СОГЛАСОВАНО

Первый заместитель генерального директора — директор исследовательского центра «Авиационные двигатели» ФАУ «ЦИАМ им. П.И. Баранова»

В.Г. Марков

«<u>16</u>» <u>08</u> 2024 г.

ГСИ. Система информационно-измерительная для стенда испытаний поршневых авиационных двигателей мощностью до 85 кВт

Методика поверки МБДА.2888.0300.000 МП

СОДЕРЖАНИЕ

Принятые сокращения и условные обозначения
1 Общие положения
2 Перечень операций поверки средства измерений
3 Требования к условиям проведения поверки
4 Требования к специалистам, осуществляющим поверку9
5 Метрологические и технические требования к средствам поверки10
6 Требования (условия) по обеспечению безопасности проведения поверки11
7 Внешний осмотр средства измерений12
8 Подготовка к поверке и опробование средства измерений. Проверка программного обеспечения средства измерений
9 Определение метрологических характеристик средства измерений23
10 Подтверждение соответствия средства измерений метрологическим требованиям 55
11 Оформление результатов поверки
Приложение А (обязательное) Метрологические характеристики СИИ57
Приложение Б (обязательное) Выполнение поверки ИК и формирование протокола поверки ИК в ПО МІС «Recorder»
Приложение В (рекомендуемое) Форма протокола поверки при расчётном способе поверки
Приложение Г (рекомендуемое) Форма протокола поверки при автоматическом способе поверки

ПРИНЯТЫЕ СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

СИИ	 система информационно-измерительная для стенда испытаний
	поршневых авиационных двигателей мощностью до 85 кВт
ВП	 верхний предел диапазона измерений или нормированного значения
	измеряемого параметра
ДИ	 диапазон измерений
ИК	измерительный канал (каналы)
ИП	 измерительный преобразователь
ИФП	 индивидуальная функция преобразования (градуировочная характе-
	ристика)
KT	 контрольная точка диапазона измерений
ЛКМ	 левая кнопка манипулятора «мышь»
МΠ	 методика поверки
MX	 метрологические характеристики
НП	 нижний предел диапазона измерений
НФП	 номинальная функция преобразования (градуировочная характери-
	стика)
ПК	 персональный компьютер
ПКМ	правая кнопка манипулятора «мышь»
ПО	 программное обеспечение
ПИП	 первичный измерительный преобразователь (датчик)
СИ	 средства измерений
СП	 средства поверки (эталон) СИ или средства проверки технических
	характеристик СИ
CTO	 стендовое технологическое оборудование
	47.0000-00000000000000000000000000000000

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Настоящая методика поверки (МП) разработана в соответствии с Приказом Минпромторга России № 2907 от 28.08.2020 г., приказом Минпромторга России № 2510 от 31.07.2020 г. и устанавливает порядок, методы и средства проведения первичной и периодических поверок измерительных каналов (ИК) системы информационно-измерительной для стенда испытаний поршневых авиационных двигателей мощностью до 85 кВт (далее по тексту – система, СИИ).

Система информационно-измерительная для стенда испытаний поршневых авиационных двигателей мощностью до 85 кВт предназначена для измерений: момента крутящего силы, частоты электрических сигналов, расхода жидкости, виброускорения, давления, влажности и температуры атмосферного воздуха, напряжения и силы постоянного тока, давления, температуры, а также для отображения результатов измерений и расчетных величин и их регистрации в ходе проведения испытаний поршневых двигателей.

1.2 СИИ является многоканальной измерительной системой, отнесенной в установленном порядке к средствам измерений, и подлежит государственному регулированию обеспечения единства измерений на всех этапах жизненного цикла.

Структура СИИ приведена на схеме МБДА.2888.0300.000 E1, а характеристики ИК указаны в таблице А1 приложения А к настоящей МП.

Функционально система включает в себя 11 типов ИК, предназначенных для измерений в различных диапазонах следующих физических величин:

ИК крутящего момента силы;

ИК частоты вращения вала отбора мощности испытываемого изделия;

ИК массового расхода топлива;

ИК амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц;

ИК давления атмосферного воздуха;

ИК относительной влажности атмосферного воздуха;

ИК температуры атмосферного воздуха;

ИК напряжения постоянного тока;

ИК силы постоянного тока;

ИК давления воздуха и жидкостей;

ИК температур в диапазоне преобразования ПИП терморезистивного типа.

1.3 Способы поверки

- 1.3.1 Настоящая МП устанавливает комплектный и поэлементный способы поверки ИК.
- 1.3.2 В настоящей МП ИК всех перечисленных типов относятся к каналам прямых измерений параметров (физических величин).
 - 1.4 Нормирование метрологических характеристик
- 1.4.1 Номенклатура МХ ИК, определяемых по данной МП, установлена в соответствии с ГОСТ 8.009-84.
 - 1.4.2 Оценка и форма представления погрешностей по МИ 1317-2004.
 - 1.4.3 Нормирование поверки: количество КТ на ДИ по МИ 2440-97.
- 1.5 СИЙ обеспечивает прослеживаемость к следующим Государственным первичным эталонам:

ГЭТ 13-2023 ГПЭ единицы электрического напряжения в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 28.07.2023 г. № 1520 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы»;

ГЭТ 63-2019 ГПСЭ единиц массы и объема жидкости в потоке, массового и объемного расходов жидкости в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 26.09.2022 г. № 2356 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке,

объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости»;

ГЭТ 1-2012 ГПЭ единиц времени, частоты и национальной шкалы времени в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 26.09.2022 г. № 2360 «Об утверждении государственной поверочной схемы для средств измерений времени и частоты»;

ГЭТ 151-2020 ГПЭ единиц относительной влажности газов, молярной (объемной) доли влаги, температуры точки росы/инея, температуры конденсации углеводородов в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 21.11.2023 г. № 2415 «Об утверждении государственной поверочной схемы для средств измерений влажности газов и температуры конденсации углеводородов»; ГЭТ 23-2010 ГПЭ единицы давления-паскаля в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 20.10.2022 г. № 2653 «Об утверждении государственной поверочной схемы для средств измерений избыточного давления до 4000 МПа»;

ГЭТ 58-2018 ГПСЭ единиц длины, скорости и ускорения при колебательном движении твердого тела в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 27.12.2018 г. № 2772 «Об утверждении государственной поверочной схемы для средств измерений виброперемещения, виброскорости, виброускорения и углового ускорения»;

ГЭТ 101-2011 ГПЭ единицы давления для области абсолютного давления в диапазоне $1 \cdot 10^{-1} \div 7 \cdot 10^{5}$ Па в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 06.12.2019 г. № 2900 «Об утверждении Государственной поверочной схемы для средств измерений абсолютного давления в диапазоне $1 \cdot 10^{-1} \cdot 1 \cdot 10^{7}$ Па»;

ГЭТ 34-2020 ГПЭ единицы температуры в диапазоне от 0 до 3200 °C, ГЭТ 35-2021 ГПЭ единицы температуры - кельвина в диапазоне от 0,3 К до 273,16 К в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 23.12.2022 г. № 3253 «Об утверждении Государственной поверочной схемы для средств измерений температуры»;

ГЭТ 149-2023 ГПЭ единицы крутящего момента силы в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 31.07.2019 г. № 1794 «Об утверждении государственной поверочной схемы для средств измерений крутящего момента силы»; ГЭТ 4-91 ГПЭ единицы силы постоянного электрического тока с Приказом Федерального агентства по техническому регулированию и метрологии от 01.10.2018 г. № 2091 «Об утверждении государственной поверочной схемы для средств измерений силы постоянного электрического тока в диапазоне от 1·10-16 до 100 А».

1.6 Допускается возможность проведения поверки отдельных измерительных каналов и (или) отдельных автономных блоков из состава средств измерений для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.

1.7 Интервал между поверками – 1 год.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

2.1 Перечень операций, которые должны проводиться при поверке СИИ, приведен в Таблица 1.

Таблица 1 – Перечень операций поверки

таолица т ттере тень операции поверки	Номер	Проведение операции при		
Наименование операции	пункта документа по поверке	первичной поверке	периодиче- ской поверке	
1 Внешний осмотр	7	да	да	
2 Подготовка к поверке и опробова- ние средства измерений. Проверка программного обеспечения средства измерений	8	да	да	
3 Определение метрологических ха- рактеристик ИК:	9.1	да	да	
3.1 Определение приведенной (к ВП) и относительной погрешностей измерений крутящего момента силы	9.2	да	да	
3.2 Определение приведенной (к ВП) погрешности измерений частоты вращения вала отбора мощности	9.3	да	да	
3.3 Определение относительной по- грешности измерения массового рас- хода топлива	9.4	да	да	
3.4 Определение приведенной (к ВП) погрешности измерений амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц	9.5	да	да	
3.5 Определение абсолютной погрешности измерений давления атмосферного воздуха	9.6	да	да	
3.6 Определение абсолютной погрешности измерения относительной влажности атмосферного воздуха	9.7	да	да	
3.7 Определение абсолютной погрешности измерений температуры атмо- сферного воздуха	9.8	да	да	
3.8 Определение приведенной к ВП погрешности измерений напряжения постоянного тока	9.9	да	да	
3.9 Определение приведенной к ВП погрешности измерений силы постоянного тока	9.10	да	да	
3.10 Определение приведенной (к ВП) погрешности измерений давления воздуха и жидкостей	9.11	да	да	

продолжение таблицы 1

3.11 Определение приведенной (к ВП) погрешности измерений температур в диапазоне преобразования ПИП терморезистивного типа (термометров сопротивления)	9.12	да	да
4 Подтверждение соответствия средств измерений метрологическим требованиям	10	да	да
5 Оформление результатов поверки	11	да	да

Примечания:

¹ Допускается сокращенная поверка СИИ, в соответствии с требованиями программ испытаний изделий, для измерительного контроля параметров которых она предназначена;

² Допускается независимая поверка каждого ИК, в том числе после ремонта (в объеме первичной), с обязательным указанием об этом в свидетельстве о поверке СИИ.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

3.1 Поверка должна проводиться в рабочих условиях эксплуатации СИИ.

3.2 При проведении поверки должны быть соблюдены следующие условия окружающей среды:

- температура воздуха, °С

от 10 до 30;

- относительная влажность воздуха, %

от 30 до 80;

- атмосферное давление, кПа

от 96 до 106.

3.3 Питание СИИ:

- напряжение питающей сети переменного тока, В

 230 ± 23 ;

- частота питающей сети переменного тока, Гц

 50 ± 1 .

3.4 При выполнении поверок ИК СИИ условия окружающей среды для средств поверки должны соответствовать требованиям, указанным в руководствах на их эксплуатацию и требованиям, установленным ГОСТ 8.395-80.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

- 4.1 К поверке допускаются лица, изучившие руководство по эксплуатации (РЭ) на систему и входящие в её состав аппаратные и программные средства, знающие принцип действия используемых средств измерений и прошедшие инструктаж по технике безопасности (первичный и на рабочем месте) в установленном в организации порядке.
- 4.2 К поверке допускаются лица, освоившие работу с используемыми средствами поверки, изучившие настоящую методику и, имеющие достаточную квалификацию.
- 4.3 Лица, участвующие в поверке системы, должны проходить обучение и аттестацию по технике безопасности и производственной санитарии при работе в условиях её размещения.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, приведенные в таблице 2Таблица.

Таблица 2 - Перечень средств поверки

Ссылка на	Наименование и тип (условное обозначение) основных или вспомогательных
номер раз-	СП, обозначение нормативного документа, регламентирующего технические
дела МП	требования, основные и (или) метрологические и характеристики СП
9.12	Калибратор-измеритель унифицированных сигналов прецизионный «Элемер-ИКСУ-2012» (Регистрационный номер Федеральном информационном фонде по обеспечению единства измерений 56318-14): - пределы допускаемой основной абсолютной погрешности воспроизведения сопротивления постоянному току ±0,025 Ом; Кабель КИ2012R2 (Элемер)
9.3; 9.5	Генератор сигналов специальной формы АКИП-3408/1 (Регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 66780-17): - пределы допускаемой относительной погрешности установки частоты выходного сигнала в диапазоне 10^{-6} Γ ц $-5 \cdot 10^{6}$ Γ ц составляют $\pm 1 \cdot 10^{-4}$ от заданной частоты сигнала; - пределы допускаемой абсолютной погрешности установки размаха выходного напряжения на частоте 1 к Γ ц составляет $\pm (0,01 \cdot \text{Un-n} + 10)$ мB; Кабель сигнальный БЛИЖ.431583.011.589 Кабель сигнальный БЛИЖ.431583.011.496
9.9, 9.10, 9.11	Калибратор универсальный Н4-101 (Регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 75260-19): - пределы максимальной допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока на поддиапазоне 200 В составляют 66 мВ пределы максимальной допускаемой абсолютной погрешности воспроизведения силы постоянного тока на поддиапазоне 20 мА составляют 0,036 мА; Кабель сигнальный БЛИЖ.431586.100.035 Кабель сигнальный БЛИЖ.431586.100.077

- 5.2 При проведении поверки допускается применение других средств поверки, обеспечивающих определение метрологических характеристик поверяемых ИК с требуемой точностью (выбираются по поверочным схемам по соответствующим видам измерений).
- 5.3 Используемые средства поверки должны иметь действующее свидетельство об аттестации эталона и/или действующее свидетельство о поверке (с учетом требований поверочных схем), и/или наличие сведений о положительных результатах поверки в Федеральном информационном фонде по обеспечению единства измерений (ФИФ ОЕИ).

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «Правилами по охране труда при эксплуатации электроустановок», ГОСТ 12.2.007.0-75, ГОСТ Р 12.1.019-2017, ГОСТ IEC 61010-1-2014 и требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование. Любые подключения приборов проводить только при отключенном напряжении питания системы.
 - 6.2 Кроме того, необходимо соблюдать следующие требования:
- к работе по выполнению поверки (калибровки) допускаются лица не моложе 18 лет, прошедшие аттестацию по технике безопасности и промышленной санитарии, ознакомленные с эксплуатационной документацией на систему, с инструкцией по эксплуатации электрооборудования системы и с настоящей методикой;
- электрооборудование стенда, а также электроизмерительные приборы, используемые в качестве средств поверки, должны быть заземлены, блоки питания должны иметь предохранители номинальной величины;
- помещение, где проводится поверка, должно быть оборудовано пожарной сигнализацией и средствами пожаротушения;
- работы по выполнению поверки СИИ должны проводиться по согласованию с лицами, ответственными за её эксплуатацию.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 При выполнении внешнего осмотра должно быть установлено соответствие поверяемого ИК СИИ следующим требованиям:
 - комплектность ИК СИИ должна соответствовать РЭ и формуляру на СИИ;
- маркировка ИК СИИ должна соответствовать требованиям проектной и эксплуатационной документации;
- измерительные, вспомогательные и соединительные компоненты (кабельные разъемы, клеммные колодки и т. д.) ИК СИИ не должны иметь визуально определяемых внешних повреждений и должны быть надежно соединены и закреплены;
- соединительные линии (кабели, провода) не должны иметь повреждений изоляции и экранирования и должны быть надежно соединены с разъемами и клеммами;
- экранирование кабелей и проводов должно быть соединено между собой и с заземляющим контуром в соответствии с электрическими схемами;
 - СИИ должна быть защищена от несанкционированного вмешательства.
- 7.2 Результаты внешнего осмотра считать удовлетворительными, если выполняются условия, изложенные в пункте 7.1. В противном случае проведение поверки не проводится до устранения выявленных недостатков.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

Подготовка к поверке состоит из подготовки СИИ к работе, описанной в п.п. 8.1, и поочередной подготовки к поверке каждого выбранного ИК СИИ. Проверка программного обеспечения описана в п. 8.2. В п.п. 8.3 описаны типовые действия по выбору и подготовке ИК к поверке.

