений фазы коэффициента отражения находится в допускаемых пределах $\Delta \Phi_{ii \ don} = \pm [1,0 + (180/\pi) \cdot \arcsin(\Delta |S_{ii}|/|S_{ii}|)]$.
- $10.3\,$ Диапазон измерений модуля коэффициента передачи $|S_{ji}|\,$ определить методом прямых измерений и сравнения полученных результатов с нормированными значениями.

Абсолютную погрешность измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей $\Delta |S_{ii}|$ рассчитать по формуле (8).

$$\Delta |S_{ji}| = |S_{ji}|_{HOM} - |S_{ji}|_{U3M}, \tag{8}$$

где $|S_{ji}|_{HOM}$ — значение модуля коэффициента передачи, установленное на аттенюаторе с помощью 3.1.ZZT.0148.2015, дБ;

 $|S_{ji}|_{u_{3M}}$ — измеренное значение модуля коэффициента передачи, дБ.

Результаты поверки считать положительными, если:

- значения модуля коэффициента передачи $\Delta |S_{ji}|$ находятся в допускаемых пределах от 0 до минус 60;
- абсолютная погрешность измерений модуля коэффициента передачи согласованных четырехполюсников без учета нелинейности и уровня собственных шумов анализатора цепей находится в пределах $\Delta |S_{ii}|_{\partial on} = \pm [0,12+|0,01\cdot|S_{ji}|]$.
- 10.4 Диапазон измерений фазы коэффициента передачи определить методом прямых измерений и сравнения полученных результатов с нормированными значениями.

Абсолютную погрешность фазы коэффициента передачи рассчитать по формуле (9).

$$\Delta \Phi_{ji} = \Phi_{ji \, HOM} - \Phi_{ji \, USM} \tag{9}$$

где $\Phi_{ji\; \text{ном}}$ — номинальное значение фазы коэффициента передачи меры фазового сдвига, градус;

 Φ_{ji} изм – измеренное значение фазы коэффициента передачи, градус.

Результаты поверки считать положительными, если:

- значения фазы коэффициента передачи находятся в допускаемых пределах от минус 180° до плюс 180° ;
- абсолютная погрешность измерений фазы коэффициента передачи находится в пределах $\Delta \Phi_{ii \; \partial on} = \pm [0,5 + (180/\pi) \cdot \arcsin(\Delta |S_{ii}|/8,6)].$

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 МРЧД признается годным, если в ходе поверки все результаты поверки положительные.
- 11.2 Сведения о результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений.
- 11.3 При положительных результатах поверки по заявлению владельца МРЧД или лица, предъявившего его на поверку выдается свидетельство о поверке, и (или) в паспорт МРЧД вносится запись о проведенной поверке, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки.

11.4 Знак поверки в виде наклейки наносится на переднюю панель МРЧД.

11.5 При выполнении сокращенной поверки (на основании решения или заявки на проведение поверки, эксплуатирующей организации) в свидетельстве о поверке указывать диапазон частот, на котором выполнена поверка.

11.6 МРЧД, имеющий отрицательные результаты поверки, в обращение не допускается. На него выдается извещение о непригодности к применению с указанием причин забракования

Collect

по установленной форме.

Начальник НИО-1 ФГУП «ВНИИФТРИ»

Начальник центра - заместитель начальника НИО-1 ФГУП «ВНИИФТРИ»

Ведущий инженер лаборатории 113 НИО-1 ФГУП «ВНИИФТРИ» О.В. Каминский

И.П. Чирков

О.А. Коновалова