- 8.1 Подготовка СИИ к работе.
- 8.1.1 Включить источник бесперебойного питания (ИБП) A25 в стойке приборной A21 в соответствии с руководством по эксплуатации на ИБП.
- 8.1.2 Включить системный блок 4U сервера сбора данных А28 станции сбора данных СИИ в стойке приборной в соответствии с руководством по эксплуатации на системный блок 4U сервера сбора данных.
 - 8.1.3 Включить мониторы А32 и А33 станции сбора данных СИИ.
- 8.1.4 На экране мониторов должно быть окно (рабочий стол) загруженной операционной системы Windows.
- 8.1.5 Если ПО МІС «Recorder» на станции сбора данных СИИ не запущено, запустить его, используя ярлык на рабочем столе. Появится основное окно программы – рисунок 1.
- 8.1.6 Нажатием ЛКМ на кнопке «МЕRA» в правом верхнем углу окна ПО МІС «Recorder» открыть выпадающий список (рисунок 2), в котором нажатием ЛКМ выбрать опцию «Загрузить конфигурацию».
- 8.1.7 В открывшемся окне рисунок 3 выбрать нажатием ЛКМ конфигурацию Poverka.rcfg и нажать ЛКМ кнопку «Открыть».
- 8.1.8 Нажатием клавиши F12 на клавиатуре компьютера открыть окно «Настройки» ПО МІС Recorder, представленное на рисунке 4.
- 8.1.9 Нажатием ЛКМ выбрать вкладку «Аппаратные свойства» в окне рисунок 4. Вид окна, отображающий состав выбранных аппаратных средств, должен быть подобным представленному на рисунке 5.

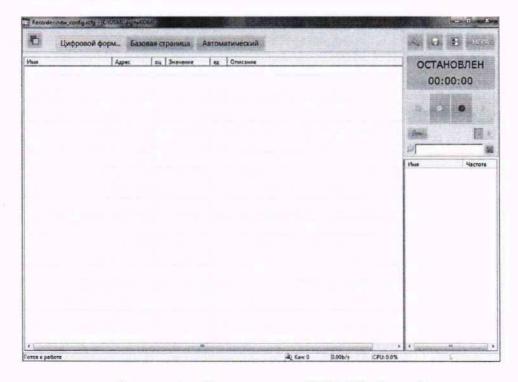


Рисунок 1 - Основное окно ПО MIC «Recorder»

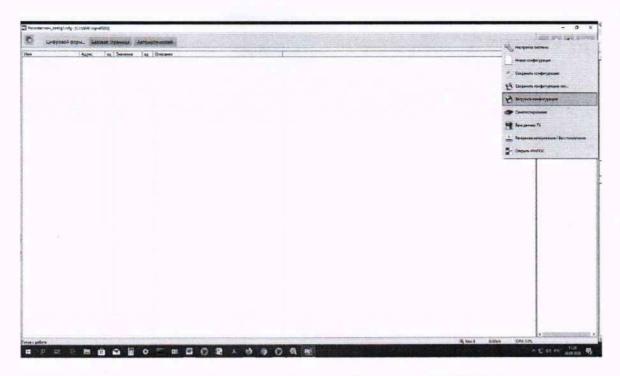


Рисунок 2 – Переход к выбору рабочей конфигурации ПО MIC «Recorder»

Рисунок 3 – Выбор конфигурации ПО MIC «Recorder», необходимой для проведения поверок ИК

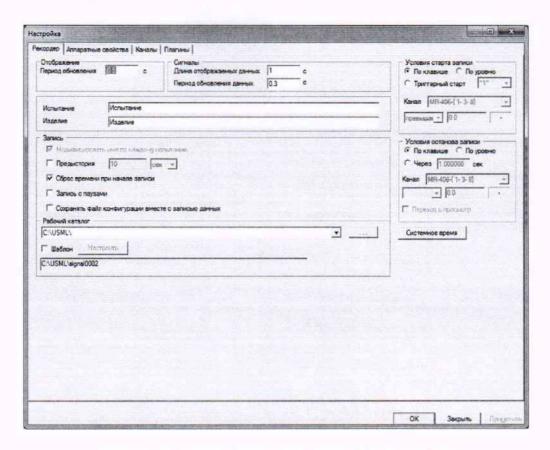


Рисунок 4 - Окно «Настройки» ПО MIC «Recorder»

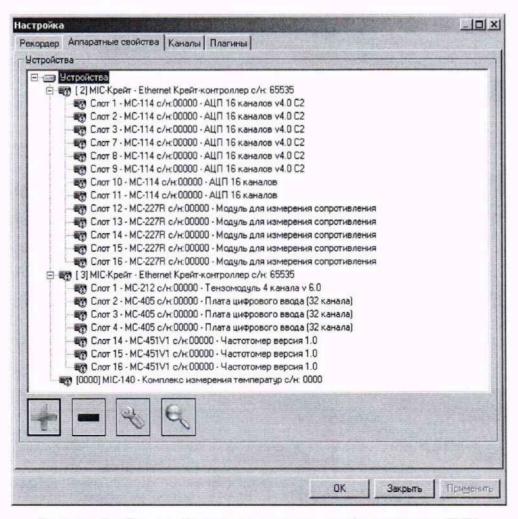


Рисунок 5 – Окно выбранного состава аппаратных средств СИИ

8.1.10 Выполнить инициализацию аппаратных средств командой «Сброс всех устройств» в соответствии с рисунком 6, затем закрыть окно «Аппаратные свойства» кнопкой «ОК».

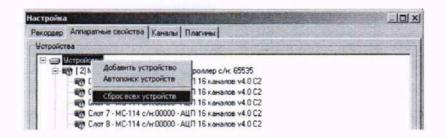


Рисунок 6 – Инициализация аппаратных средств

8.1.11 Нажать кнопку «МЕРА» в окне рисунок 1 и осуществить тестирование интерфейсов модулей, выбрав в выпавшем меню режим «Самотестирование» (рисунок 7).

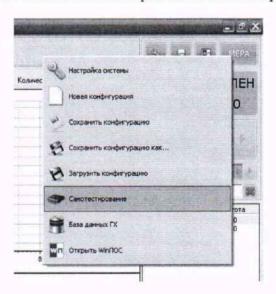


Рисунок 7 – Запуск режима «Самотестирование»

8.1.12 В открывшемся окне рисунок 8 нажать кнопку «Тест». Результат тестирования будет отражён в окне рисунок 9. В случае получения сообщения, представленного на рисунке 9, СИИ готова к дальнейшим работам по подготовке конкретных ИК к поверке (см. п.п. 8.3 ниже) и выполнению поверок в соответствии с разделом 9 настоящего документа. В противном случае работы по поверкам прекращаются до устранения неисправностей, выявленных в ходе самотестирования СИИ.

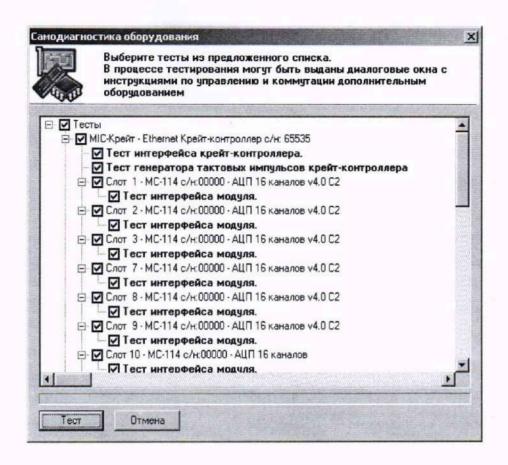


Рисунок 8 - Окно подготовки самотестирования.

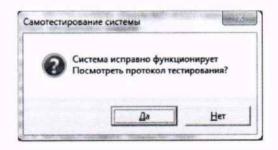


Рисунок 9 – Окно результата самотестирования.

8.2. Проверка программного обеспечения

Для проверки наименования и версии метрологически значимого ПО выполнить следующие операции:

- 8.2.1 Запустить программу управления комплексами MIC «Recorder» с конфигурацией Poverka.rcfg, выполнив действия, описанные в.п.п.8.1.3 8.1.9 настоящего документа;
- 8.2.2 В открывшемся главном окне ПО МІС «Recorder» щелчком ПКМ по пиктограмме в левом верхнем углу открыть контекстное меню;
- 8.2.3 Щелчком ЛКМ в контекстном меню на опции «О программе» открыть информационное окно, представленное на рисунке 10.
- 8.2.4 Убедиться в соответствии характеристик в информационном окне ПО міс «Recorder» (рисунок 10), характеристикам, приведенным ниже:
 - наименование MIC «Recorder»;
 - идентификационное наименование scales.dll;
 - номер версии scales.dll 1.0.0.8;
 - ID (цифровой идентификатор) 24СВС163.

Рисунок 10 - Вид информационного окна программы MIC «Recorder»

- 8.3 Для осуществления настройки ПО MIC Recorder на поверку конкретного ИК СИИ необходимо выполнить следующие операции:
- 8.3.1. При загруженной конфигурации Poverka.rcfg, выделить нажатием ЛКМ ИК, подлежащий поверке, в списке каналов в правой части окна ПО МІС «Recorder». Если одновременно возможен сбор данных для поверки нескольких ИК, следует выделить всю эту группу каналов.
- 8.3.2. Двойным нажатием ЛКМ на выделенном ИК (любом ИК из группы выделенных) открыть диалоговое окно «Настройка канала...» (пример его дан на рисунке 11);
- 8.3.3 Нажатием ЛКМ в окне рисунок 11 открыть вкладку «Дополнительно». Используя манипулятор «мышь», привести настройки в этой вкладке (рисунок 12) в соответствие с требованиями, указанными в соответствующем разделе настоящей методики поверки.
- 8.3.4. Вернуться во вкладку «Параметры» окна «Настройка канала...» нажатием ЛКМ на этой вкладке в окне рисунок 11.
- 8.3.5. В диалоговом окне рисунок 11 в разделе «Канальная ГХ» нажать ЛКМ кнопку № «Калибровка канала»;
- 8.3.6. В открывшемся диалоговом окне «Выбор типа градуировки...», представленном на рисунке 13, выбрать нажатием ЛКМ в разделе «Произвести..» боксы «поверку», «стандартная», а затем нажать кнопку «Далее»;

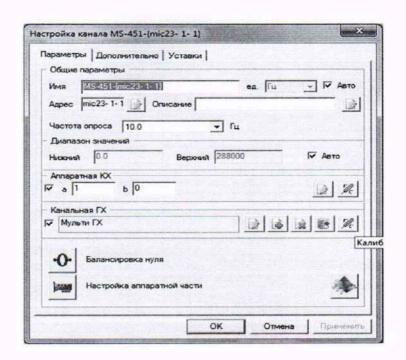


Рисунок 11 - Вид диалогового окна «Настройка канала...»

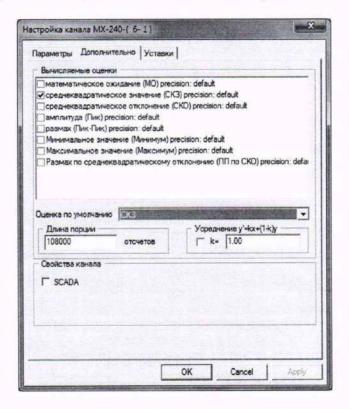


Рисунок 12 - Вид вкладки «Дополнительно» окна «Настройка канала..»

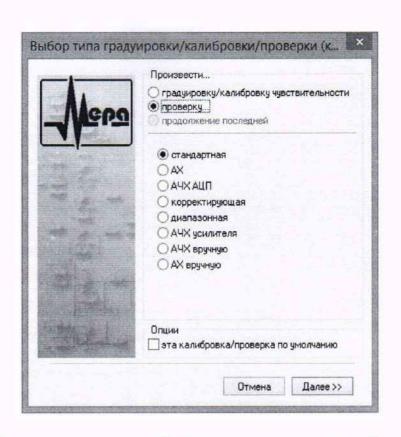


Рисунок 13 — Вид диалогового окна «Выбор типа градуировки/калибровки/проверки (канальная)»

8.3.7. Открывшееся диалоговое окно «Параметры проверки (канальная)», представленное на рисунке 14, соответствует случаю выбора одного ИК для поверки. При выборе для поверки группы ИК сведения о каждом из выбранных каналов будут представлены своей строкой в таблице в левой части окна. В окне рисунок 14 установить значения настроечных параметров с учетом следующих сведений:

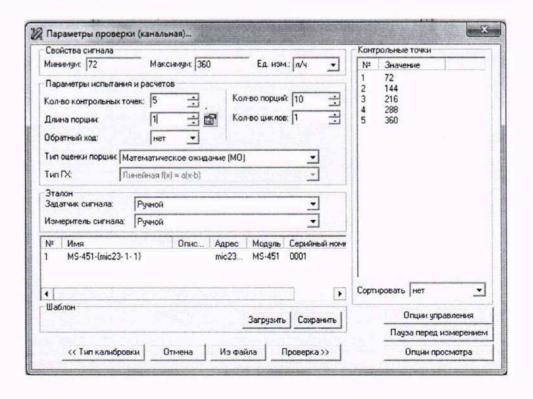


Рисунок 14 - Вид диалогового окна «Параметры проверки (канальная)»

- 8.3.7.1. В разделе «Свойства сигнала» в поле «Минимум» значение нижнего предела диапазона измерения (значение в поле «НП ДИ ИК» из таблицы контрольных точек для поверяемого ИК), в поле «Максимум» значение верхнего предела диапазона измерений (значение в поле «ВП ДИ ИК» из таблицы контрольных точек для поверяемого ИК), в поле «Ед. изм» единицы измерения поверяемого ИК;
 - 8.3.7.2. В разделе «Параметры испытания и расчета»:

в поле «Количество контрольных точек» – значение в поле «Количество КТ на ДИ ИК, n,» из таблицы контрольных точек для поверяемого ИК,

в поле «Длина порции» — указывается количество единичных отсчетов измеренных значений сигнала. По единичным отсчетам в порции проводится усреднение измеренной величины. Усреднение значений позволяет уменьшить случайную ошибку при расчете. С увеличением длины порции случайная ошибка уменьшается;

в поле «Количество порций» – количество выборок указанной выше длины, осуществляемых для одной контрольной точки,

в поле «Количество циклов» – число, задающее количество повторов циклов проведения измерений по всем контрольным точкам диапазона измерений,

в поле «Обратный ход» – включает механизм, при котором в режиме калибровки/градуировки помимо прямого прохода по контрольным точкам производится обратный ход. Эта функция необходима в случае, когда требуется учет гистерезиса;

в поле «Тип оценки порции» – параметр выбирается из предлагаемого списка: математическое ожидание, средне квадратичное отклонение (СКО), амплитуда, размах (двойная амплитуда) и т.д. Первое используется для измерений в контрольных точках с заданным постоянным уровнем измеряемого параметра, остальные – при переменном (гармонически изменяющемся) уровне измеряемого параметра.

- 8.3.7.3. В разделе «Эталон»:
- в поле «Задатчик сигнала» Ручной,
- в поле «Измеритель сигнала» Ручной;
- 8.3.7.4. Раздел «Контрольные точки» окна заполняется автоматически с равномерным распределением контрольных точек по диапазону измерения, включая начало и конец диапазона, но в случае необходимости значения контрольных точек следует отредактировать.
- 8.3.7.5. Для назначения длительности паузы перед измерением в каждой контрольной точке необходимо нажать ЛКМ кнопку «Пауза перед измерением». При этом откроется окно, представленное на рисунке 15. После назначения длительности паузы необходимо нажать в этом окне кнопку «Применить».

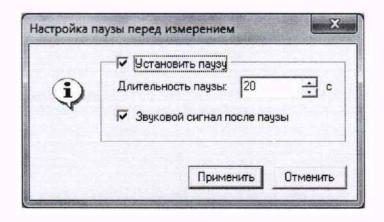


Рисунок 15 - Окно «Настройка паузы перед измерением»

8.3.7.6. Остальные поля и опции в окне рисунок 14 для настройки ПО МІС «Recorder» на поверку конкретного ИК СИИ изменять не требуется.

В разделах 9.2 – 9.12 настоящего документа для поверки каждого ИК или группы ИК с аналогичными параметрами даются конкретные указания по заполнению полей в окне «Параметры проверки (канальная)» (пример на рис. 14).

- 8.4. Процесс поверки запускается по нажатию кнопки «Проверка» в окне рис. 14. Описание последовательности действий при исполнении этого процесса для настройки ПО МІС Recorder на необходимый вид обработки результатов измерений, выполненных в ходе поверки конкретного ИК СИИ, и для формирование протокола поверки дано в Приложении Б к настоящему документу.
- 8.5. Необходимые настройки ПО MIC Recorder для формирования протоколов поверки конкретных ИК СИИ либо электрических частей соответствующих ИК приведены в разделах 9.2 9.12 настоящего документа.

9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ

9.1 Определение метрологических характеристик ИК

Поверку проводить комплектным и поэлементным способом.

9.2 Определение приведенной (к ВП) и относительной погрешности измерений крутящего момента силы

- 9.2.1 Поверку ИК выполнить в 2 этапа комплектным способом:
- 1-й этап контроль (оценка) состояния и МХ ПИП;
- 2-й этап проверка функционирования ИК.
- 9.2.2 Для контроля (оценки) ПИП крутящего момента силы МА20-300-Т42:
- 9.2.2.1 Проверить внешний вид, наличие пломб и маркировку. ПИП и его цифровой декодер Т42 не должны иметь видимых внешних повреждений, опломбирование должно 4быть выполнено согласно сборочному чертежу, маркировка типа и номера ПИП согласно паспорту.
- 9.2.2.2 Проверить свидетельства о поверке ПИП (первичной или периодической). Свидетельство о поверке должно быть действующим, значения относительной погрешности ПИП, указанные в свидетельстве, должно находиться в допускаемых пределах, указанных в описании типа СИ на ПИП.

Примечание — В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПИП или данными из «Описания типа» ПИП. Данное примечание распространяется на все ПИП, упоминаемые ниже.

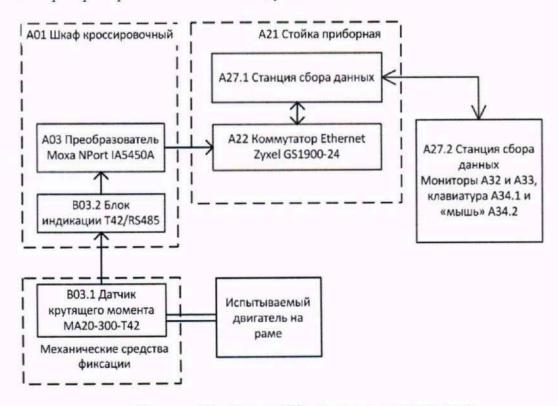


Рисунок 16 - Схема ИК крутящего момента силы

9.2.3 ПИП MA20-300-T42 через блок индикации T42/RS485 выдаёт результаты измерений крутящего момента силы в цифровом виде (см. схему ИК на рисунке 16), и в СИИ отсутствуют элементы, вносящие дополнительную погрешность в результаты измерений. Проверку функционирования ИК крутящего момента силы выполнить следующим образом:

- 9.2.3.1 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1 8.1.12.
- 9.2.3.2 Снять показания в окне цифрового формуляра ПО MIC «Recorder» (при загруженной конфигурации Poverka.rcfg) для ИК крутящего момента силы Мс. При неработающем испытываемом объекте эти показания не должны превышать величины 1 Н·м.
- 9.2.4 Результаты поверки ИК момента крутящего силы считать положительными, если результаты выполнения п.п.9.2.2 и п.п. 9.2.3.2 настоящего документа положительные.
- 9.2.5 При невыполнении указанных в п.п. 9.2.4 условий испытания СИИ приостанавливаются.

9.3 Определение приведенной (к ВП) погрешности измерений частоты вращения вала отбора мощности

- 9.3.1 Поверку ИК выполнить в 3 этапа поэлементным способом:
- 1 этап контроль (оценка) состояния и МХ ПИП МЭД-1;
- 2 этап поверку электрической части ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3-й этап определение и оценка максимальной погрешности ИК.
 - 9.3.2 Для контроля (оценки) ПИП частоты вращения МЭД-1:
- 9.3.2.1 Отсоединить ПИП от электрической части ИК, вынув вилку комплектного с ПИП кабеля из розетки стыкуемого с ним кабеля БЛИЖ.431585.011.273 с идентификатором К06.
- 9.3.2.2 Проверить внешний вид, наличие пломб и маркировку. ПИП не должен иметь видимых внешних повреждений, опломбирование должно быть выполнено согласно сборочному чертежу, маркировка типа и номера ПИП согласно паспорту.
- 9.3.2.3 Проверить свидетельства о поверке ПИП (первичной или периодической). Свидетельство о поверке должно быть действующим, значение погрешности ПИП, указанное в свидетельстве, должно находиться в допускаемых пределах, указанных в описании типа СИ на ПИП.

Примечание — В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПИП или данными из «Описания типа» ПИП. Данное примечание распространяется на все ПИП, упоминаемые ниже.

- 9.3.3 Поверку электрической части ИК измерения частоты электрических сигналов, соответствующей частоте вращения вала отбора мощности, выполнить следующим образом.
 - 9.3.3.1 Отсоединить кабель К58 от модуля коммутации ME-003 XT04.
- 9.3.3.2 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1 8.1.12.
- 9.3.3.3 Собрать схему поверки в соответствии с Рисунком 17, для чего подключить технологический кабель БЛИЖ.431583.011.589 к WAGO контактам 2 и 18 МЕ-003 ХТ04, свободных после выполнения пункта 9.3.3.1, а соединитель ВNС кабеля БЛИЖ.431583.011.589 установить в ВNС-коннектор «Output» генератора сигналов АКИП-3408/1.

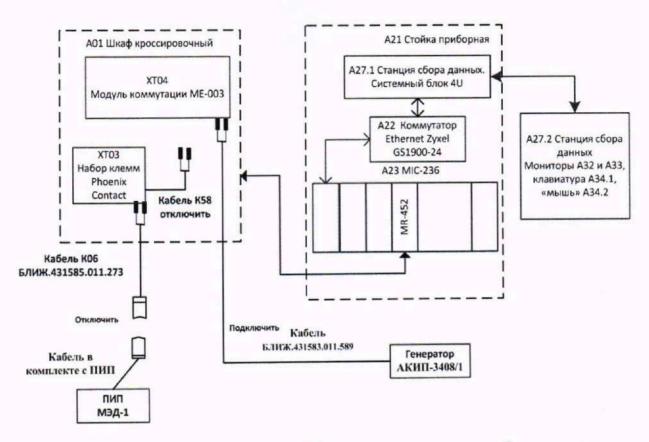


Рисунок 17 – Схема поверки ИК частоты вращения вала отбора мощности

9.3.3.4 Выполнить действия по основной настройке поверяемого ИК (модуля MR-452) в ПО МІС «Recorder», используя сведения п.п. 8.3.1-8.3.4 настоящего документа. В окне рисунок 11 установить частоту опроса 10 Γ ц, а в окне рисунок 12:

«Вычисляемая оценка» математическое ожидание (МО),

«Оценка по умолчанию» МО,

«Длина порции» 5 отсчётов

9.3.3.5 Для поверки ИК выполнить настройку ПО MIC «Recorder» на поверку канала с наименованием NBB в загруженной конфигурации Poverka.rcfg, используя указания, изложенные в п.п. 8.3 настоящего документа, и сведения из таблицы 3. В поле «Контрольные точки» внести значения из столбца «Номинальные значения частоты эталона в КТ, Гц» таблицы 4.

Таблица 3 - Настройки ПО MIC «Recorder» на выполнение поверки электрических

частей ИК частоты вращения вала отбора мощности

Поле в окне	Значение в поле для ИК		
рисунок 14	N_{BB}		
Нижний предел измерений	120		
Верхний предел измерений	4000		
Ед. изм	об/мин		
Количество контрольных точек	6		
Длина порции	5		
Количество порций	2		
Количество циклов	1		
Обратный ход	нет		

Поле в окне рисунок 14	Значение в поле для ИК
	N _{BB}
Тип оценки порции	Математическое ожидание (МО)
Задатчик сигнала	Ручной
Измеритель сигнала	Ручной

Таблица 4 - Контрольные точки измерений частоты электрических сигналов, соответ-

ствующей частоте вращения вала отбора мощности

Наименование ИК (измеряе- мого параметра)	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номи- нальные значения частоты враще- ния вала в КТ, об/мин	Номинальные значения частоты сигнала на выходе эталона в КТ, Гц
Частота переменного тока, соответствующая частоте частоте вращения вала отбора мощности (Параметр: N_{BB})	Гц	120	4000	6	120; 896; 1672; 2448; 3224; 4000	120; 896; 1672; 2448; 3224; 4000

- 9.3.3.6 Включить питание генератора АКИП-3408/1 и, используя его руководство по эксплуатации:
 - 9.3.3.6.1 Установить выходное сопротивление генератора равным 50 Ом;
- 9.3.3.6.2 Настроить генератор на выдачу периодических импульсных сигналов амплитудой 10 В и длительностью 0,1 мс.
- 9.3.3.7 Используя ПО MIC «Recorder», поочередно для всех номинальных значений частоты в КТ, указанных в столбце «Номинальные значения частоты сигнала на выходе эталона в КТ, Γ ц» таблице 4 для поверяемого ИК, провести измерения в соответствии с п.п. 1-6 Приложения Б к настоящему документу. При этом:
- 9.3.3.7.1 С помощью органов управления генератора АКИП-3408/1 устанавливать соответствующее КТ номинальное значение частоты импульсных сигналов на его выходе, указанное в столбце «Номинальные значения частоты сигнала на выходе эталона в КТ, Гц» таблицы 4.

Примечание: Необходимые номинальные значения частоты сигнала, устанавливаемые на выходе эталона в КТ, рассчитаны с учетом формирования за один оборот вала 60 импульсов датчиком МЭД-1 от прохождения каждого из 60 зубцов шестерни для съёма частоты вращения вала.

- 9.3.3.7.2 Запускать процесс измерений в очередной КТ после завершения установки частоты сигнала в очередной КТ.
- 9.3.3.8 Используя указания п.п. 7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. При этом во вкладке «Настройка протокола» окна «Настройка параметров протокола» (рисунок Б6 Приложения Б к настоящему документу) установить параметры в соответствии с таблицей 5. Для поверяемого ИК ПО МІС «Recorder» будет выполнена обработка результатов измерений по формулам (1) и (4), приведенным в разделе 10 настоящего документа.

Таблица 5 — Настройки протоколов поверки электрических частей ИК частоты вращения вала отбора мощности

Поле в окне «Настройка парамет-	Значение в поле для ИК
ров протокола» (рисунок Б6 Приложения Б)	N_{BB}
Дата, время (бокс в области «Шапка отчета»)	✓
Информация о диапазоне (бокс в области «Шапка отчета»)	✓
Наименование эталона (бокс в области «Шапка отчета»)	✓
Наименование эталона (текстовое поле в области «Шапка отчета»)	Генератор АКИП-3408/1
Информация о модуле (бокс в области «Шапка отчета»)	✓
Информация о канале (бокс в области «Шапка отчета»)	✓
Список контрольных точек (бокс в области «Шапка отчета»)	✓
Дата, время (бокс в области «Шапка страницы»)	✓
Номер страницы (бокс в области «Подвал страницы»)	✓
ФИО оператора (бокс в области «Повал страницы»)	✓
ФИО оператора (текстовое поле в области «Подвал страницы»)	ФИО сотрудника, проводившего поверку
Отдельная таблица по каждому каналу (бокс)	✓
Автоматический формат чисел (бокс)	✓
Относительная погрешность (бокс)	
Допусковый контроль (бокс)	✓
Погрешность: (выбор из выпадающего списка)	приведенная
Приведенная погрешность (бокс)	✓
Диапазон измерения (бокс)	•
Левое текстовое поле в области «Диапазон»	120
Правое текстовое поле в области «Диапазон»	4000
ОСТ 1 01021-93 (бокс)	
ВП= (текстовое поле)	4000
Допустимое значение: (текстовое поле)	0,2

- 9.3.4 Найти в протоколе, сформированном в результате выполнения п.п. 9.3.3.8, максимальное значение приведенной погрешности $\gamma_{\text{мах}}$ и частоту сигнала f_{\Im} , на которой это значение получено.
- 9.3.5 Рассчитать значение приведенной к ВП погрешности ПИП для частоты $f_{\mathfrak{I}}$ по формуле:

$$\gamma_{\text{MAX }\Pi\text{U}\Pi} = \delta_{\Pi\text{U}\Pi} \cdot f_{\text{Э}} / (F_{\text{B}\Pi\text{Э}} \cdot 100\%),$$

где

 $\delta_{\Pi \Pi \Pi}$ = 0,1 % — относительная погрешность ПИП МЭД-1 в соответствии с описанием типа средства измерений (Госреестр № 64257-16):

f_Э – частота сигнала на выходе эталона, найденная по п.п. 9.3.4;

 $F_{B\Pi \Im}$ — значение верхнего предела диапазона частот сигнала, подаваемого от эталона (см. таблицу 4).

- 9.3.7 Результаты поверки ИК частоты электрических сигналов, соответствующей частоте вращения вала отбора мощности, считать положительными, если:
 - 9.3.7.1 Результаты выполнения п.п. 9.3.2 настоящего документа положительные.
- 9.3.7.2 Сумма погрешности, найденной для электрической части ИК по п.п. 9.3.3.8, и приведенной погрешности ПИП МЭД-1, найденной по п.п. 9.3.5, находится в допускаемых пределах ± 0.2 %
 - 9.3.8 При невыполнении указанных в п.п. 9.3.7 условий, испытания СИИ приостанавливаются.
 - 9.3.9 После завершения поверки надлежит восстановить:
 - 9.3.9.1 Подключение кабеля К06 с кабелем ПИП, нарушенное при выполнении п.п. 9.3.2.1 настоящего документа;
 - 9.3.9.2 Подключение кабеля К58, нарушенное при выполнении п.п. 9.3.3.1 настоящего документа.

9.4 Определение приведенной (к ВП) и относительной погрешностей измерений массового расхода топлива

- 9.4.1 Поверку ИК массового расхода топлива выполнить в 2 этапа комплектным способом:
- 1 этап контроль (оценка) состояния и МХ ПИП ЭЛМЕТРО-Фломак-ExB-S002-LAU-001-R-OUM-A-G-CZX-XXX и его измерительного преобразователя (ИП);
 - 2-й этап проверка функционирования ИК.
 - 9.4.2 Для контроля (оценки) ПИП и ИП, проверить:
- 9.4.2.1 Внешний вид, наличие пломб и маркировку. ПИП и ИП не должны иметь видимых внешних повреждений; пломбирование должно соответствовать сборочному чертежу, маркировка типа и номера элементов ПИП и ИП должны соответствовать паспорту.
- 9.4.2.2 Свидетельство о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение относительной погрешности измерений массового расхода топлива для ПИП, указанное в свидетельстве, должно находиться в допускаемых пределах ± 0.2 %.

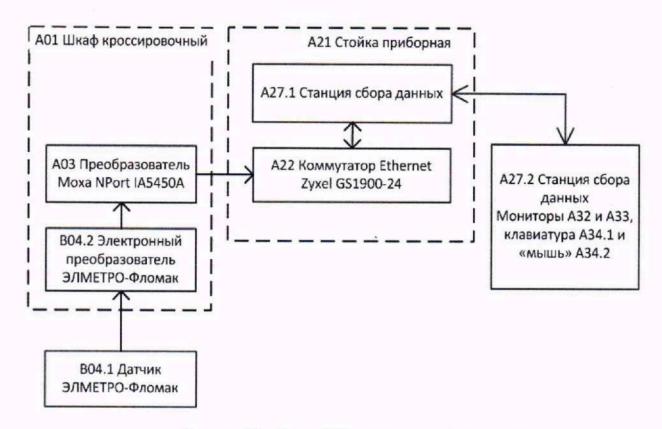


Рисунок 18 – Схема ИК массового расхода топлива

- 9.4.3 ПИП ЭЛМЕТРО-Фломак функционирует в комплексе с электронным преобразователем ЭЛМЕТРО-Фломак. С выхода электронного преобразователя результаты измерений в цифровом виде (см. схему ИК на рисунке 18) передаются через коммуникационные элементы в станцию сбора данных, и в СИИ отсутствуют элементы, вносящие дополнительную погрешность в результаты измерений. Проверку функционирования ИК массового расхода топлива выполнить следующим образом:
- 9.4.3.1 При отсутствии расхода топлива, в соответствии с инструкцией по эксплуатации на Счетчики-расходомеры массовые ЭЛМЕТРО-Фломак, используя элементы управления на его передней панели, выполнить операцию установки нулевого значения измеряемого параметра.
- 9.4.3.2 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п.8.1.1-8.1.12.
- 9.4.3.3 Проверить функционирование ИК массового расхода топлива путём сопоставления показаний канала с именем G_T в окне цифрового формуляра ПО МІС «Recorder» (при загруженной конфигурации Poverka.rcfg) и показаний на индикаторе на передней панели счетчика-расходомера массового ЭЛМЕТРО-Фломак. Показания должны совпадать.
- 9.4.4 Результаты поверки ИК массового расхода топлива считать положительными если:
 - 9.4.4.1 Результаты выполнения п.п. 9.4.2 настоящего документа положительные;
 - 9.4.4.2 Результаты выполнения п.п. 9.4.3 настоящего документа положительные.
 - 9.4.5 При не выполнении п.п. 9.4.4 испытания ИИС приостанавливаются.

9.5 Определение приведенной к ВП амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц

9.5.1 Поверку каждого ИК выполнить в 3 этапа поэлементным способом: 1 этап – контроль (оценка) состояния и МХ ПИП;

- 2 этап поверка электрической части ИК с целью определения диапазона измерений и погрешности измерений;
- 3-й этап определение и оценка максимальной погрешности ИК.
- 9.5.2 Для контроля (оценки) ПИП:
- 9.5.2.1 Проверить внешний вид и маркировку ПИП не должен иметь видимых внешних повреждений, маркировка типа и номера ПИП должны соответствовать паспорту (этикетке).
- 9.5.2.2 Проверить свидетельство о поверке ПИП (первичной или периодической).
 Свидетельство о поверке должно быть действующим.
- 9.5.3 Поверку электрической части ИК амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц провести следующим образом.
 - 9.5.3.1 Собрать схему поверки в соответствии с рис. 19, для чего:
- 9.5.3.1.1 Отсоединить вибропреобразователь AP 2038-100 от электрической части измерительного канала, вынув три вилки комплектного с AP 2038-100 кабеля из розеток стыкуемого с ним кабеля БЛИЖ.431585.011.388 с идентификатором К01.
- 9.5.3.1.2 Подключить одну вилку BNC технологического кабеля БЛИЖ.431583.011.496 к выходу генератора сигналов специальной формы АКИП-3408/1, а другую вилку BNC кабеля БЛИЖ.431583.011.496 к одной из трех розеток BNC кабеля БЛИЖ.431585.011.388 с идентификатором К01 (см. табл. 6).
- 9.5.3.2 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п.8.1.1-8.1.12.
- 9.5.3.3 Выполнить действия по основной настройке поверяемого ИК (модуля MR-202), используя сведения п.п. 8.3.1-8.3.4 настоящего документа. В окне рисунок 11 установить частоту опроса 27000 Γ ц, а в окне рисунок 12:

«Вычисляемая оценка» амплитуда (Пик),

«Оценка по умолчанию» Пик,

«Длина порции» 50 отсчётов

- 9.5.3.4 Включить питание генератора сигналов специальной формы АКИП-3408/1 и, используя его руководство по эксплуатации, настроить на формирование напряжения переменного тока.
- 9.5.3.5 Для поверки ИК выполнить настройку ПО МІС «Recorder» на поверку канала с наименованием, указанным в таблице 6 (в загруженной конфигурации Poverka.rcfg), используя указания, изложенные в п.п. 8.3 настоящего документа, и сведения из таблицы 7.

Таблица 6 — Сведения о подключении ПИП амплитуды виброускорения и средства поверки вместо ПИП

Наименование и обозначение параметра	Идентификаторы розеток BNC кабеля БЛИЖ.431585.011.388 с идентификатором K01	Наименование канала в конфигу- рации «Poverka.rcfg» ПО MIC «Record- er»
Амплитуда виброускорения в контрольной точке 1 испытываемого изделия Свърз	Канал 1	СВБР1
Амплитуда виброускорения в контрольной точке 1 испытываемого изделия Свбр2	Канал 2	СВБР2

Амплитуда виброускорения в контрольной точке 1 испытываемого изделия	Канал 3	СВБР3
СвбРЗ		

Таблица 7 – Настройки ПО MIC «Recorder» на выполнение поверки электрических частей ИК амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц

Поле в окне	Значение в поле для ИК		
рисунок 13	$C_{BБP1}$, $C_{BБP2}$, $C_{BБP3}$		
Нижний предел измерений	0,01		
Верхний предел измерений	5		
Ед. изм	В		
Количество контрольных точек	6		
Длина порции	50		
Количество порций	1		
Количество циклов	1		
Обратный ход	нет		
Тип оценки порции	Размах/2		
Задатчик сигнала	Ручной		
Измеритель сигнала	Ручной		

Таблица 8 — Контрольные точки измерений амплитуды виброускорения для поверки электрической части ИК в диапазоне частот от 0.5 до 3000 Γ ц

Наименование ИК (измеря-емого параметра)	Номинальные значения амплитуды виброускорения в КТ, м/c²	Значение амплитуды напряжения переменного тока на выходе генератора сигналов специальной формы АКИП-3408/1, соответствующее номинальному значению амплитуды виброускорения, В
Амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Γ ц (Параметры: C_{BEP1} , C_{BEP2} , C_{BEP3})	1,0 100,8 200,6 300,4 400,2	0,010 1,008 2,006 3,004 4,002
Частотные точки в диапа- зоне частот от 0,5 до 3000 Гц, Гц	500,0 0,5; 20; 10	5,000

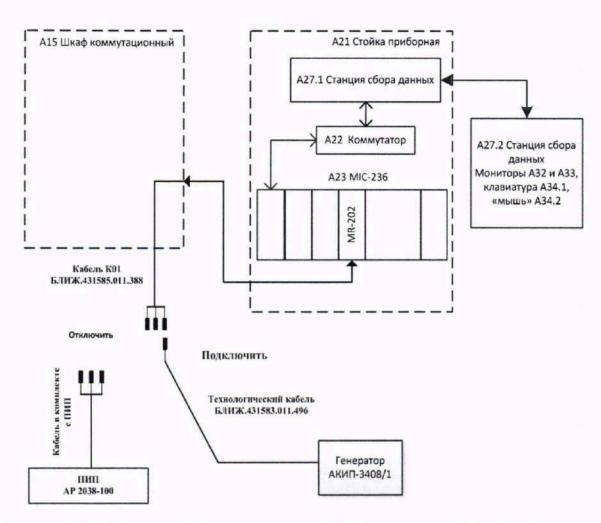


Рисунок 19 — Схема поверки электрической части ИК амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц

Таблица 9 – Настройки протоколов поверки электрической части ИК амплитуды вибро-

ускорения в диапазоне частот от 0,5 до 3000 Гц

Поле в окне «Настройка парамет-	Значение в поле для ИК
ров протокола» (рисунок Б6 Приложения Б)	C_{BEP1} , C_{BEP2} , C_{BEP3}
Дата, время (бокс в области «Шапка отчета»)	✓
Информация о диапазоне (бокс в области «Шапка отчета»)	✓
Наименование эталона (бокс в области «Шапка отчета»)	✓
Наименование эталона (текстовое поле в области «Шапка отчета»)	Генератор сигналов специальной формы АКИП- 3408/1
Информация о модуле (бокс в области «Шапка отчета»)	✓
Информация о канале (бокс в области «Шапка отчета»)	✓
Список контрольных точек (бокс в области «Шапка отчета»)	✓
Дата, время (бокс в области «Шапка страницы»)	✓
Номер страницы (бокс в области «Подвал страницы»)	✓

ФИО оператора (бокс в области «Повал страницы»)	✓
ФИО оператора (текстовое поле в области «Подвал страницы»)	ФИО сотрудника, проводившего поверку
Отдельная таблица по каждому каналу (бокс)	✓
Автоматический формат чисел (бокс)	✓
Относительная погрешность (бокс)	
Допусковый контроль (бокс)	✓
Погрешность: (выбор из выпада- ющего списка)	приведенная
Приведенная погрешность (бокс)	✓
Диапазон измерения (бокс)	•
Левое текстовое поле в области «Диапазон»	0,01
Правое текстовое поле в области «Диапазон»	5,00
ОСТ 1 01021-93 (бокс)	
ВП= (текстовое поле)	5,00
Допустимое значение: (текстовое поле)	±5

9.5.3.6 Используя ПО МІС «Recorder», поочередно для всех номинальных значений амплитуды виброускорения в КТ, указанных в столбце «Номинальные значения амплитуды виброускорения в КТ, м/с²» таблицы 8 для поверяемого ИК, провести измерения на каждой частоте из ряда, указанного в строке «Частотные точки в диапазоне частот от 0,5 до 3000 Γ ц, Γ ц» таблицы 8 (для каждого значения частоты формировать отдельный протокол), в соответствии с п.п.1 – 6 Приложения Б к настоящему документу.

При этом:

9.5.3.6.1 С помощью органов управления генератора сигналов специальной формы АКИП-3408/1 устанавливать соответствующие КТ значения амплитуды и частоты напряжения переменного тока на его выходе, указанные в столбце «Значение амплитуды напряжения переменного тока на выходе генератора сигналов специальной формы АКИП-3408/1, соответствующее номинальному значению амплитуды виброускорения, В» и строке «Частотные точки в диапазоне частот от 0,5 до 3000 Гц, Гц» таблицы 8;

9.5.3.6.2 Запускать процесс измерений в очередной КТ в ПО MIC «Recorder» после завершения установки значения напряжения в очередной КТ.

9.5.4 Используя указания п.п. 7 – 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. При этом во вкладке «Настройка протокола» окна «Настройка параметров протокола» (рисунок Б6 Приложения Б к настоящему документу) установить параметры в соответствии с таблицей 25. Для поверяемого ИК ПО МІС «Recorder» будет выполнена обработка результатов измерений по формулам (1) и (4), приведенным в разделе 10 настоящего документа.

9.5.4.1 Найти в протоколах, сформированных при выполнении п.п. 9.5.3.6, максимальную приведенную погрешность электрической части ИК $\gamma_{\text{3-чмах}}$.

- 9.5.4.2 Найти в таблице 8 номинальное значение амплитуды виброускорения V_{MAX} , соответствующее U_{MAX} .
- 9.5.4.3 Принять значение основной относительной погрешностис δ вибропреобразователя AP 2038-100 для V_{MAX} по описанию типа равным 15%.
- 9.5.4.4 Найти значение приведенной погрешности $\gamma_{\Pi \Pi \Pi}$ погрешности вибропреобразователя AP 2038-100 для V_{MAX} :

$\gamma_{\Pi \Pi \Pi} = (\delta \cdot V_{MAX}/V_{B\Pi}) \cdot 100 \%$

- 9.5.5 Результаты поверки ИК амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц считать положительными, если:
 - 9.5.5.1 Результаты выполнения п.п.9.5.2 настоящего документа положительные.
- 9.5.5.2 Сумма максимальной приведенной погрешности $\gamma_{\text{ЭЧМАХ}}$ и приведенной погрешности ПИП $\gamma_{\text{ПИП}}$ находится в допускаемых пределах ± 20 %.
- 9.5.6 При не выполнении условий, указанных в п.п. 9.5.5, испытания СИИ приостанавливаются.
- 9.5.7 После завершения поверки надлежит восстановить подключения комплектных с вибропреобразователем АР 2038-100 кабелей к кабелю БЛИЖ.431585.011.388 с идентификатором К01, нарушенные при выполнении п.п. 9.5.3.1 настоящего документа.

9.6 Определение абсолютной погрешности измерения давления атмосферного воздуха

- 9.6.1 Поверку ИК давления атмосферного воздуха выполнить в 2 этапа комплектным способом:
 - 1-й этап контроль (оценка) состояния и МХ ПИП;
 - 2-й этап проверка функционирования ИК.
 - 9.6.2 Для контроля (оценки) ПИП, проверить:
- 9.6.2.1 Внешний вид, наличие пломб и маркировку. ПИП «Барометр цифровой MSB181» не должен иметь видимых внешних повреждений; пломбирование должно соответствовать сборочному чертежу, маркировка типа и номера элементов ПИП должны соответствовать паспорту.
- 9.6.2.2 Свидетельство о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение абсолютной погрешности измерений давления атмосферного воздуха для ПИП, указанное в свидетельстве, должно находиться в допускаемых пределах ± 0.3 гПа.
- 9.6.3 Барометр цифровой MSB181 на выходе выдаёт результаты измерений в цифровом виде (см. схему ИК на рисунке 20), и в СИИ отсутствуют элементы, вносящие дополнительную погрешность в результаты измерений. Проверку функционирования ИК давления атмосферного воздуха выполнить следующим образом:
- 9.6.3.1 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1 8.1.12.
- 9.6.3.3 Проверить функционирование ИК давления атмосферного воздуха путём проверки наличия показаний канала с именем $P_{\rm B}$ в окне цифрового формуляра ПО МІС «Recorder» (при загруженной конфигурации Poverka.rcfg).

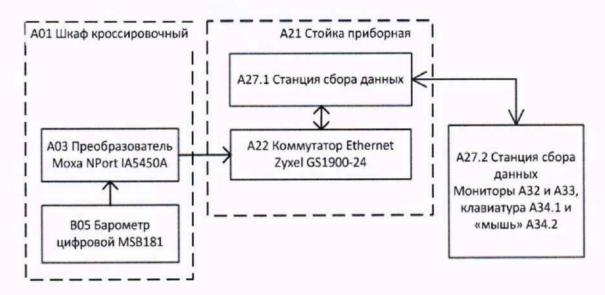


Рисунок 20 - Схема ИК давления атмосферного воздуха

- 9.6.4 Результаты поверки ИК давления атмосферного воздуха считать положительными если:
 - 9.6.4.1 Результаты выполнения п.п. 9.6.2 настоящего документа положительные;
 - 9.6.4.2 Результаты выполнения п.п. 9.6.3.3 настоящего документа положительные.
- 9.6.5 При не выполнении условий, указанных в п.п. 9.6.4, испытания СИИ приостанавливаются.

9.7 Определение абсолютной погрешности измерения относительной влажности атмосферного воздуха

- 9.7.1 Поверку ИК относительной влажности атмосферного воздуха выполнить в 2 этапа комплектным способом:
 - 1-й этап контроль (оценка) состояния и МХ ПИП;
 - 2-й этап проверка функционирования ИК.
 - 9.7.2 Для контроля (оценки) ПИП, проверить:
- 9.7.2.1 Внешний вид, наличие пломб и маркировку. ПИП «Измеритель влажности и температуры ИВТМ-7 М 3-Д-Е» (установлен в испытательном боксе) не должен иметь видимых внешних повреждений; пломбирование должно соответствовать сборочному чертежу, маркировка типа и номера элементов ПИП должны соответствовать паспорту.
- 9.7.2.2 Свидетельство о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение абсолютной погрешности измерений относительной влажности атмосферного воздуха для ПИП, указанное в свидетельстве, должно находиться в допускаемых пределах ± 2.0 %.
- 9.7.3 ИВТМ-7 М 3-Д-Е на выходе выдаёт результаты измерений в цифровом виде (см. схему ИК на рисунке 21), и в СИИ отсутствуют элементы, вносящие дополнительную погрешность в результаты измерений. Проверку функционирования ИК относительной влажности атмосферного воздуха выполнить следующим образом:
- 9.7.3.1 Кнопкой «Выбор» на передней панели ПИП выбрать режим индикации «Температура/Влажность»
- 9.7.3.2 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1 8.1.12.
- 9.7.3.3 Проверить функционирование ИК влажности атмосферного воздуха путём сопоставления показаний канала с именем R_H в окне цифрового формуляра ПО МІС «Recorder» (при загруженной конфигурации Poverka.rcfg) и показаний на индикаторе на передней панели ПИП ИВТМ-7 М 3-Д-Е. Показания в окне цифрового формуляра про-

граммы MIC «Recorder» должны совпадать с показаниями на индикаторе ИВТМ-7 М 3-Д- Е.

- 9.7.4 Результаты поверки ИК влажности атмосферного воздуха считать положительными если:
 - 9.7.4.1 Результаты выполнения п.п. 9.7.2 настоящего документа положительные;
 - 9.7.4.2 Результаты выполнения п.п. 9.7.3.3 настоящего документа положительные.
- 9.7.5 При не выполнении условий, указанных в п.п. 9.7.4, испытания СИИ приостанавливаются.

9.8 Определение абсолютной погрешности измерений температуры атмосферного воздуха

- 9.8.1 Поверку ИК температуры атмосферного воздуха выполнить в 2 этапа комплектным способом:
 - 1-й этап контроль (оценка) состояния и МХ ПИП;
 - 2-й этап проверка функционирования ИК.
 - 9.8.2 Для контроля (оценки) ПИП, проверить:
- 9.8.2.1 Внешний вид, наличие пломб и маркировку. ПИП «Измеритель влажности и температуры ИВТМ-7 М 3-Д-Е» (установлен в испытательном боксе) не должен иметь видимых внешних повреждений; пломбирование должно соответствовать сборочному чертежу, маркировка типа и номера элементов ПИП должны соответствовать паспорту.
- 9.8.2.2 Свидетельство о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение абсолютной погрешности измерений температуры атмосферного воздуха для ПИП, указанное в свидетельстве, должно находиться в допускаемых пределах, приведенных в описании типа средства измерений «Измерители влажности и температуры ИВТМ-7 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 71394-18).
- 9.8.3 ИВТМ-7 М 3-Д-Е на выходе выдаёт результаты измерений в цифровом виде (см. схему ИК на рисунке 21), и в СИИ отсутствуют элементы, вносящие дополнительную погрешность в результаты измерений. Проверку функционирования ИК температуры атмосферного воздуха выполнить следующим образом:
- 9.8.3.1 Кнопкой «Выбор» на передней панели ПИП выбрать режим индикации «Температура/Влажность».
- 9.8.3.2 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1 8.1.12.
- 9.8.3.3 Проверить функционирование ИК температуры атмосферного воздуха путём сопоставления показаний канала с именем Тав в окне цифрового формуляра ПО МІС «Recorder» (при загруженной конфигурации Poverka.rcfg) и показаний на индикаторе на передней панели ПИП ИВТМ-7 М 3-Д-Е. Показания в окне цифрового формуляра программы МІС «Recorder» должны совпадать с показаниями на индикаторе ИВТМ-7 М 3-Д-Е.

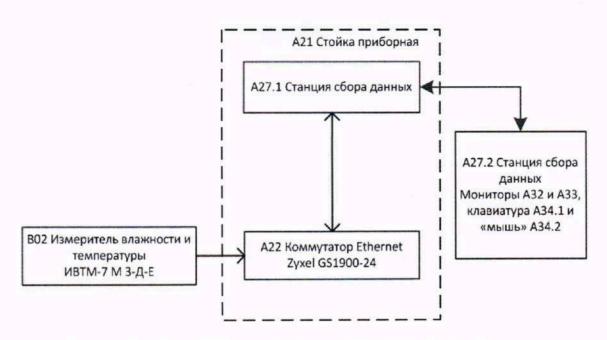


Рисунок 21 – Схема ИК температуры и относительной влажности

- 9.8.4 Результаты поверки ИК температуры атмосферного воздуха считать положительными если:
 - 9.8.4.1 Результаты выполнения п.п. 9.8.2 настоящего документа положительные;
 - 9.8.4.2 Результаты выполнения п.п. 9.8.3.3 настоящего документа положительные.
- 9.8.5 При не выполнении условий, указанных в п.п. 9.8.4, испытания СИИ приостанавливаются.

9.9 Определение приведенной к ВП погрешности измерений напряжения постоянного тока

- 9.9.1 Поверку ИК напряжения постоянного тока выполнить в 2 этапа поэлементным способом:
 - 1 этап поверку ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 2 этап определение и оценка максимальной погрешности ИК.
 - 9.9.2 Поверку ИК напряжения постоянного тока выполнить следующим образом.
- 9.9.2.1 Собрать схему поверки в соответствии с рисунком 22, для чего отсоединить клеммы кабеля БЛИЖ.431585.011.221 с идентификатором, указанным для поверяемого ИК в таблице 10, от выходов генератора и подключить к клеммам выходного напряжения калибратора универсального Н4-101 с учётом полярности.
- 9.9.2.2 Выполнить действия по основной настройке поверяемого ИК (модуля МК-227U3), используя сведения п.п. 8.3.1 - 8.3.4 настоящего документа. В окне рисунок 11 установить частоту опроса 100 Гц, а в окне рисунок 12:
 - «Вычисляемая оценка» математическое ожидание (МО),
 - «Оценка по умолчанию» МО,
 - «Длина порции»
 - 50 отсчётов
- 9.9.2.3 Для поверки выполнить настройку ПО MIC «Recorder» на поверку канала с указанным в таблице 10 наименованием в загруженной конфигурации Poverka.rcfg, используя указания, изложенные в п.п. 8.3 настоящего документа и сведения из таблицы 11.
- 9.9.2.4 Включить сетевое питание калибратора универсального Н4-101 и, используя сведения из его руководства по эксплуатации, установить режим воспроизведения напряжения постоянного тока.

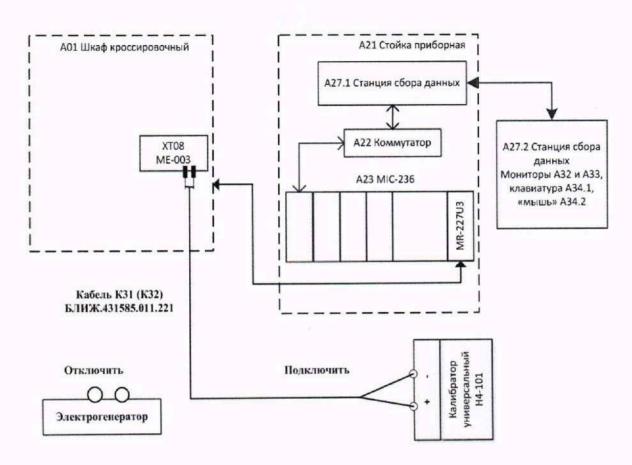


Рисунок 22 - Схема поверки ИК напряжения постоянного тока

Таблица 10 – Сведения для подключения калибратора универсального Н4-101 для повер-

ки ИК напряжения постоянного тока

Наименование и обозначение параметра	Идентификатор кабеля БЛИЖ.431585.011.221, к клеммам которого следует подключать калибратор универсальный Н4-101	Наименование ИК в конфигурации «Poverka.rcfg» ПО MIC «Recorder»
Напряжение 1 на клеммах генератора $U_{\Gamma I}$	K31	UF1
Напряжение 2 на клеммах генератора $U_{\Gamma 2}$	K32	UГ2

Таблица 11 – Настройки ПО MIC «Recorder» на выполнение поверки ИК напряжения постоянного тока

гостоянного тока			
Поле в окне	Значение в поле для ИК		
рисунок 13	$U_{\Gamma 1}, U_{\Gamma 2}$		
Нижний предел измерений	0		
Верхний предел измерений	200		
Ед. изм	В		

Поле в окне	Значение в поле для ИК		
рисунок 13	$U_{\Gamma 1}, U_{\Gamma 2}$		
Количество контрольных точек	5		
Длина порции	50		
Количество порций	1		
Количество циклов	1		
Обратный ход	нет		
Тип оценки порции	Математическое ожидание (MO)		
Задатчик сигнала	Ручной		
Измеритель сигнала	Ручной		

Таблица 12 - Контрольные точки измерений напряжения постоянного тока

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значения устанавливаемого напряжения на выходе калибратора универсаль- ного H4-101 в KT, В
Напряжение 1 на клеммах генератора Uгі	В	0	200	5	0,0 50,0 100,0
Напряжение 2 на клеммах генератора U _{Г2}	В	0	200	3	150,0 200,0

9.9.2.5 Используя ПО МІС «Recorder», поочередно для всех номинальных значений напряжения в КТ, указанных в столбце «Номинальные значения устанавливаемого напряжения на выходе калибратора универсального Н4-101 в КТ (В)» таблицы 12 для поверяемого ИК, провести измерения в соответствии с п.п. 1 – 6 Приложения Б к настоящему документу. При этом:

9.9.2.5.1 С помощью органов управления калибратора универсального Н4-101 устанавливать соответствующее КТ номинальное значение напряжения постоянного тока, указанное в столбце «Номинальные значения устанавливаемого напряжения на выходе калибратора универсального Н4-101 в КТ (В)» таблицы 12;

9.9.2.5.2 Запускать процесс измерений в очередной КТ в ПО MIC «Recorder» по-

сле завершения установки напряжения в очередной КТ.

9.9.2.6 Используя указания п.п.7 — 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. При этом во вкладке «Настройка протокола» окна «Настройка параметров протокола» (рисунок Б6 Приложения Б к настоящему документу) установить параметры в соответствии с таблицей 13. Для поверяемого ИК ПО МІС «Recorder» будет выполнена обработка результатов измерений по формулам (1) и (4), приведенным в разделе 10 настоящего документа.

Таблица 13 – Настройки протоколов поверки ИК напряжения постоянного тока

Поле в окне «Настройка парамет-	Значение в поле для ИК
ров протокола» (рисунок Б6 Приложения Б)	$U_{\Gamma 1}, U_{\Gamma 2}$
Дата, время (бокс в области «Шапка отчета»)	✓
Информация о диапазоне (бокс в	✓

области «Шапка отчета»)	
Наименование эталона (бокс в об-	✓
ласти «Шапка отчета»)	
Наименование эталона (текстовое поле в области «Шапка отчета»)	Калибратор универсальный Н4-101
Информация о модуле (бокс в об-	✓
ласти «Шапка отчета»)	
Информация о канале (бокс в области «Шапка отчета»)	✓
Список контрольных точек (бокс в	✓
области «Шапка отчета»)	***
Дата, время (бокс в области «Шапка страницы»)	✓
Номер страницы (бокс в области «Подвал страницы»)	✓
ФИО оператора (бокс в области «Повал страницы»)	✓
ФИО оператора (текстовое поле в	ФИО сотрудника, проводившего
области «Подвал страницы»)	поверку
Отдельная таблица по каждому каналу (бокс)	✓
Автоматический формат чисел (бокс)	✓
Относительная погрешность (бокс)	
Допусковый контроль (бокс)	✓
Погрешность: (выбор из выпадающего списка)	приведенная
Приведенная погрешность (бокс)	✓
Диапазон измерения (бокс)	•
Левое текстовое поле в области «Диапазон»	0
Правое текстовое поле в области «Диапазон»	200
ОСТ 1 01021-93 (бокс)	
ВП= (текстовое поле)	200
Допустимое значение: (текстовое поле)	±2

- 9.9.3 Результаты поверки ИК напряжения постоянного тока считать положительными, если максимальное значение погрешности, приведенной к ВП диапазона измерений, найденное для электрической части ИК по п.п. 9.9.2.6, находится в допускаемых пределах ± 2 %.
 - 9.9.4 При невыполнении п.п. 9.9.3, испытания СИИ приостанавливаются.
- 9.9.5 После завершения поверки надлежит восстановить подключения электрогенератора кабелями К31 и К32 БЛИЖ.431585.011.221, нарушенные при выполнении п.п. 9.9.2.1 настоящего документа.

9.10 Определение приведенной к ВП погрешности измерений силы постоянного тока

Поверку каждого ИК выполнить в 3 этапа поэлементным способом:

1 этап – контроль (оценка) состояния и МХ ПИП;

2 этап – поверка электрической части ИК с целью определения диапазона измерений и погрешности измерений;

3 этап – определение и оценка максимальной погрешности ИК.

9.10.1 Для контроля (оценки) ПИП:

- 9.10.1.1 Проверить внешний вид, наличие пломб и маркировку ПИП не должен иметь видимых внешних повреждений, пломбирование, маркировка типа и номера ПИП согласно паспорту (этикетке).
- 9.10.1.2 Проверить свидетельство о поверке (первичной или периодической).
 Свидетельство о поверке должно быть действующим.

Примечание — В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПИП.

9.10.2 Поверку электрической части ИК выполнить следующим образом.

9.10.2.1 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1-8.1.12.

9.10.2.2 Собрать схему поверки в соответствии с рисунком 23, для чего:

9.10.2.2.1 Отключить наконечники XP1 и XP2 кабеля БЛИЖ.431585.011.217, которым ПИП подключен к коммутационному модулю XT06 (см. табл. 14), от гнезд «ВЫХ.» и «ОБЩ.» преобразователя и установить в гнезда соединителя STEKKER LD222-422.

9.10.2.2.2 Установить наконечники технологического кабеля БЛИЖ.431586.100.035 (кабель на рисунок) в гнезда соединителя STEKKER LD222-422, а вилки типа «banan» кабеля БЛИЖ.431586.100.035 в соответствующие гнезда калибратора универсального Н4-101 так, чтобы плюсовый выход калибратора соответствовал подключенному наконечнику XP1 («ВЫХ.»), а наконечник минусового выхода — подключенному наконечнику XP2 «ОБШ.».

9.10.2.3 Выполнить действия по основной настройке поверяемого ИК используя сведения п.п. 8.3.1-8.3.4 настоящего документа для ИК с именем, указанным в таблице 14. Для модуля MR-114C2 в окне рисунок 11 установить частоту опроса 100 Γ ц, а в окне рисунок 12 установить:

«Вычисляемая оценка» математическое ожидание (МО),

«Оценка по умолчанию» МО,

«Длина порции» 50 отсчётов

9.10.2.4 Для поверки ИК выполнить настройку ПО МІС «Recorder» на поверку канала с наименованием, указанным в таблице 14 (в загруженной конфигурации Pover-ka.rcfg), используя указания, изложенные в п.п. 8.3 настоящего документа, и сведения из таблицы 15. В поле «Контрольные точки» вносить значения из столбца «Номинальные значения тока на выходе калибратора в КТ, (мА)» таблицы 16.

Таблица 14 - Сведения о подключении калибратора универсального Н4-101 вместо ПИП

Наименование и обозначение параметра	Идентификатор кабеля БЛИЖ.431585.011.217, ко- торым ПИП подключен к коммутационному модулю XT06	Наконечники кабеля БЛИЖ.431585.011.217 подключаемые к гнездам соединителя STEKKER LD222-422	Наименование канала в конфигурации «Poverka.rcfg» ПО MIC «Recorder»
Сила тока 1 в выходной цепи генератора, $I_{\Gamma I}$	К21	XP1	ІГ1
Сила тока 2 в выходной цепи генератора, Iг2	K22	XP2	ІГ2

9.10.2.5 Включить питание калибратора универсального H4-101 и, используя его руководство по эксплуатации, настроить калибратор на формирование тока контура в стандартном диапазоне (от 4 до 20 мА)

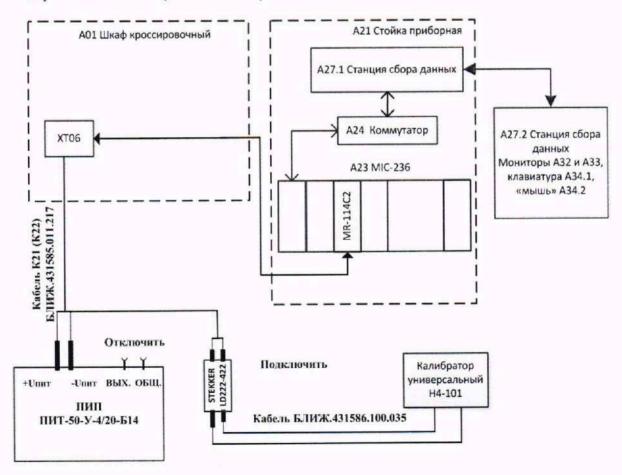


Рисунок 23 - Схема поверки электрических частей ИК силы постоянного тока

- 9.10.2.6 Используя ПО МІС «Recorder», поочередно для всех номинальных значений силы тока, указанных в столбце «Номинальные значения тока на выходе калибратора в КТ, (мА)» таблицы 16, провести измерения в соответствии с п.п. 1 6 Приложения Б к настоящему документу. При этом:
- 9.10.2.6.1 С помощью органов управления калибратора универсального Н4-101 устанавливать соответствующее КТ номинальное значение силы тока, указанное в столбце «Номинальные значения тока на выходе калибратора в КТ, (мА)» таблицы 16;
- 9.10.2.6.2 Запускать процесс измерений в очередной КТ в ПО MIC «Recorder» после завершения установки силы тока в очередной КТ.
- 9.10.2.7 Используя указания п.п. 7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. При этом во вкладке «Настройка протокола» окна «Настройка параметров протокола» (рисунок Б6 Приложения Б к настоящему документу) установить параметры в соответствии с таблицей 17. Для поверяемого ИК ПО МІС «Recorder» будет выполнена обработка результатов измерений по формулам (1) и (4), приведенным в разделе 10 настоящего документа.

Таблица 15 – Настройки ПО MIC «Recorder» на выполнение поверки электрических частей ИК силы постоянного тока

Поле в окне	Значение в поле для ИК		
рисунок 13	$I_{\Gamma 1}, I_{\Gamma 2}$		
Нижний предел измерений	4		
Верхний предел измерений	20		
Ед. изм	мА		
Количество контрольных точек	5		
Длина порции	50		
Количество порций	1		
Количество циклов	1		
Обратный ход	нет		
Тип оценки порции	Математическое ожидание (MO)		
Задатчик сигнала	Ручной		
Измеритель сигнала	Ручной		

Таблица 16 – Контрольные точки для поверки электрических частей ИК силы постоянного тока

OKd				T		II
Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значения силы тока в КТ (A)	Номинальные значения тока на выходе калибратора в КТ (мА)
Сила тока 1 в выходной цепи генератора, $I_{\Gamma 1}$ Сила тока 2 в выходной цепи генератора, $I_{\Gamma 2}$	A	0	50	5	0 12,5 25,0 37,5 50,0	4,00 8,00 12,00 16,00 20,00

тельными, если:

- 9.10.3.1 Результаты выполнения п.п. 9.10.1 настоящего документа положительные.
- 9.10.3.2 Сумма погрешности, найденной для электрической части ИК по п.п. 9.10.2.7, и основной приведенной погрешности ПИП, указанной в действующем свидетельстве о его поверке, находится в допускаемых пределах $\pm 2\%$ от ВП.
- 9.10.4 При не выполнении условий, указанных в п.п. 9.10.3, испытания СИИ приостанавливаются.
- 9.10.5 После завершения поверки надлежит восстановить подключения обоих ПИП через соответствующие кабели, нарушенные при выполнении п.п. 9.10.2 настоящего документа.

Таблица 17 – Настройки протоколов поверки ИК силы постоянного тока

Поле в окне «Настройка параметров про-	Значение в поле для ИК
токола» (рисунок Б6 Приложения Б)	$I_{\Gamma 1}, I_{\Gamma 2}$
Дата, время (бокс в области «Шапка от- чета»)	✓
Информация о диапазоне (бокс в области «Шапка отчета»)	✓
Наименование эталона (бокс в области «Шапка отчета»)	✓
Наименование эталона (текстовое поле в области «Шапка отчета»)	Калибратор универсальный Н4-101
Информация о модуле (бокс в области «Шапка отчета»)	✓
Информация о канале (бокс в области «Шапка отчета»)	✓
Список контрольных точек (бокс в обла- сти «Шапка отчета»)	✓
Дата, время (бокс в области «Шапка страницы»)	✓
Номер страницы (бокс в области «Подвал страницы»)	✓
ФИО оператора (бокс в области «Повал страницы»)	✓
ФИО оператора (текстовое поле в области «Подвал страницы»)	ФИО сотрудника, проводившего поверку
Отдельная таблица по каждому каналу (бокс)	✓
Автоматический формат чисел (бокс)	✓
Относительная погрешность (бокс)	
Допусковый контроль (бокс)	✓
Погрешность: (выбор из выпадающего списка)	приведенная
Приведенная погрешность (бокс)	✓
Диапазон измерения (бокс)	•
Левое текстовое поле в области «Диапа- зон»	4

Правое текстовое поле в области «Диапа- зон»	20
ОСТ 1 01021-93 (бокс)	
ВП= (текстовое поле)	20
Допустимое значение: (текстовое поле)	±0,7

9.11 Определение приведенной (к ВП) погрешности измерений давления воздуха и жидкостей

- 9.11.1 Поверку каждого из ИК давления воздуха и жидкостей выполнить в 3 этапа поэлементным способом:
 - 1 этап контроль (оценка) состояния и МХ ПИП;
- 2 этап поверка электрической части ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3-й этап определение и оценка максимальной погрешности ИК.
 - 9.11.2 Для контроля (оценки) состояния ПИП:
- 9.11.2.1 Отсоединить от ПИП соединитель XS1 (розетка 2РМТ14КПН4Г1В) кабеля БЛИЖ.431585.011.080 с идентификатором, указанным в таблице 18 для поверяемого ИК.
- 9.11.2.2 Проверить внешний вид, наличие пломб и маркировку ПИП не должен иметь видимых внешних повреждений, пломбирование должно соответствовать сборочному чертежу, маркировка типа и номер ПИП должны соответствовать паспорту.
- 9.11.2.3 Проверить свидетельства о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение относительной погрешности ПИП, указанное в свидетельстве, должно находиться в допускаемых пределах.

Примечание — В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПИП или данными из «Описания типа» ПИП.

Таблица 18 – Сведения, необходимые для подключения кабеля БЛИЖ.431586.100.077

Наименование и обозначение параметра	Идентификатор кабеля БЛИЖ.431585.011.080, которым подключен ПИП ИК давления и к которому подключается кабель БЛИЖ.431586.100.077	Наименование канала в конфигурации «Poverka.rcfg» ПО MIC «Recorder»
Избыточное давление топлива на входе в двигатель, P _{TC1}	К09	PTC1
Избыточное давление топлива на входе в двигатель, P _{TC2}	K10	PTC2
Компрессия ДВС, Рввц	K11	РВВЦ

^{9.11.3} Поверку электрической части ИК выполнить следующим образом.

^{9.11.3.1} Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1-8.1.12.

- 9.11.3.2 Собрать схему поверки в соответствии с рисунком 24, для чего:
- 9.11.3.2.1 Установить вилку кабеля БЛИЖ.431586.100.077 в розетку соединителя XS1 кабеля БЛИЖ.431585.011.080, освободившуюся после выполнения п.п. 9.11.2.1 настоящего документа (см. также таблицу 10):
- 9.11.3.2.2 Установить наконечники кабеля БЛИЖ.431586.100.077 в соответствующие контактные гнезда калибратора универсального H4-101: плюсовый наконечник кабеля БЛИЖ.431586.100.077 установить в плюсовый выход калибратора универсального H4-101, а минусовой в минусовой выход калибратора универсального H4-101.
- 9.11.3.3 Выполнить действия по основной настройке поверяемого ИК (модуля MR-114C2), используя сведения п.п. 8.3.1-8.3.4 настоящего документа. В окне рисунок 11 установить частоту опроса $100 \, \Gamma$ ц, а в окне рисунок 12 установить:
 - «Вычисляемая оценка» математическое ожидание (МО),
 - «Оценка по умолчанию» МО,
 - «Длина порции»
- 50 отсчётов
- 9.11.3.4 Для поверки ИК выполнить настройку ПО МІС «Recorder» на поверку канала с наименованием, указанным в таблице 10 (в загруженной конфигурации Poverka.rcfg), используя указания, изложенные в п.п. 8.3 настоящего документа и сведения из таблицы 11. В поле «Контрольные точки» внести значения из столбца «Номинальные значения силы постоянного тока на выходе калибратора в КТ (мА)» таблицы 12.
- 9.11.3.5 Включить питание калибратора универсального H4-101 и, используя его руководство по эксплуатации, настроить калибратор на формирование тока контура в стандартном диапазоне (от 4 до 20 мА).

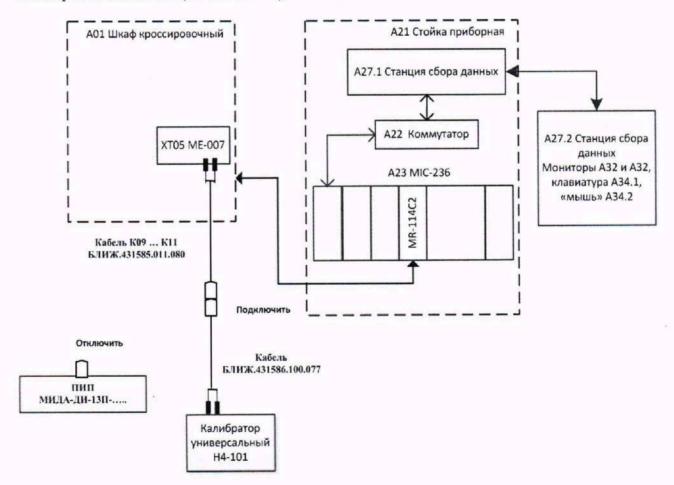


Рисунок 24 - Схема поверки ИК давления воздуха и жидкостей

Таблица 11 – Настройки ПО MIC «Recorder» на выполнение поверки электрических

частей ИК давления воздуха и жидкостей

Поле в окне рисунок 13	Значение в поле для ИК			
	P_{TC1}, P_{TC2}	Рввц		
Нижний предел измерений	0	0		
Верхний предел измерений	0,6	2		
Ед. изм	МПа			
Количество контрольных точек	5			
Длина порции	50			
Количество порций	1			
Количество циклов	1			
Обратный ход	нет			
Тип оценки порции	Математическое ожидание (МО)			
Задатчик сигнала	Ручной			
Измеритель сигнала	Ручно	рй		

Таблица 12 - Контрольные точки измерений силы постоянного тока, соответствующей

значениям давления воздуха и жидкостей

Наименование и обозначение параметра	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номинальные значения давления в КТ, x_k	Номинальные значения силы постоянного тока на выходе калибратора в КТ (мА)
Избыточное давление топлива на входе в двигатель, P_{TC1} , P_{TC2}	МПа	0,0	0,6		0,00; 0,15; 0,30; 0,45; 0,60	4,0; 8,0; 12,0; 16,0; 20,0
Компрессия ДВС, Р _{ВВЦ}		0,0	2,0	- 5	0,00; 0,50; 1,00; 1,50; 2,00	4,0; 7,2; 10,4; 13,6; 16,8

9.11.3.6 Используя ПО MIC «Recorder», поочередно для всех номинальных значений силы постоянного тока в КТ, указанных в столбце «Номинальные значения силы постоянного тока на выходе калибратора в КТ (мА)» таблицы 12 для поверяемого ИК, провести измерения в соответствии с п.п. 1 – 6 Приложения Б к настоящему документу. При этом:

9.11.3.6.1 С помощью органов управления калибратора универсального H4-101 устанавливать соответствующее КТ номинальное значение силы постоянного тока на его выходе, указанное в столбце «Номинальные значения силы постоянного тока на выходе калибратора в КТ (мА)» таблицы 12;

9.11.3.6.2 Запускать процесс измерений в очередной КТ в ПО MIC «Recorder» по-

сле завершения установки силы тока в очередной КТ.

9.11.3.7 Используя указания п.п. 7-12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. При этом во вкладке «Настройка протокола» окна «Настройка параметров протокола» (рисунок Б6 Приложения Б к настоящему документу) установить параметры в соответствии с таблицей 13. Для поверяемого ИК ПО МІС «Recorder» будет выполнена обработка результатов измерений по формулам (1) и (4), приведенным в разделе 10 настоящего документа.

Таблица 13 – Настройки протоколов поверки электрических частей ИК давления воздуха и жидкостей

Поле в окне «Настройка парамет-	Значение в по	оле для ИК
ров протокола» (рисунок Б6 Приложения Б)	P_{TC1}, P_{TC2}	Р _{ВВЦ}
Дата, время (бокс в области «Шапка отчета»)	✓	
Информация о диапазоне (бокс в области «Шапка отчета»)	✓	
Наименование эталона (бокс в области «Шапка отчета»)	✓	
Наименование эталона (текстовое поле в области «Шапка отчета»)	Калибратор универ	осальный Н4-101
Информация о модуле (бокс в области «Шапка отчета»)	✓	
Информация о канале (бокс в области «Шапка отчета»)	✓	
Список контрольных точек (бокс в области «Шапка отчета»)	✓	
Дата, время (бокс в области «Шапка страницы»)	✓	
Номер страницы (бокс в области «Подвал страницы»)	✓	
ФИО оператора (бокс в области «Повал страницы»)	✓	
ФИО оператора (текстовое поле в области «Подвал страницы»)	ФИО сотрудника повер	
Отдельная таблица по каждому каналу (бокс)	✓	
Автоматический формат чисел (бокс)	✓	
Относительная погрешность (бокс)		
Допусковый контроль (бокс)	✓	
Погрешность: (выбор из выпада- ющего списка)	привед	енная
Приведенная погрешность (бокс)	✓	
Диапазон измерения (бокс)	•	
Левое текстовое поле в области «Диапазон»	0	
Правое текстовое поле в области «Диапазон»	0,6	2,0

ОСТ 1 01021-93 (бокс)		
ВП= (текстовое поле)	0,6	2,0
Допустимое значение: (текстовое поле)	0,85	0,8

- 9.11.4 Результаты поверки ИК давления воздуха и жидкостей считать положительными, если:
- 9.11.4.1 Результаты выполнения п.п. 9.11.2 настоящего документа положительные.
- 9.11.4.2 Сумма погрешности, найденной для электрической части ИК по п.п. 9.11.3.7 и основной приведенной погрешности ПИП, указанной в свидетельстве о поверке этого ПИП, находится в допускаемых пределах $\pm 1,0$ % от ВП для ИК P_{TC1} , P_{TC2} , P_{BBIL} .
- 9.11.5 При невыполнении указанных в п.п. 9.11.4 условий, испытания СИИ приостанавливаются.
- 9.11.6 После завершения поверки надлежит, используя сведения из таблицы 10, восстановить подключения кабелей БЛИЖ.431585.011.080, нарушенные при выполнении п.п. 9.11.2.1 настоящего документа.

9.12 Определение приведенной (к ВП) погрешности измерений температур в диапазоне преобразования ПИП терморезистивного типа (термометров сопротивления)

- 9.12.1 Поверку каждого из ИК температур в диапазоне преобразования ПИП терморезистивного типа (термометров сопротивления) выполнить в 3 этапа поэлементным способом:
 - 1 этап контроль (оценка) состояния и МХ ПИП;
- 2 этап поверка электрической части ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3-й этап определение и оценка максимальной погрешности ИК.
 - 9.12.2 Для контроля (оценки) состояния ПИП:
- 9.12.2.1 Проверить внешний вид, наличие пломб и маркировку ПИП не должен иметь видимых внешних повреждений, пломбирование должно соответствовать сборочному чертежу, маркировка типа и номер ПИП должны соответствовать паспорту.
- 9.12.2.2 Проверить свидетельство о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение погрешности ПИП, указанное в свидетельстве, должно находиться в допускаемых пределах, указанных:
- для ПИП ТСПТ Exi 300-050-Pt100-A4-C10-6-100/1500 в документе «Описании типа средства измерений. Датчики температуры ТСМТ, ТСПТ, ТСМТ Ex, ТСПТ Ex» (регистрационный №75208-19);
- для ПИП ТС-1388 в документе «Описание типа средства измерений. Термометры сопротивления из платины и меди ТС» (Регистрационный № 18131-09).

Примечание — В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПИП или данными из указанного выше документа.

- 9.12.3 Для поверки электрической части ИК необходимо:
- 9.12.3.1 Собрать схему поверки в соответствии с рисунком 25, для чего:
- 9.12.3.1.1 Вынуть наконечники комплектного с ПИП кабеля из контактных гнезд клеммного соединителя STEKKER LD222-422 (см. табл. 14), к которому присоединён кабель БЛИЖ.431585.011.217 с идентификатором, указанным в таблице 14.
- 9.12.3.1.2 Установить проводники кабеля КИ2012R2 в контактные гнезда клеммного соединителя STEKKER LD222-422, указанные в таблице 14, а разъём этого кабеля

установить в разъем калибратора «Элемер-ИКСУ-2012» с меткой «Ом» (разъём выхода эмуляции в виде сигнала ТС, Ом).

- 9.12.4 Поверку электрической части ИК температур в диапазоне преобразования ПИП терморезистивного типа провести следующим образом.
- 9.12.4.1 Включить калибратор «Элемер-ИКСУ-2012» и, используя сведения из его руководство по эксплуатации, установить режим эмуляции с воспроизведением сигнала в виде сопротивления постоянному току.
- 9.12.4.2 Выполнить действия по подготовке элементов СИИ к поверке, описанные в п.п. 8.1.1 8.1.12.
- 9.12.4.3 Выполнить действия по основной настройке поверяемого ИК (модуля MR-227R3), используя сведения п.п. 8.3.1-8.3.4 настоящего документа. В окне рисунок 11 установить частоту опроса 10Γ ц, а в окне рисунок 12:
 - «Вычисляемая оценка» математическое ожидание (МО),
 - «Оценка по умолчанию» МО,
 - «Длина порции»
- 50 отсчётов

Таблица 14 — Сведения о подключении ПИП терморезистивного и кабеля KИ2012R2 для подключения калибратора «Элемер-ИКСУ-2012»

Наименование и обозначение параметра	Идентификатор кабеля БЛИЖ.431585.011.217, к которому через клеммник ПИП подключен ком- плектным кабелем	Идентификатор клеммни- ка STEKKER и №№ кон- тактов в нём для подклю- чения проводников кабеля КИ2012R2	Обозначения подключае- мых к контактам клемм- ника STEKKER провод- ников кабеля КИ2012R2	Наименование канала в кон- фигурации «Poverka.rcfg» ПО MIC «Re- corder»
Температура топлива на входе в двигатель, T_{T1}	K23	XT10 (+) 1 (+) 2 (-) 3 (-) 4	белый белый черный черный	TT1
Температура топлива на входе в двигатель, T_{T2}	K24	XT11 (+) 1 (+) 2 (-) 3 (-) 4	белый белый черный черный	TT2
Температура боковых поверхностей цилин- дров, Тыпці	К25	XT12 (+) 1 (+) 2 (-) 3 (-) 4	белый белый черный черный	тъпці
Температура боковых поверхностей цилин-дров, $T_{\rm БПЦ2}$	K26	XT13 (+) 1 (+) 2 (-) 3 (-) 4	белый белый черный черный	ТБПЦ2

Температура боковых поверхностей цилин- дров, Тыпцз	K27	XT14 (+) 1 (+) 2 (-) 3 (-) 4	белый белый черный черный	ТБПЦ3
Температура боковых поверхностей цилин- дров, Тыпц4	К28	XT15 (+) 1 (+) 2 (-) 3 (-) 4	белый белый черный черный	ТБПЦ4

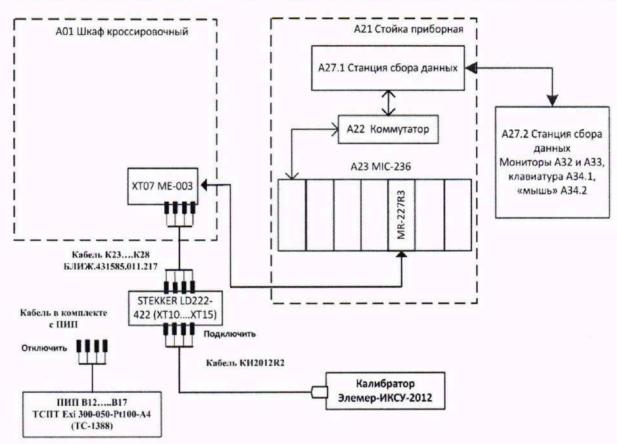


Рисунок 25 — Схема поверки электрической части ИК температур в диапазоне преобразования ПИП терморезистивного типа (термометров сопротивления)

- 9.12.4.4 Для поверки ИК выполнить настройку ПО МІС «Recorder» на поверку канала с наименованием, указанным в таблице 14 (в загруженной конфигурации Poverka.rcfg), используя указания, изложенные в п.п. 8.3 настоящего документа и сведения из таблицы 15. В поле «Контрольные точки» внести значения из столбца «Номинальные значения устанавливаемого сопротивления в КТ (Ом)» таблицы 15 для ИК.
- 9.12.4.5 Используя ПО МІС «Recorder», поочередно для всех номинальных значений сопротивления в КТ, указанных в столбце «Номинальные значения устанавливаемого сопротивления в КТ (Ом)» таблицы 15 для поверяемого ИК, провести измерения в соответствии с п.п. 1 6 Приложения Б к настоящему документу. При этом:
- 9.12.4.5.1 Устанавливать соответствующее КТ номинальное значение её сопротивления, указанное в столбце «Номинальные значения устанавливаемого сопротивления в КТ (Ом)» таблицы 15 на входе электрической части ИК с помощью калибратора «Элемер-ИКСУ-2012», контролируя устанавливаемое сопротивление по показаниям на его индикационной панели;
- 9.12.4.5.2 Запускать процесс измерений в очередной КТ в ПО MIC «Recorder» после завершения установки сопротивления в очередной КТ.

- 9.12.4.6 Используя указания п.п. 7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. При этом во вкладке «Настройка протокола» окна «Настройка параметров протокола» (рисунок Б6 Приложения Б к настоящему документу) установить параметры в соответствии с таблицей 16. Для поверяемого ИК ПО МІС «Recorder» будет выполнена обработка результатов измерений по формулам (1) и (4), приведенным в разделе 10 настоящего документа.
- 9.12.5 Результаты поверки ИК температур в диапазоне преобразования ПИП терморезистивного типа (термометров сопротивления) считать положительными, если:
- 9.12.5.1 Результаты выполнения п.п. 9.12.2 настоящего документа положительные.
- 9.12.5.2 Сумма погрешности, найденной для электрической части ИК по п.п. 9.12.4.6, и приведенной к ВП погрешности ПИП, рассчитанной по указанной в описании типа этого ПИП формуле для значения ВП диапазона измерений ИК, находится в допускаемых пределах $\pm 1,5$ %.
- 9.12.6 При не выполнении условий, указанных в п.п. 9.12.5, испытания СИИ приостанавливаются.
- 9.12.7 После завершения поверки надлежит восстановить подключения всех ПИП через соответствующие кабели к указанным в таблице 14 контактам соответствующего клеммника, нарушенные при выполнении п.п. 9.12.3 настоящего документа.

Таблица 15 – Контрольные точки измерений сопротивления, соответствующего значениям температуры жидких и газообразных сред в диапазоне преобразования ПИП терморезистивного типа (термометров сопротивления)

Наименование и обозначение параметра	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номи- нальные значения темпера- туры в КТ, $\frac{x}{k}$	Номинальные значения устанавливаемого сопротивления в КТ (Ом)
Температура топлива на входе в двигатель, T_{T1}	200	40	150	6	-40; -22; -4;	84,27; 91,30; 98,32;
Температура топлива на входе в двигатель, T_{T2}	- °C	-40	+50	0	14; 32; 50	105,35; 112,37; 119,40
Температура боковых поверхно- стей цилиндров, Тыпці					-40;	84,27;
Температура боковых поверхно- стей цилиндров, Тыпц2	- °C	-40	250	6	18; 76;	106,24; 128,20;
Температура боковых поверхно- стей цилиндров, Тыпцз		-40	250		134; 192; 250	150,17; 172,13; 194,10
Температура боковых поверхно- стей цилиндров, Тыпц4					230	154,10

Таблица 16 – Настройки протоколов поверки электрической части ИК температур в диа-пазоне преобразования ПИП терморезистивного типа (термометров сопротивления)

Поле в окне	Значение в поле для ИК		
«Настройка параметров протокола» (рисунок Б6 Приложения Б)	T_{T1}, T_{T2}	Тыпці, Тыпц2, Тыпц3, Тыпц4	
Дата, время (бокс в области «Шапка отче- та»)		✓	
Информация о диапа- зоне (бокс в области «Шапка отчета»)		✓	
Наименование этало- на (бокс в области «Шапка отчета»)		✓	
Наименование этало- на (текстовое поле в области «Шапка отче- та»)	Калибратој	р «Элемер-ИКСУ-2012»	
Информация о модуле (бокс в области «Шапка отчета»)		✓	
Информация о канале (бокс в области «Шапка отчета»)		✓	
Список контрольных точек (бокс в области «Шапка отчета»)		✓	
Дата, время (бокс в области «Шапка страницы»)		✓	
Номер страницы (бокс в области «Подвал страницы»)		✓	
ФИО оператора (бокс в области «Повал страницы»)		✓	
ФИО оператора (тек- стовое поле в области «Подвал страницы»)	ФИО сотр	рудника, проводившего	
Отдельная таблица по каждому каналу (бокс)		✓	
Автоматический формат чисел (бокс)		✓	
Относительная по- грешность (бокс)			

Допусковый контроль (бокс)	✓				
Погрешность: (выбор из выпадающего списка)	приведенная				
Приведенная погрешность (бокс)	✓				
Диапазон измерения (бокс)	•				
Левое текстовое поле в области «Диапазон»	84,27				
Правое текстовое поле в области «Диапазон»	119,40	194,10			
ОСТ 1 01021-93 (бокс)					
ВП= (текстовое поле)	119,40	194,10			
Допустимое значение: (текстовое поле)	1,0	1,24			

10 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

10.1 Обработка результатов измерений

10.1.1 Расчет абсолютной погрешности электрической части ИК

Значение абсолютной погрешности измерений в j-той точке определить по формуле:

$$\Delta A_j = \pm |A_j - A_{j3}| , \qquad (10.1)$$

где A_j – измеренное значение физической величины в j-той точке;

 A_{j} — значение физической величины, установленное рабочим эталоном в j-той точке.

10.1.2 Определение относительной погрешности электрической части ИК

Значение относительной погрешности измерений в j-той точке определить по формуле:

 $\delta_j = \pm \left| \frac{\Delta A_j}{A_{ia}} \right| \cdot 100\% \tag{10.2}$

10.1.3 Расчет значения приведенной (к ДИ) погрешности электрической части ИК Значения приведенной (к ДИ) погрешности измерений физической величины для каждой точки проверки определить по формуле:

$$\gamma_{j,A} = \pm \frac{\Delta A_j}{|P_B - P_B|} \cdot 100\%$$
, (10.3)

где $P_{\rm B}$ — значение верхнего предела измерений; $P_{\rm H}$ — значение нижнего предела измерений.

10.1.4 Расчет значения приведенной (к ВП) погрешности электрической части ИК Значения приведенной к верхнему пределу погрешности измерений физической величины для каждой точки проверки определить по формуле:

$$\gamma_{j_{\rm B}} = \pm \frac{\Delta A_j}{P_{\rm B}} \cdot 100\% \tag{10.4}$$

10.1.5 Расчет значений суммарной с ПИП погрешности

Значения относительной или приведенной погрешности суммарной для электрической части ИК и ПИП определяется по формуле:

$$\Sigma_{\delta(\gamma)} = |\delta(\gamma)_{34}| + |\delta(\gamma)_{\Pi H \Pi}| \tag{10.5}$$

где: $\delta(\gamma)_{34}$ — погрешность электрической части ИК; $\delta(\gamma)_{\Pi U\Pi}$ — погрешность первичного преобразователя ИК.

10.2 Критерии принятия решения по подтверждению соответствия системы метрологическим требованиям

10.2.1 Результаты поверки ИК СИИ считать положительными, если границы погрешности измерений ИК по результатам поверки находятся в допускаемых пределах, указанных в Приложении А

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 Сведения о результатах поверки передаются в Федеральный информационный фонд по обеспечению единства измерений.
- 11.2 Результаты поверки заносятся в протокол поверки. Рекомендуемые формы протоколов поверки приведены в Приложении В при расчетном способе поверки; Приложении Г при автоматическом способе поверки.
- 1.1 По заявлению владельца СИИ или лица, представившего её на поверку, аккредитованное на поверку лицо, проводившее поверку, в случае положительных результатов поверки наносит на верхний левый угол дверцы стойки приборной знак поверки и (или) выдает свидетельство о поверке и (или) вносит запись о проведенной поверке в паспорт (формуляр). В случае отрицательных результатов поверки выдает извещения о непригодности к применению.
- 1.2 В случае отрицательных результатов поверки после устранения причин неисправности проводится повторная поверка в соответствии с требованиями настоящей метолики.
- 1.3 Требования по защите СИИ от несанкционированного вмешательства, которое может повлечь изменение метрологических характеристик, обеспечиваются ограничением доступа к месту установки системы и запиранием ключом замка на двери стойки.

Главный метролог, начальник отдела ФАУ «ЦИАМ им. П.И. Баранова»

Заместитель начальника отдела

Начальник сектора

Б.И. Минеев

Р.Г. Павлов

М.В. Корнеев

Приложение A (обязательное)

Метрологические характеристики СИИ

Таблица А1 – Метрологические характеристики СИИ

Таблица А1 – Метрологические характеристики СИИ	
Наименование характеристики	Значение
ИК крутящего момента силы	
Диапазон измерений крутящего момента силы, H·м	от 15 до 150
Пределы допускаемой приведенной к верхнему пределу (ВП) погрешности измерений крутящего момента силы, %	±0,5
Диапазон измерений крутящего момента силы, H·м	от 150 до 300
Пределы допускаемой относительной погрешности измерений крутящего момента силы, %	±0,5 (от ИЗ)
Количество ИК (Мс)	1
ИК частоты вращения вала отбора мощности	
Диапазон измерений частоты вращения, об/мин	от 120 до 4000
Пределы допускаемой приведенной к ВП погрешности измерений частоты вращения вала отбора мощности, %	±0,2
Количество ИК (Nвв)	1
ИК массового расхода топлива	
Диапазон измерений массового расхода топлива, кг/ч	от 1 до 18
Пределы допускаемой приведенной к верхнему пределу (ВП) погрешности	
измерений массового расхода топлива, %	±0,5
	от 18 до 36
Диапазон измерений массового расхода топлива, кг/ч	01 10 до 30
Пределы допускаемой относительной погрешности измерений массового	10.5 (om 142)
расхода топлива, %	±0,5 (от ИЗ)
Количество ИК (G _T)	1
ИК амплитуды виброускорения в диапазоне частот от 0,5 до 300	ОТЦ
Амплитуда измеряемого виброускорения в диапазоне частот от 0,5 до 3000 Γ ц, м/с²	от 0 до 500
Пределы допускаемой приведенной к ВП погрешности измерений амплитуды виброускорения в диапазоне частот от 0,5 до 3000 Гц, %	±20
Количество ИК (Свбр1, Свбр2, Свбр3)	3
ИК давления атмосферного воздуха	
Диапазон измерений давления атмосферного воздуха, гПа	от 600 до 1100
Пределы допускаемой абсолютной погрешности измерений давления давления атмосферного воздуха, гПа	±0,67
Количество ИК (РБ)	1
ИК относительной влажности атмосферного воздуха	
Диапазон измерений относительной влажности воздуха, %	от 0 до 98
Пределы допускаемой абсолютной погрешности измерений относительной влажности воздуха, %	±2,0
Количество ИК (R _H)	1
ИК температуры атмосферного воздуха	
Диапазон измерений температуры, °C	от -45 до +60
Пределы допускаемой абсолютной погрешности измерений температуры атмосферного воздуха, °С	±1,6
Количество ИК (Тав)	1
IVOID JOST DO LIIV (1 AB)	1

ИК напряжения постоянного тока	
Диапазон измерений напряжения постоянного тока, В	от 0 до 200
Пределы допускаемой приведенной к ВП погрешности измерения напряжения постоянного тока, %	±2,0
Количество ИК ($U_{\Gamma 1}, U_{\Gamma 2}$)	2
ИК силы постоянного тока	
Диапазон измерений силы постоянного тока, А	от 0 до 50
Пределы допускаемой приведенной к ВП погрешности измерений силы постоянного тока, %	±2
Количество ИК ($I_{\Gamma 1}$, $I_{\Gamma 2}$)	2
ИК давления воздуха и жидкостей	
Диапазон измерений давления абсолютного, МПа	от 0 до 2
Пределы допускаемой приведенной к ВП погрешности измерений давления абсолютного, %	±1,0
Количество ИК (Рввц)	1
Диапазон измерений давления избыточного, МПа	от 0 до 0,6
Пределы допускаемой приведенной к ВП погрешности измерений давления избыточного, %	±1,0
Количество ИК (Ртс1, Ртс2)	2
ИК температур в диапазоне преобразования ПИП терморезистивно	го типа
Диапазон измерений температуры, °С	от -40 до +50
Пределы допускаемой, приведенной к ВП погрешности измерений температуры, %	±1,5
Количество ИК ($T_{T1} T_{T2}$)	2
Диапазон измерений температуры, °С	от -40 до 250
Пределы допускаемой приведенной к ВП погрешности измерений температуры, %	±1,5
Количество ИК (Тыпці, Тыпці, Тыпці, Тыпці, Тыпці)	4

Приложение Б (обязательное)

Выполнения поверки ИК и формирование протокола поверки ИК в ПО MIC "Recorder"

1. После выполнения настроек ПО "Recorder" на поверку выбранного ИК СИИ, описанных в разделе 8.3 настоящего документа, нажатием кнопки «Проверка» в окне «Параметры проверки (канальная)» (рисунок 14) открывается диалоговое окне «Настройка завершена», вид которого представлен на Рисунок Б1.

Рисунок Б1 — Вид диалогового окна «Настройка завершена»

2. По нажатию в окне рисунок Б1 кнопки «Проверка» открывается диалоговое окно «Измерение», вид которого представлен на рисунке Б2Рисунок .

Рисунок Б2 - Вид диалогового окна «Измерение»

- 3. В окне рисунок Б2 в поле «Заданное значение сигнала» выводится значение сигнала на входе электрической части ИК, формируемое соответствующим средством поверки. Путем управления средством поверки и используя средства индикации средства поверки, необходимо установить значение параметра на входе ИК (или электрической части ИК), соответствующее значению поля «Установите значение сигнала» в окне рисунок Б2. В поле «Установите значение сигнала» ПО МІС Recorder перед каждыми измерениями в очередной контрольной точке последовательно программно задаются значения из поля «Контрольные точки» окна «Параметры поверки (канальная)».
- 4. Измерение заданного сигнала для одной контрольной точки выполняется при нажатии кнопки «Следующее» в окне рисунок Б2. При этом до начала собственно измерений в контрольной точке происходит отработка заданной паузы. Пример представлен на рисунке Б3. При необходимости можно остановить таймер отсчета времени до начала измерений нажатием кнопки «Остановить таймер» в окне рисунок Б3. При этом окно рисунок Б3 возвращается к виду, представленному на рисунке Б2.

Рисунок Б3 – Начало измерений в контрольной точке.

5. После проведения измерений для последней контрольной точки открывается диалоговое окно «Измерение завершено», представленное на рисунке Б4.

Рисунок Б4 - Диалоговое окно «Измерение завершено»

6. По нажатию в окне рисунок Б4 кнопки «Расчет» открывается диалоговое окно

«Обработка и просмотр измеренных данных», пример которого для задания поверки одного ИК представлен на рисунке Б5. При задании поверки группы ИК в таблице на рисунке Б5 будут представлены строками результаты измерений по всем каналам группы.

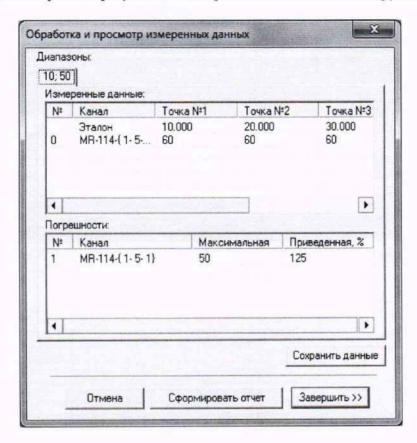


Рисунок Б5 – Пример окна «Обработка и просмотр измеренных данных»

- 7. Результаты измерений, представленные в окне рисунок Б5, могут быть использованы для ручного расчета оценок погрешностей измерений и ручного формирования протокола поверки по форме, представленной в Приложении В.
- 8. ПО MIC Recorder предоставляет возможность автоматической обработки результатов измерений с формированием протокола, содержание которого может быть задано перед формированием. Для этого необходимо нажать в окне рисунок Б5 кнопку «Сформировать отчет». При этом будет открыто окно «Настройка параметров протокола», пример которого приведен на рисунке Б6.
- 9. Содержание протокола, включая и рассчитываемые необходимые виды оценок погрешностей измерений, задаётся путём установки соответствующих параметров во вкладке «Настройка протокола» (окно рисунок Б6).
- 10. В протокол могут быть внесены дополнительные сведения о параметрах окружающей среды, зафиксированных вербальными методами. Для этого необходимо открыть и заполнить вкладку «Дополнительно» окна «Настройка параметров протокола», пример которой приведен на рисунке Б7.
- 11. По нажатию кнопки «ОК» в окне рисунок Б6 вызывается стандартная для ОС Windows процедура сохранения файла протокола (требуется указать папку и имя протокола). После сохранения открывается окно программы MS Office Word для просмотра протокола, в котором возможно форматирование и редактирование результатов поверки ИК. Форма протокола приведена в Приложении Г.
- 12. Для завершения поверки ИК необходимо нажать кнопку «ОК» в диалоговом окне «Настройка канала» (рисунок 8 в разделе 7 настоящего документа).

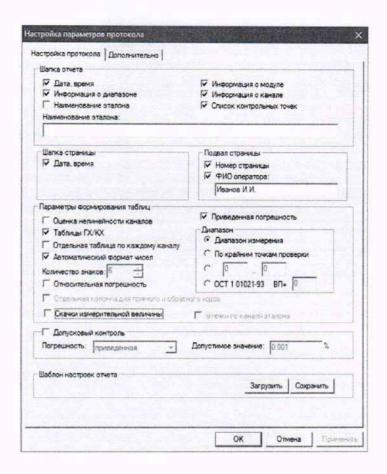


Рисунок Б6 – Окно «Настройка параметров протокола». Вкладка «Настройка протокола»

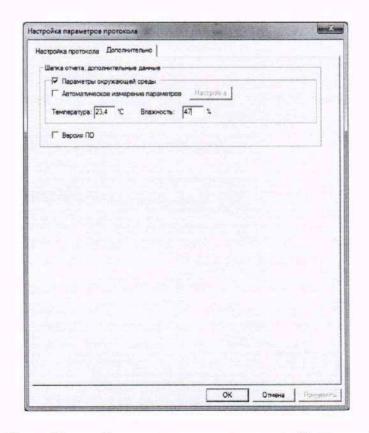


Рисунок Б7 – Окно «Настройка параметров протокола». Вкладка «Дополнительно»

Приложение В *(рекомендуемое)*

Форма протокола поверки при расчетном способе поверки

ПРОТОКОЛ

Результаты замеров поверяемых каналов СИИ

Дата:, врем	R				
Диапазон поверки:					
Обозначение канала					
Количество циклов					
Обратный ход:					
			зав. №		
Наименование этал Температура окруж	ающей среды:	°С, влажн	ность: %		
1 ,1 1,	, ,				
Тоблицо А1 (ук	III (AII ABAIII)	HOMODEON CO.	TO HONOLOTHO	.)	
Таблица А1 – (на	именование			^	
Наименование параметра			Значение пара	метра	
Номинальные значения					1
параметра					
Измеренные значения па-					
раметра					
1997					
Максимальное знач	ение, (абсолю	гной, относит	ельной, приве,	денной) пог	решности
канала:				•	
Kanala.					
Максимально допус	тимое значени	ие погрешнос	ти канала:		
Вывод:					
Испытание провел(а) Ф И.О				

Приложение Г (рекомендуемое)

Форма протокола поверки при автоматическом способе поверки

			П	ротокол		
		поверки и	змерительно	ого (ых) кана	ла (ов) Систем	Ы
Дат	a:,	время	:			
Диа	пазон пове	рки:				
Кол	ичество ци	клов:				
Кол	ичество по	рций:				
Раз	мер порции	:				
Обр	ратный ход:					
Hav	именование	эталона				
Тем	пература о	кружающе	й среды:	, влажность:	измерено:	
Bep	сия ПО МІ	C "Recorde	r":			
ПО	"Калибров	ка" версия:				
Спя	исок контро	льных точе	eĸ.			
Точка №	1	2	3	4	5	
Значение						
Точка №	6	7	8		n	
Значение						

Каналы:

Канал	Описание	Част. дискр., Гц
Канал №1		
Канал №2		

Сводная таблица.

Эталон,	Измерено модулем

Dm - оценка погрешности (максимум), Dr - относительная погрешность.

Канал №1

	Эталон	Измерено	Dm	Dr %
-				

Погрешность	(максимальная)	на всем	диапазоне:
Привеленная	5	%.	

Интерполя	щия за граница	ми: есть.		
Канал №2		Des	Dr	
Эталон	Измерено	Dm	%	
Погрешно	сть (максималы	ная) на всем диа	пазоне:	
	ная погрешност			
Во время п	проверки испол	ьзовалась следу	ющая калибров	очная (аппарат
блица лине	йной интерполя	нции.		
11		AUL OOT		
Интерполя	яция за граница	ми: есть.		
Сводная	габлица погрег	шностей	сительная погре	ешность.
Сводная т De - приве	габлица погрег	шностей	сительная погре	ешность.
Сводная т De - приве	габлица погрец еденная погреш	иностей ность, Dr - отно		ешность.
Сводная т De - приве	габлица погрец еденная погреш	иностей ность, Dr - отно		ешность.
Сводная т De - приве	габлица погрец еденная погреш	иностей ность, Dr - отно		ешность.
Сводная т De - приве к	габлица погрешеденная погреше Санал	иностей ность, Dr - отно		ешность.
Сводная т De - приве Маг	габлица погрешеденная погреше Санал ксимум	шностей ность, Dr - отно De, %	Dr, %	
Сводная то рестривент в привер в мага мага мага мага мага мага мага ма	габлица погрешеденная погреше канал ксимум кый контроль кое значение при	иностей ность, Dr - отно De, %	Dr, %	ешность.
Сводная т De - приве Маг	габлица погрешеденная погреше Санал ксимум	иностей ность, Dr - отно De, %	Dr, %	